28 results on '"Michael Gabler"'
Search Results
2. High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta
- Author
-
Phil Cigan, Mikako Matsuura, Haley L. Gomez, Remy Indebetouw, Fran Abellán, Michael Gabler, Anita Richards, Dennis Alp, Timothy A. Davis, Hans-Thomas Janka, Jason Spyromilio, M. J. Barlow, David Burrows, Eli Dwek, Claes Fransson, Bryan Gaensler, Josefin Larsson, P Bouchet, Peter Lundqvist, J. M. Marcaide, C.-Y. Ng, Sangwook Park, Pat Roche, Jacco Th. van Loon, J. C. Wheeler, and Giovanna Zanardo
- Subjects
Astrophysics - Abstract
We present high angular resolution (∼80 mas) ALMA continuum images of the SN1987A system, together with CO J = 21, J = 65, and SiO J = 54 to J = 76 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in Hα images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO J = 6 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO J = 6 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO J = 2 1 and SiO J = 5 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared–millimeter spectral energy distribution give ejecta dust temperatures of 18–23 K. We revise the ejecta dust mass to Mdust = 0.2–0.4 Mfor carbon or silicate grains, or a maximum of <0.7 Mfor a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.
- Published
- 2020
- Full Text
- View/download PDF
3. Betriebswirtschaftliche Betrachtungen und Finanzierungsmöglichkeiten einer nuklearmedizinischen Praxis aus Sicht eines Finanzinstitutes
- Author
-
Michael Gabler and Andrea Plappert
- Abstract
ZusammenfassungEine Niederlassung in einer nuklearmedizinischen Praxis ist komplex. Es gilt viele Aspekte zu betrachten. Daher ist ein gutes Praxiskonzept extrem wichtig.Mit den richtigen Ratgebern/Unterstützern wird die Existenzgründung zum Erfolg.Diese sollten auf Heilberufler spezialisiert sein und gerade mit dieser Fachrichtung Erfahrung haben. Denn nur dann verfügen sie über entsprechendes Know-How und kennen die besonderen Bedürfnisse dieser Klientel.
- Published
- 2021
- Full Text
- View/download PDF
4. The infancy of core-collapse supernova remnants
- Author
-
Michael Gabler, Hans-Thomas Janka, and Annop Wongwathanarat
- Subjects
Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Spherical harmonics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Type II supernova ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Volume filling ,Supernova ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Red supergiant ,Supergiant ,Ejecta ,010303 astronomy & astrophysics ,Radioactive decay ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics - Abstract
We present 3D hydrodynamic simulations of neutrino-driven supernovae (SNe) with the PROMETHEUS-HOTB code, evolving the asymmetrically expanding ejecta from shock breakout until they reach the homologous expansion phase after roughly one year. Our calculations continue the simulations for two red supergiant (RSG) and two blue supergiant (BSG) progenitors by Wongwathanarat et al., who investigated the growth of explosion asymmetries produced by hydrodynamic instabilities during the first second of the explosion and their later fragmentation by Rayleigh-Taylor instabilities. We focus on the late time acceleration and inflation of the ejecta caused by the heating due to the radioactive decay of $^{56}$Ni to $^{56}$Fe and by a new outward-moving shock, which forms when the reverse shock from the He/H-shell interface compresses the central part of the ejecta. The mean velocities of the iron-rich ejecta increase between 100 km/s and 350 km/s ($\sim$8-30\%), and the fastest one percent of the iron accelerates by up to $\sim$1000 km/s ($\sim$20-25\%). This 'Ni-bubble effect', known from 1D models, accelerates the bulk of the nickel in our 3D models and causes an inflation of the initially overdense Ni-rich clumps, which leads to underdense, extended fingers, enveloped by overdense skins of compressed surrounding matter. We also provide volume and surface filling factors as well as a spherical harmonics analysis to characterize the spectrum of Ni-clump sizes quantitatively. Three of our four models give volume filling factors larger than 0.3, consistent with what is suggested for SN 1987A by observations., 30 pages, 22 figures, 6 tables, extended discussion of correlation of late and initial explosion asymmetries, accepted by MNRAS
- Published
- 2020
5. Three-dimensional Models of Core-collapse Supernovae From Low-mass Progenitors With Implications for Crab
- Author
-
Michael Gabler, Shing-Chi Leung, Alexey Tolstov, Alexander Heger, Alexandra Gessner, Ken'ichi Nomoto, Tobias Melson, Georg Stockinger, Annop Wongwathanarat, T. Ertl, Daniel Kresse, and Hans-Thomas Janka
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Angular momentum ,Crab Pulsar ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Shock (mechanics) ,Neutron star ,Supernova ,Space and Planetary Science ,Astrophysics::Solar and Stellar Astrophysics ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,Low Mass ,Astrophysics::Galaxy Astrophysics ,Spin-½ - Abstract
We present 3D full-sphere supernova simulations of non-rotating low-mass (~9 Msun) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions [~(0.5-1.0)x 10^{50} erg] of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen-neon-magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the Vertex-Prometheus code, whereas the ECSN explosion is modelled using parametric neutrino transport in the Prometheus-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less 2nd dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of 40 km/s and a NS spin period of ~30 ms, both not largely different from those of the Crab pulsar at birth., Comment: 47 pages, 27 figures, 6 tables; minor revisions, accepted by MNRAS
- Published
- 2020
- Full Text
- View/download PDF
6. Magneto‐elastic oscillations modulating the emission of magnetars
- Author
-
Alexei Mate, Pablo Cerdá-Durán, Nikolaos Stergioulas, José A. Font, Michael Gabler, and Ewald Müller
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Photon ,Scattering ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Magnetosphere ,Astronomy and Astrophysics ,Astrophysics ,Magnetar ,01 natural sciences ,Magnetic field ,Momentum ,Superfluidity ,Neutron star ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Magneto-elastic oscillations of neutron stars are believed to explain observed quasi-periodic oscillations (QPOs) in the decaying tail of the giant flares of highly magnetized neutron stars (magnetars). Strong efforts of the theoretical modelling from different groups have increased our understanding of this phenomenon significantly. Here, we discuss some constraints on the matter in neutron stars that arise if the interpretation of the observations in terms of superfluid, magneto-elastic oscillations is correct. To explain the observed modulation of the light curve of the giant flare, we describe a model that allows the QPOs to couple to the stellar exterior through the magnetic field. In this magnetosphere, the shaking magnetic field induces currents that provide scattering targets for resonant cyclotron scattering of photons, which is calculated with a Monte-Carlo approach and coupled to a code that calculates the momentum distribution of the charge carriers as a one-dimensional accelerator problem. We show first results of a simplified, but self-consistent momentum distribution, i.e. a waterbag distribution, and of the corresponding spectra., Comment: 7 pages, 4 figures, proceedings of stars2017 and 2017smfns
- Published
- 2017
- Full Text
- View/download PDF
7. The infancy of supernova remnants: evolving a supernova into its remnant in 3D
- Author
-
Hans-Thomas Janka, Michael Gabler, and Annop Wongwathanarat
- Subjects
Physics ,Supernova ,Pulsar ,010308 nuclear & particles physics ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,0103 physical sciences ,Astronomy ,Astronomy and Astrophysics ,Ejecta ,010303 astronomy & astrophysics ,01 natural sciences - Abstract
Recently, first neutrino-driven supernova explosions have been obtained in 3D, self-consistent, first-principle simulations, these models are still not always exploding robustly and, in general, the explosions are not sufficiently energetic. To constrain the explosion mechanism, and the related uncertainties, it is thus very helpful to consider observational constraints: pulsar kicks, progenitor association and supernova remnants (SNR). Recent observations of asymmetries in the supernova ejecta of Cas A are very promising, to compare to long-term simulations of the explosion. In addition 3D observations of SN87A are becoming more constraining on the geometry of the ejected material during the explosion. In this talk I will discuss our efforts to model the late time evolution of a 3D supernova explosion, where we include the effects of beta decay, which inflates the structures rich in 56Ni. The structures we find in the simulations depend on the quantities plotted.
- Published
- 2017
- Full Text
- View/download PDF
8. X-Ray and Gamma-Ray Emission from Core-collapse Supernovae
- Author
-
Dennis Alp, Josefin Larsson, Annop Wongwathanarat, Keiichi Maeda, Claes Fransson, Alexander Heger, Athira Menon, Hans-Thomas Janka, Michael Gabler, Anders Jerkstrand, and Low Energy Astrophysics (API, FNWI)
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,X-ray ,Gamma ray ,FOS: Physical sciences ,Collapse (topology) ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Core (optical fiber) ,Supernova ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Neutrino ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Line (formation) - Abstract
During the first few hundred days after the explosion, core-collapse supernovae (SNe) emit down-scattered X-rays and gamma-rays originating from radioactive line emissions, primarily from the $^{56}$Ni $\rightarrow$ $^{56}$Co $\rightarrow$ $^{56}$Fe chain. We use SN models based on three-dimensional neutrino-driven explosion simulations of single stars and mergers to compute this emission and compare the predictions with observations of SN 1987A. A number of models are clearly excluded, showing that high-energy emission is a powerful way of discriminating between models. The best models are almost consistent with the observations, but differences that cannot be matched by a suitable choice of viewing angle are evident. Therefore, our self-consistent models suggest that neutrino-driven explosions are able to produce, in principle, sufficient mixing, although remaining discrepancies may require small changes to the progenitor structures. The soft X-ray cutoff is primarily determined by the metallicity of the progenitor envelope. The main effect of asymmetries is to vary the flux level by a factor of ${\sim}$3. For the more asymmetric models, the shapes of the light curves also change. In addition to the models of SN 1987A, we investigate two models of Type II-P SNe and one model of a stripped-envelope Type IIb SN. The Type II-P models have similar observables as the models of SN 1987A, but the stripped-envelope SN model is significantly more luminous and evolves faster. Finally, we make simple predictions for future observations of nearby SNe., 27 pages, 12 figures. Accepted for publication in ApJ. Updated to match the accepted version; added two paragraphs in Section 2 on differences between the models/the level of mixing and rephrased the NuSTAR predictions slightly
- Published
- 2019
9. The 30 Year Search for the Compact Object in SN 1987A
- Author
-
Maarten Baes, Francesco Taddia, Jacobus T. van Loon, Seppo Mattila, Bryan Gaensler, Antero Ahola, Roger A. Chevalier, George Sonneborn, Jesper Sollerman, Robert P. Kirshner, J. M. Marcaide, H.-Thomas Janka, Michael Gabler, Josefin Larsson, Kari A. Frank, Chi-Yung Ng, Anders Jerkstrand, Remy Indebetouw, Claes Fransson, S. E. Woosley, Haley Louise Gomez, Lister Staveley-Smith, Peter Lundqvist, Dennis Alp, David N. Burrows, Bruno Leibundgut, Peter Challis, Sangwook Park, J. Craig Wheeler, Jason Spyromilio, Giovanna Zanardo, Phil Cigan, Aleksandar Cikota, Patrice Bouchet, Mikako Matsuura, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Laboratoire AIM, and Université Paris Diderot - Paris 7 ( UPD7 ) -Centre d'Etudes de Saclay
- Subjects
[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics ,Physical Chemistry ,01 natural sciences ,7. Clean energy ,Atomic ,Luminosity ,Particle and Plasma Physics ,QB460 ,Astrophysics::Solar and Stellar Astrophysics ,Absorption (logic) ,10. No inequality ,010303 astronomy & astrophysics ,QB ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,astro-ph.HE ,Accretion (meteorology) ,SUPERNOVA REMNANT 1987A ,Supernova ,Astrophysics - High Energy Astrophysical Phenomena ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,NEUTRON-STARS ,CIRCUMSTELLAR RING ,X-RAYS ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,BLUE SUPERGIANTS ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Compact star ,Astronomy & Astrophysics ,stars: neutron ,neutron [stars] ,Pulsar ,individual [supernovae] ,0103 physical sciences ,black holes [stars] ,Nuclear ,INTEGRAL FIELD SPECTROSCOPY ,010306 general physics ,UNDERGROUND SCINTILLATION TELESCOPE ,supernovae: individual ,Astrophysics::Galaxy Astrophysics ,Organic Chemistry ,Molecular ,Astronomy and Astrophysics ,HUBBLE-SPACE-TELESCOPE ,Effective temperature ,Neutron star ,RAY EMISSION-LINES ,Physics and Astronomy ,individual (SN 1987A) [supernovae] ,13. Climate action ,Space and Planetary Science ,LARGE-MAGELLANIC-CLOUD ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,stars: black holes - Abstract
Despite more than 30 years of searches, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy ($0.1\times 10^{-26}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) at 213 GHz, 1 Lsun ($6\times 10^{-29}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in optical if our line-of-sight is free of ejecta dust, and $10^{36}$ erg s$^{-1}$ ($2\times 10^{-30}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models (presented in an accompanying article). The allowed bolometric luminosity of the compact object is 22 Lsun if our line-of-sight is free of ejecta dust, or 138 Lsun if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star to, 35 pages, 10 figures. Accepted for publication in ApJ. Updated to match accepted version; slightly shortened and clarified the discussion
- Published
- 2018
- Full Text
- View/download PDF
10. X-ray Absorption in Young Core-Collapse Supernova Remnants
- Author
-
Annop Wongwathanarat, Josefin Larsson, Dennis Alp, Hans-Thomas Janka, Claes Fransson, and Michael Gabler
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,X-ray ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Type II supernova ,01 natural sciences ,Supernova ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,010306 general physics ,Absorption (electromagnetic radiation) ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The material expelled by core-collapse supernova (SN) explosions absorbs X-rays from the central regions. We use SN models based on three-dimensional neutrino-driven explosions to estimate optical depths to the center of the explosion, compare different progenitor models, and investigate the effects of explosion asymmetries. The optical depths below 2 keV for progenitors with a remaining hydrogen envelope are expected to be high during the first century after the explosion due to photoabsorption. A typical optical depth is $100 t_4^{-2} E^{-2}$, where $t_4$ is the time since the explosion in units of 10 000 days (${\sim}$27 years) and $E$ the energy in units of keV. Compton scattering dominates above 50 keV, but the scattering depth is lower and reaches unity already at ${\sim}$1000 days at 1 MeV. The optical depths are approximately an order of magnitude lower for hydrogen-stripped progenitors. The metallicity of the SN ejecta is much higher than in the interstellar medium, which enhances photoabsorption and makes absorption edges stronger. These results are applicable to young SN remnants in general, but we explore the effects on observations of SN 1987A and the compact object in Cas A in detail. For SN 1987A, the absorption is high and the X-ray upper limits of ${\sim}$100 Lsun on a compact object are approximately an order of magnitude less constraining than previous estimates using other absorption models. The details are presented in an accompanying paper. For the central compact object in Cas A, we find no significant effects of our more detailed absorption model on the inferred surface temperature., 21 pages, 7 figures. Accepted for publication in ApJ. Updated to match accepted version; added Section 2.5 on asymmetries and discussion on homologous expansion in preamble of Section 4
- Published
- 2018
11. Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A
- Author
-
Hans-Thomas Janka, Annop Wongwathanarat, and Michael Gabler
- Subjects
Nuclear reaction ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Radionuclide ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,3d model ,Spatial distribution ,01 natural sciences ,Nuclear physics ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Nucleosynthesis ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Neutrino ,010306 general physics ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A, and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A., 9 pages, 6 figures; submitted to: "SN 1987A, 30 years later", Proceedings IAU Symposium No. 331, 2017; eds. M. Renaud et al
- Published
- 2017
12. Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations
- Author
-
Ewald Müller, José A. Font, Michael Gabler, Pablo Cerdá-Durán, and Nikolaos Stergioulas
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Equation of state (cosmology) ,Overtone ,Astrophysics::High Energy Astrophysical Phenomena ,Phase (waves) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Magnetar ,01 natural sciences ,Superfluidity ,Nuclear physics ,Neutron star ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Excited state ,0103 physical sciences ,Magnetohydrodynamics ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We discuss torsional oscillations of highly magnetised neutron stars (magnetars) using two-dimensional, magneto-elastic-hydrodynamical simulations. Our model is able to explain both the low- and high-frequency quasi-periodic oscillations (QPOs) observed in magnetars. The analysis of these oscillations provides constraints on the breakout magnetic-field strength, on the fundamental QPO frequency, and on the frequency of a particularly excited overtone. More importantly, we show how to use this information to generically constraint properties of high-density matter in neutron stars, employing Bayesian analysis. In spite of current uncertainties and computational approximations, our model-dependent Bayesian posterior estimates for SGR 1806-20 yield a magnetic-field strength $\bar B\sim 2.1^{+1.3}_{-1.0}\times10^{15}\,$G and a crust thickness of $\Delta r = 1.6^{+0.7}_{-0.6}$ km, which are both in remarkable agreement with observational and theoretical expectations, respectively (1-$\sigma$ error bars are indicated). Our posteriors also favour the presence of a superfluid phase in the core, a relatively low stellar compactness, $M/R1.4\times10^8\,$cm/s. Although the procedure laid out here still has large uncertainties, these constraints could become tighter when additional observations become available., Comment: 14 pages, 8 figures, 6 tables, submitted to MNRAS
- Published
- 2017
- Full Text
- View/download PDF
13. Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D
- Author
-
F. J. Abellan, Mikako Matsuura, Roger A. Chevalier, Chi-Yung Ng, Haley Louise Gomez, Bryan Gaensler, Jason Spyromilio, Patrick F. Roche, J. M. Marcaide, Remy Indebetouw, Michael Gabler, Lister Staveley-Smith, Josefin Larsson, J. C. Wheeler, Peter Lundqvist, Stanford E Woosley, Robert P. Kirshner, Phil Cigan, David N. Burrows, Claes Fransson, J. Th. van Loon, H.-Th. Janka, Sangwook Park, and Richard McCray
- Subjects
010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Submillimeter Array ,chemistry.chemical_compound ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Large Magellanic Cloud ,Ejecta ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,QB ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astronomy and Astrophysics ,Silicon monoxide ,Astrophysics - Astrophysics of Galaxies ,Interstellar medium ,Core (optical fiber) ,Stars ,Supernova ,chemistry ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outwards through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud (LMC) is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Atacama Large Millimeter/submillimeter Array (ALMA) are of the highest resolution to date and reveal the detailed morphology of cold molecular gas in the innermost regions of the remnant. The 3D distributions of carbon and silicon monoxide (CO and SiO) emission differ, but both have a central deficit, or torus-like distribution, possibly a result of radioactive heating during the first weeks ("nickel heating"). The size scales of the clumpy distribution are compared quantitatively to models, demonstrating how progenitor and explosion physics can be constrained., ApJL accepted, 9 pages, 5 figures
- Published
- 2017
- Full Text
- View/download PDF
14. Modulating magnetar emission by magneto-elastic oscillations
- Author
-
Nikolaos Stergioulas, José A. Font, Michael Gabler, Ewald Müller, and Pablo Cerdá-Durán
- Subjects
Physics ,Photon ,Scattering ,Astrophysics::High Energy Astrophysical Phenomena ,Cyclotron ,Magnetosphere ,Astronomy and Astrophysics ,Astrophysics ,Magnetar ,7. Clean energy ,Magnetic field ,law.invention ,Momentum ,Neutron star ,Space and Planetary Science ,law ,Astrophysics::Galaxy Astrophysics - Abstract
We present a new numerical tool to calculate the emission of highly magnetized neutron stars (magnetars) and apply it to describe the quasi-periodic oscillations (QPOs) observed in magnetar giant flares. In previous work we have developed a model of magneto-elastic oscillations of magnetars that allows to reproduce the observed frequencies. These QPOs can couple to the star's exterior through the magnetic field and induce currents in the magnetosphere that provide scattering targets for resonant cyclotron scattering of the photons. The scattering is calculated with a Monte-Carlo approach and it is coupled to a code that calculates the momentum distribution of the charge carriers as an one-dimensional accelerator problem. As a first test of the method we calculate the modulation of the quiescent emission of the neutron star by the magneto-elastic QPOs for a prescribed momentum distribution of the charge carriers. The necessary amplitudes of the QPOs at the surface of the star to modulate the emission significantly are ≲1km. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2014
- Full Text
- View/download PDF
15. High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta
- Author
-
Jason Spyromilio, Sangwook Park, Giovanna Zanardo, Bryan Gaensler, Patrick F. Roche, M. J. Barlow, Jacco Th. van Loon, Remy Indebetouw, Anita M. S. Richards, J. C. Wheeler, Phil Cigan, Hans-Thomas Janka, Patrice Bouchet, J. M. Marcaide, Timothy A. Davis, Cherry Ng, David N. Burrows, Haley Louise Gomez, Dennis Alp, Josefin Larsson, F. J. Abellan, Mikako Matsuura, Eli Dwek, Claes Fransson, Michael Gabler, Peter Lundqvist, Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), and Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112))
- Subjects
astro-ph.SR ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Spectral line ,Nucleosynthesis ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Molecule ,Ejecta ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Astronomy and Astrophysics ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Spectral energy distribution ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,QB799 - Abstract
We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO $J$=2 $\!\rightarrow\!$ 1, $J$=6 $\!\rightarrow\!$ 5, and SiO $J$=5 $\!\rightarrow\!$ 4 to $J$=7 $\!\rightarrow\!$ 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in H$\alpha$ images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO $J$=6 $\!\rightarrow\!$ 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO $J$=6 $\!\rightarrow\!$ 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO $J$=2 $\!\rightarrow\!$ 1 and SiO $J$=5 $\!\rightarrow\!$ 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared--millimeter spectral energy distribution give ejecta dust temperatures of 18--23K. We revise the ejecta dust mass to $\mathrm{M_{dust}} = 0.2-0.4$M$_\odot$ for carbon or silicate grains, or a maximum of $, Comment: 32 pages, containing 19 figures and three appendices
- Published
- 2019
- Full Text
- View/download PDF
16. Coherent magneto-elastic oscillations in superfluid magnetars
- Author
-
José A. Font, Nikolaos Stergioulas, Ewald Müller, Michael Gabler, and Pablo Cerdá-Durán
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Magnetar ,01 natural sciences ,Asteroseismology ,General Relativity and Quantum Cosmology ,Magnetic field ,Superfluidity ,Neutron star ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Normal mode ,Quantum electrodynamics ,0103 physical sciences ,Neutron ,Magnetohydrodynamics ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We study the effect of superfluidity on torsional oscillations of highly magnetised neutron stars (magnetars) with a microphysical equation of state by means of two-dimensional, magnetohydrodynamical- elastic simulations. The superfluid properties of the neutrons in the neutron star core are treated in a parametric way in which we effectively decouple part of the core matter from the oscillations. Our simulations confirm the existence of two groups of oscillations, namely continuum oscillations that are confined to the neutron star core and are of Alfv\'enic character, and global oscillations with constant phase and that are of mixed magneto-elastic type. The latter might explain the quasi-periodic oscillations observed in magnetar giant flares, since they do not suffer from the additional damping mechanism due to phase mixing, contrary to what happens for continuum oscillations. However, we cannot prove rigorously that the coherent oscillations with constant phase are normal modes. Moreover, we find no crustal shear modes for the magnetic field strengths typical for magnetars.We provide fits to our numerical simulations that give the oscillation frequencies as functions of magnetic field strength and proton fraction in the core., Comment: 16 pages, 12 figures, accepted by MNRAS
- Published
- 2016
17. Magnetoelastic oscillations of neutron stars with dipolar magnetic fields
- Author
-
Michael Gabler, José A. Font, Pablo Cerdá Durán, Ewald Müller, and Nikolaos Stergioulas
- Subjects
Superconductivity ,Physics ,010308 nuclear & particles physics ,Field line ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy and Astrophysics ,Astrophysics ,Magnetar ,01 natural sciences ,Magnetic field ,Neutron star ,Dipole ,Space and Planetary Science ,0103 physical sciences ,Polar ,Neutron ,010303 astronomy & astrophysics - Abstract
By means of two dimensional, general-relativistic, magneto-hydrodynamical simulations we investigate the oscillations of magnetized neutron star models (magnetars) including the description of an extended solid crust. The aim of this study is to understand the origin of the QPOs observed in the giant flares of SGRs. We confirm the existence of three different regimes: (a) a weak magnetic field regime B 10^15 G, where magneto-elastic oscillations reach the surface and approach the behavior of purely Alfv\'en QPOs. When the Alfv\'en QPOs are confined to the core of the neutron star, we find qualitatively similar QPOs as in the absence of a crust. The lower QPOs associated with the closed field lines of the dipolar magnetic field configuration are reproduced as in our previous simulations without crust, while the upper QPOs connected to the open field lines are displaced from the polar axis. Additionally, we observe a family of edge QPOs. Our results do not leave much room for a crustal-mode interpretation of observed QPOs in SGR giant flares, but can accommodate an interpretation of these observations as originating from Alfv\'en-like, global, turning-point QPOs in models with dipolar magnetic field strengths in the narrow range of 5 x 10^15 G < B < 1.4 x 10^16 G. This range is somewhat larger than estimates for magnetic field strengths in known magnetars. The discrepancy may be resolved in models including a more complicated magnetic field structure or with models taking superfluidity of the neutrons and superconductivity of the protons in the core into account.
- Published
- 2012
- Full Text
- View/download PDF
18. Magneto-elastic oscillations and the damping of crustal shear modes in magnetars
- Author
-
Nikolaos Stergioulas, José A. Font, Pablo Cerdá-Durán, Michael Gabler, and Ewald Müller
- Subjects
Shear (sheet metal) ,Physics ,Dipole ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy and Astrophysics ,Astrophysics ,Resonant absorption ,Magneto elastic ,Magnetohydrodynamics ,Magnetar ,Lower limit ,Magnetic field - Abstract
In a realistic model of magneto-elastic oscillations in magnetars, we find that crustal shear oscillations, often invoked as an explanation of quasi-periodic oscillations (QPOs) seen after giant flares in soft gamma-ray repeaters (SGRs), are damped by resonant absorption on timescales of at most 0.2s, for a lower limit on the dipole magnetic field strength of 5 10 13 G. At higher magnetic field strengths (typical in magnetars) the damping timescale is even shorter, as anticipated by earlier toy-models. We have investigated a range of equations of state and masses and if magnetars are dominated by a dipole magnetic field, our findings exclude torsional shear oscillations of the crust from explaining the observed low-frequency QPOs. In contrast, we find that the Alfv´ en QPO model is a viable explanation of observed QPOs, if the dipole magnetic field strength exceeds a minimum strength of about several times 10 14 G to
- Published
- 2010
- Full Text
- View/download PDF
19. Search for quasi-periodic signals in magnetar giant flares
- Author
-
Theo Steininger, Torsten A. Enßlin, Daniel Pumpe, and Michael Gabler
- Subjects
Physics ,Photon ,Shot noise ,Spectral density ,Flux ,Astronomy and Astrophysics ,Astrophysics ,Magnetar ,Light curve ,01 natural sciences ,Magnetic field ,Neutron star ,Space and Planetary Science ,0103 physical sciences ,010306 general physics ,010303 astronomy & astrophysics - Abstract
Quasi-periodic oscillations (QPOs) discovered in the decaying tails of giant flares of magnetars are believed to be torsional oscillations of neutron stars. These QPOs have a high potential to constrain properties of high-density matter. In search for quasi-periodic signals, we study the light curves of the giant flares of SGR 1806-20 and SGR 1900+14, with a non-parametric Bayesian signal inference method called D3PO. The D3PO algorithm models the raw photon counts as a continuous flux and takes the Poissonian shot noise as well as all instrument effects into account. It reconstructs the logarithmic flux and its power spectrum from the data. Using this fully noise-aware method, we do not confirm previously reported frequency lines at ν ≳ 17 Hz because they fall into the noise-dominated regime. However, we find two new potential candidates for oscillations at 9.2 Hz (SGR 1806-20) and 7.7 Hz (SGR 1900+14). If these are real and the fundamental magneto-elastic oscillations of the magnetars, current theoretical models would favour relatively weak magnetic fields B̅ ~ 6× 1013–3 × 1014 G (SGR 1806-20) and a relatively low shear velocity inside the crust compared to previous findings.
- Published
- 2018
- Full Text
- View/download PDF
20. Modulating the magnetosphere of magnetars by internal magneto-elastic oscillations
- Author
-
Nikolaos Stergioulas, Pablo Cerdá-Durán, José A. Font, Ewald Müller, and Michael Gabler
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Rotational symmetry ,Magnetosphere ,FOS: Physical sciences ,Astronomy and Astrophysics ,Magneto elastic ,Magnetar ,01 natural sciences ,Asteroseismology ,Magnetic field ,Neutron star ,Classical mechanics ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Quantum electrodynamics ,0103 physical sciences ,Magnetohydrodynamics ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We couple internal torsional, magneto-elastic oscillations of highly magnetized neutron stars (magnetars) to their magnetospheres. The corresponding axisymmetric perturbations of the external magnetic field configuration evolve as a sequence of linear, force-free equilibria that are completely determined by the background magnetic field configuration and by the perturbations of the magnetic field at the surface. The perturbations are obtained from simulations of magneto-elastic oscillations in the interior of the magnetar. While such oscillations can excite travelling Alfv\'en waves in the exterior of the star only in a very limited region close to the poles, they still modulate the near magnetosphere by inducing a time-dependent twist between the foot-points of closed magnetic field lines that exit the star at a polar angle $\gtrsim 0.19\,$rad. Moreover, we find that for a dipole-like background magnetic field configuration the magnetic field modulations in the magnetosphere, driven by internal oscillations, can only be symmetric with respect to the equator. This is in agreement with our previous findings, where we interpreted the observed quasi-periodic oscillations in the X-ray tail of magnetar bursts as driven by the family of internal magneto-elastic oscillations with symmetric magnetic field perturbations., Comment: 9 pages, 5 figures, 2 tables, Accepted by MNRAS
- Published
- 2014
- Full Text
- View/download PDF
21. The Large Observatory For x-ray Timing
- Author
-
Antonios Manousakis, S. Boutloukos, F. Zwart, Jose M. Torrejon, C. Pittori, Alessandro Drago, Dieter H. Hartmann, Feryal Özel, T. J. L. Courvoisier, Tim Johannsen, Jordi José, M. Michalska, Christian Schmid, I. Rashevskaya, Gottfried Kanbach, V. Petracek, L. Bradley, Allan Hornstrup, M. H. Erkut, Sergio Campana, Rudy Wijnands, Andrew Cumming, Nils Andersson, Tomaso Belloni, M. C. Miller, Roman Wawrzaszek, Stefano Bianchi, Enrique García-Berro, Sandro Mereghetti, C. Guidorzi, C. Corral Van Damme, Søren Brandt, Francesco Tombesi, Felix Ryde, Didier Barret, Simon Vaughan, Marco Feroci, T. Di Salvo, C. van Baren, Angelo Antonelli, Marc Ribó, J. L. Atteia, P. Soleri, Alessio Trois, Silvia Zane, G. Mouret, Ersin Gogus, Emanuele Perinati, J. Coker, Piero Malcovati, V. Mangano, F. Jetter, P. Uter, P. Romano, M. Nowak, Roberto Turolla, Laura Tolos, Antonino D'Ai, Laura Alvarez, C. Amoros, Simone Scaringi, A. Possenti, David M. Smith, M. Falanga, A. Goldwurm, René Hudec, Ignacio Negueruela, M. van der Klis, Francesco Longo, José A. Pons, I. M. McHardy, R. Rohlfs, P. Cais, Luigi Stella, S. Di Cosimo, Antoine Rousseau, M. Ayre, M. Gschwender, D. Klochkov, Niels Lund, Chryssa Kouveliotou, P. Azzarello, F. Château, Michael Gabler, S. Vercellone, Martin Durant, I. Donnarumma, Giorgio Matt, Mauro Orlandini, P. Kaaret, Patrick Smith, P. T. O'Brien, A. Argan, M. Orienti, Marco Grassi, Claudio Labanti, Edward F. Brown, Christopher S. Reynolds, Gloria Sala, Y. Evangelista, Gabriel Török, José Braga, Riccardo Campana, Alan Smith, C. Gouiffes, Nevin N. Weinberg, Leonardo Gualtieri, Yannick Favre, P.G. Jonker, Gabriele Giovannini, D. de Martino, Irfan Kuvvetli, S. Motta, Teresa Mineo, Paul J. Groot, Pablo Reig, Martino Marisaldi, Andrea Sanna, Lorenzo Amati, G. L. Israel, D. Macera, K. S. Wood, Pablo Cerdá-Durán, F. Fuschino, Suvi Gezari, Mariano Mendez, Slawomir Suchy, Damien Rambaud, Nanda Rea, R. Artigue, J.-Y. Seyler, S. N. Shore, Frederick K. Lamb, Jörn Wilms, Mark G. Alford, Margarita Hernanz, Thomas M. Tauris, Luca Izzo, Tobias Boenke, J. J. M. in 't Zand, J. Mulačová, P. Binko, Daniel Maier, Jan Schee, Bruce Gendre, Enrico Bozzo, Paul S. Ray, Giuseppe Bertuccio, Simone Migliari, Ignazio Bombaci, Vladimir Karas, Nikolaos Stergioulas, P. P. Laubert, D. Karelin, A. C. Fabian, Giovanni Miniutti, Dacheng Lin, L. Guy, Martine Mouchet, Colleen A. Wilson-Hodge, Valeria Ferrari, Kai Hebeler, Mark H. Finger, Shigeto Watanabe, Pawel Haensel, H. Jacobs, Adrian Martindale, A. A. Zdziarski, Andrea Santangelo, Giuseppe Baldazzi, Piergiorgio Casella, Fabio Muleri, M. Hailey, Antonio Bianchini, Giuseppe Lodato, E. Del Monte, M. Rapisarda, Zdeněk Stuchlík, Alain Cros, V. Sochora, Laurens Keek, Jorge Casares, Andrew Melatos, Pere Blay, E. Rossi, A. P. Spencer, G. Stratta, Conrado Albertus, J. M. Paredes, M. Ahangarianabhari, Anna L. Watts, M. Del Santo, I. Kreykenbohm, Alessandro Patruno, G. A. Caliandro, C. Feldman, M. Pohl, Fabrizio Tamburini, G. Zampa, Marina Orio, Flemming Hansen, P. Ramon, Ruben Salvaterra, David H. Lumb, Edward M. Cackett, Andrew Shearer, Sharon M. Morsink, L. Pacciani, J.-M. Bonnet Bidaud, A. De Luca, Jérôme Chenevez, Sebastian Diebold, N. Zampa, Carole A. Haswell, Luciano Burderi, E. Cavazzuti, Adam Ingram, Dhiren Kataria, Berend Winter, A. Vacchi, W. Hermsen, P. Giommi, Dong Lai, N. A. Webb, P. Bodin, Dom Walton, Solen Balman, Benjamin Stappers, M. Burgay, Luca Zampieri, Carl Budtz-Jørgensen, Ralph A. M. J. Wijers, Giancarlo Cusumano, J. L. Galvez Sanchez, Raffaella Schneider, Luciano Rezzolla, Alexander Heger, S. Korpela, Dimitrios Emmanoulopoulos, Biswajit Paul, Diego Götz, B. Artigues, Paolo Soffitta, M. H. Finger, J. W. den Herder, Paolo Esposito, Kazushi Iwasawa, Poul Erik Holmdahl Olsen, J. Neilsen, Marco Barbera, Deepto Chakrabarty, R. A. Osten, M. Reina Aranda, A. J. Castro-Tirado, Andrea Tramacere, D. Haas, Johannes Dercksen, John A. Tomsick, A. V. Penacchioni, V. D'Elia, Alfonso Collura, Altan Baykal, P. Le Provost, S. Turriziani, Kostas D. Kokkotas, Duncan K. Galloway, Ron Remillard, Juhani Huovelin, Somak Bhattacharyya, Pavel Bakala, Phil Uttley, Richard E. Cole, Mahesh Prakash, L. Kuiper, T. Munoz-Darias, Diego F. Torres, S. Mahmoodifar, G. Ramsay, Andrew Norton, T. Kennedy, Achim Schwenk, L. Zdunik, A. B. Giles, Jerome Rodriguez, C. Motch, Ilya Mandel, Marcello Giroletti, Dimitrios Psaltis, J. Sandberg, Fiamma Capitanio, Remon Cornelisse, M. R. Gilfanov, Peggy Varniere, Franck Cadoux, Peter J. Wheatley, M. de Pasquale, Juri Poutanen, S. Maestre, A. Pellizzoni, Axel Schwope, Diego Altamirano, Piotr Orleanski, V. Vrba, Agata Różańska, Kateřina Goluchová, P. Rodríguez Gil, Niccolò Bucciantini, Stéphane Schanne, Carlo Ferrigno, Thomas J. Maccarone, H. Wende, Tod E. Strohmayer, Tadayuki Takahashi, Francois Lebrun, E. Kuulkers, Jeroen Homan, Maurizio Paolillo, M. A. Perez, J. P. Osborne, A. Alpar, Sanjay Reddy, G.W. Fraser, V. Sulemainov, D. Linder, L. Sabau-Graziati, A. Rachevski, Bing Zhang, Alessandro Papitto, C. Tenzer, Alex Markowitz, J. Portell, Roberto Mignani, Fabrizio Bocchino, Arnau Rios, R. de la Rie, M. Wille, A. de Rosa, Alessandro Riggio, M. Frericks, Andrew W. Steiner, Michal Bursa, Federico Bernardini, Jon M. Miller, W. Kluzniak, INAF - Osservatorio Astronomico di Roma ( OAR ), Istituto Nazionale di Astrofisica ( INAF ), Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées ( LATT ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Variable Energy Cyclotron Centre, Institut Pasteur de Montevideo, Réseau International des Instituts Pasteur ( RIIP ) -Institut Pasteur de Montevideo, Mullard Space Science Laboratory ( MSSL ), University College of London [London] ( UCL ), FORMATION STELLAIRE 2014, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux ( L3AB ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ), Instituto de Astrofísica de Andalucía ( IAA ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Interactions et dynamique des environnements de surface ( IDES ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Licryl Laboratory ( CNR-IPCF UOS Cosenza ), University of Calabria, Laboratori Nazionali di Frascati ( LNF ), National Institute for Nuclear Physics ( INFN ), PCAS, Istituto di Astrofisica Spaziale e Fisica Cosmica - Milano ( IASF-MI ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Astrophysique Interactions Multi-échelles ( AIM - UMR 7158 - UMR E 9005 ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris Diderot - Paris 7 ( UPD7 ), Canada's National Laboratory for Particle and Nuclear Physics ( TRIUMF ), NRC, Dipartimento di Astronomia, Universita degli Studi di Bologna, Università di Bologna [Bologna] ( UNIBO ), Institut de recherches sur la catalyse et l'environnement de Lyon ( IRCELYON ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Univers et Théories ( LUTH ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Spectrochimie Infrarouge et Raman - UMR 8516 ( LASIR ), Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Dipartimento di Scienze Fisiche [Naples], Università degli studi di Napoli Federico II, Energétique, propulsion, espace, environnement ( EPEE ), Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Physics and Astronomy [Hanover], Dartmouth College [Hanover], Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d’Optique Atmosphérique - UMR 8518 ( LOA ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Institut de Biologie du Développement de Marseille ( IBDM ), Aix Marseille Université ( AMU ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Universitat Politècnica de Catalunya [Barcelona] ( UPC ), INAF-IASF Milano, Climate and Environmental Physics [Bern], University of Bern, Centre National d'Etudes Spatiales ( CNES ), Institute of Geology, Eidgenössische Technische Hochschule [Zürich] ( ETH Zürich ), IEEC-CSIC, Universitat Autònoma de Barcelona [Barcelona] ( UAB ), MedisysResearch Lab ( Medisys ), Philips Research, European Space Astronomy Center ( ESAC ), European Space Agency ( ESA ), High Energy Astrophys. & Astropart. Phys (API, FNWI), INAF - Osservatorio Astronomico di Roma (OAR), Istituto Nazionale di Astrofisica (INAF), Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées (LATT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Réseau International des Instituts Pasteur (RIIP), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Licryl Laboratory (CNR-IPCF UOS Cosenza), Università della Calabria [Arcavacata di Rende] (Unical), Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), Istituto di Astrofisica Spaziale e Fisica Cosmica - Milano (IASF-MI), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Canada's particle accelerator centre (TRIUMF), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), University of Naples Federico II = Università degli studi di Napoli Federico II, Energétique, propulsion, espace, environnement (EPEE), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Universitat Politècnica de Catalunya [Barcelona] (UPC), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Centre National d'Études Spatiales [Toulouse] (CNES), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Universitat Autònoma de Barcelona (UAB), MedisysResearch Lab (Medisys), European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA), SPIE, Takahashi, Tadayuki, Feroci M., Den Herder J.W., Bozzo E., Barret D., Brandt S., Hernanz M., Van Der Klis M., Pohl M., Santangelo A., Stella L., Watts A., Wilms J., Zane S., Ahangarianabhari M., Albertus C., Alford M., Alpar A., Altamirano D., Alvarez L., Amati L., Amoros C., Andersson N., Antonelli A., Argan A., Artigue R., Artigues B., Atteia J.-L., Azzarello P., Bakala P., Baldazzi G., Balman S., Barbera M., Van Baren C., Bhattacharyya S., Baykal A., Belloni T., Bernardini F., Bertuccio G., Bianchi S., Bianchini A., Binko P., Blay P., Bocchino F., Bodin P., Bombaci I., Bonnet Bidaud J.-M., Boutloukos S., Bradley L., Braga J., Brown E., Bucciantini N., Burderi L., Burgay M., Bursa M., Budtz-Jorgensen C., Cackett E., Cadoux F.R., Cais P., Caliandro G.A., Campana R., Campana S., Capitanio F., Casares J., Casella P., Castro-Tirado A.J., Cavazzuti E., Cerda-Duran P., Chakrabarty D., Chateau F., Chenevez J., Coker J., Cole R., Collura A., Cornelisse R., Courvoisier T., Cros A., Cumming A., Cusumano G., D'ai A., D'elia V., Del Monte E., De Luca A., De Martino D., Dercksen J.P.C., De Pasquale M., De Rosa A., Del Santo M., Di Cosimo S., Diebold S., Di Salvo T., Donnarumma I., Drago A., Durant M., Emmanoulopoulos D., Erkut M.H., Esposito P., Evangelista Y., Fabian A., Falanga M., Favre Y., Feldman C., Ferrari V., Ferrigno C., Finger M., Finger M.H., Fraser G.W., Frericks M., Fuschino F., Gabler M., Galloway D.K., Galvez Sanchez J.L., Garcia-Berro E., Gendre B., Gezari S., Giles A.B., Gilfanov M., Giommi P., Giovannini G., Giroletti M., Gogus E., Goldwurm A., Goluchova K., Gotz D., Gouiffes C., Grassi M., Groot P., Gschwender M., Gualtieri L., Guidorzi C., Guy L., Haas D., Haensel P., Hailey M., Hansen F., Hartmann D.H., Haswell C.A., Hebeler K., Heger A., Hermsen W., Homan J., Hornstrup A., Hudec R., Huovelin J., Ingram A., In't Zand J.J.M., Israel G., Iwasawa K., Izzo L., Jacobs H.M., Jetter F., Johannsen T., Jonker P., Jose J., Kaaret P., Kanbach G., Karas V., Karelin D., Kataria D., Keek L., Kennedy T., Klochkov D., Kluzniak W., Kokkotas K., Korpela S., Kouveliotou C., Kreykenbohm I., Kuiper L.M., Kuvvetli I., Labanti C., Lai D., Lamb F.K., Laubert P.P., Lebrun F., Lin D., Linder D., Lodato G., Longo F., Lund N., Maccarone T.J., Macera D., Maestre S., Mahmoodifar S., Maier D., Malcovati P., Mandel I., Mangano V., Manousakis A., Marisaldi M., Markowitz A., Martindale A., Matt G., Mchardy I.M., Melatos A., Mendez M., Mereghetti S., Michalska M., Migliari S., Mignani R., Miller M.C., Miller J.M., Mineo T., Miniutti G., Morsink S., Motch C., Motta S., Mouchet M., Mouret G., Mulaova J., Muleri F., Munoz-Darias T., Negueruela I., Neilsen J., Norton A.J., Nowak M., O'brien P., Olsen P.E.H., Orienti M., Orio M., Orlandini M., Orleaaski P., Osborne J.P., Osten R., Ozel F., Pacciani L., Paolillo M., Papitto A., Paredes J.M., Patruno A., Paul B., Perinati E., Pellizzoni A., Penacchioni A.V., Perez M.A., Petracek V., Pittori C., Pons J., Portell J., Possenti A., Poutanen J., Prakash M., Le Provost P., Psaltis D., Rambaud D., Ramon P., Ramsay G., Rapisarda M., Rachevski A., Rashevskaya I., Ray P.S., Rea N., Reddy S., Reig P., Reina Aranda M., Remillard R., Reynolds C., Rezzolla L., Ribo M., De La Rie R., Riggio A., Rios A., Rodriguez-Gil P., Rodriguez J., Rohlfs R., Romano P., Rossi E.M.R., Rozanska A., Rousseau A., Ryde F., Sabau-Graziati L., Sala G., Salvaterra R., Sanna A., Sandberg J., Scaringi S., Schanne S., Schee J., Schmid C., Shore S., Schneider R., Schwenk A., Schwope A.D., Seyler J.-Y., Shearer A., Smith A., Smith D.M., Smith P.J., Sochora V., Soffitta P., Soleri P., Spencer A., Stappers B., Steiner A.W., Stergioulas N., Stratta G., Strohmayer T.E., Stuchlik Z., Suchy S., Sulemainov V., Takahashi T., Tamburini F., Tauris T., Tenzer C., Tolos L., Tombesi F., Tomsick J., Torok G., Torrejon J.M., Torres D.F., Tramacere A., Trois A., Turolla R., Turriziani S., Uter P., Uttley P., Vacchi A., Varniere P., Vaughan S., Vercellone S., Vrba V., Walton D., Watanabe S., Wawrzaszek R., Webb N., Weinberg N., Wende H., Wheatley P., Wijers R., Wijnands R., Wille M., Wilson-Hodge C.A., Winter B., Wood K., Zampa G., Zampa N., Zampieri L., Zdunik L., Zdziarski A., Zhang B., Zwart F., Ayre M., Boenke T., Corral Van Damme C., Kuulkers E., Lumb D., Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Universität Bern [Bern]-Universität Bern [Bern], European Space Agency (ESA), Feroci, M., den Herder, J., Bozzo, E., Barret, D., Brandt, S., Hernanz, M., van der Klis, M., Pohl, M., Santangelo, A., Stella, L., Watts, A., Wilms, J., Zane, S., Ahangarianabhari, M., Albertus, C., Alford, M., Alpar, A., Altamirano, D., Alvarez, L., Amati, L., Amoros, C., Andersson, N., Antonelli, A., Argan, A., Artigue, R., Artigues, B., Atteia, J., Azzarello, P., Bakala, P., Baldazzi, G., Balman, S., Barbera, M., van Baren, C., Bhattacharyya, S., Baykal, A., Belloni, T., Bernardini, F., Bertuccio, G., Bianchi, S., Bianchini, A., Binko, P., Blay, P., Bocchino, F., Bodin, P., Bombaci, I., Bonnet Bidaud, J., Boutloukos, S., Bradley, L., Braga, J., Brown, E., Bucciantini, N., Burderi, L., Burgay, M., Bursa, M., Budtz Jørgensen, C., Cackett, E., Cadoux, F., Caïs, P., Caliandro, G., Campana, R., Campana, S., Capitanio, F., Casares, J., Casella, P., Castro Tirado, A., Cavazzuti, E., Cerda Duran, P., Chakrabarty, D., Château, F., Chenevez, J., Coker, J., Cole, R., Collura, A., Cornelisse, R., Courvoisier, T., Cros, A., Cumming, A., Cusumano, G., D'Ai', A., D'Elia, V., Del Monte, E., de Luca, A., de Martino, D., Dercksen, J., de Pasquale, M., De Rosa, A., Del Santo, M., Di Cosimo, S., Diebold, S., DI SALVO, T., Donnarumma, I., Drago, A., Durant, M., Emmanoulopoulos, D., Erkut, M., Esposito, P., Evangelista, Y., Fabian, A., Falanga, M., Favre, Y., Feldman, C., Ferrari, V., Ferrigno, C., Finger, M., Fraser, G., Frericks, M., Fuschino, F., Gabler, M., Galloway, D., Galvez Sanchez, J., Garcia Berro, E., Gendre, B., Gezari, S., Giles, A., Gilfanov, M., Giommi, P., Giovannini, G., Giroletti, M., Gogus, E., Goldwurm, A., Goluchová, K., Götz, D., Gouiffes, C., Grassi, M., Groot, P., Gschwender, M., Gualtieri, L., Guidorzi, C., Guy, L., Haas, D., Haensel, P., Hailey, M., Hansen, F., Hartmann, D., Haswell, C., Hebeler, K., Heger, A., Hermsen, W., Homan, J., Hornstrup, A., Hudec, R., Huovelin, J., Ingram, A., In't Zand, J., Israel, G., Iwasawa, K., Izzo, L., Jacobs, H., Jetter, F., Johannsen, T., Jonker, P., Josè, J., Kaaret, P., Kanbach, G., Karas, V., Karelin, D., Kataria, D., Keek, L., Kennedy, T., Klochkov, D., Kluzniak, W., Kokkotas, K., Korpela, S., Kouveliotou, C., Kreykenbohm, I., Kuiper, L., Kuvvetli, I., Labanti, C., Lai, D., Lamb, F., Laubert, P., Lebrun, F., Lin, D., Linder, D., Lodato, G., Longo, F., Lund, N., Maccarone, T., Macera, D., Maestre, S., Mahmoodifar, S., Maier, D., Malcovati, P., Mandel, I., Mangano, V., Manousakis, A., Marisaldi, M., Markowitz, A., Martindale, A., Matt, G., Mchardy, I., Melatos, A., Mendez, M., Mereghetti, S., Michalska, M., Migliari, S., Mignani, R., Miller, M., Miller, J., Mineo, T., Miniutti, G., Morsink, S., Motch, C., Motta, S., Mouchet, M., Mouret, G., Mulačová, J., Muleri, F., Muñoz Darias, T., Negueruela, I., Neilsen, J., Norton, A., Nowak, M., O'Brien, P., Olsen, P., Orienti, M., Orio, M., Orlandini, M., Orleański, P., Osborne, J., Osten, R., Ozel, F., Pacciani, L., Paolillo, M., Papitto, A., Paredes, J., Patruno, A., Paul, B., Perinati, E., Pellizzoni, A., Penacchioni, A., Perez, M., Petracek, V., Pittori, C., Pons, J., Portell, J., Possenti, A., Poutanen, J., Prakash, M., Le Provost, P., Psaltis, D., Rambaud, D., Ramon, P., Ramsay, G., Rapisarda, M., Rachevski, A., Rashevskaya, I., Ray, P., Rea, N., Reddy, S., Reig, P., Reina Aranda, M., Remillard, R., Reynolds, C., Rezzolla, L., Ribo, M., de la Rie, R., Riggio, A., Rios, A., Rodríguez Gil, P., Rodriguez, J., Rohlfs, R., Romano, P., Rossi, E., Rozanska, A., Rousseau, A., Ryde, F., Sabau Graziati, L., Sala, G., Salvaterra, R., Sanna, A., Sandberg, J., Scaringi, S., Schanne, S., Schee, J., Schmid, C., Shore, S., Schneider, R., Schwenk, A., Schwope, A., Seyler, J., Shearer, A., Smith, A., Smith, D., Smith, P., Sochora, V., Soffitta, P., Soleri, P., Spencer, A., Stappers, B., Steiner, A., Stergioulas, N., Stratta, G., Strohmayer, T., Stuchlik, Z., Suchy, S., Sulemainov, V., Takahashi, T., Tamburini, F., Tauris, T., Tenzer, C., Tolos, L., Tombesi, F., Tomsick, J., Torok, G., Torrejon, J., Torres, D., Tramacere, A., Trois, A., Turolla, R., Turriziani, S., Uter, P., Uttley, P., Vacchi, A., Varniere, P., Vaughan, S., Vercellone, S., Vrba, V., Walton, D., Watanabe, S., Wawrzaszek, R., Webb, N., Weinberg, N., Wende, H., Wheatley, P., Wijers, R., Wijnands, R., Wille, M., Wilson Hodge, C., Winter, B., Wood, K., Zampa, G., Zampa, N., Zampieri, L., Zdunik, L., Zdziarski, A., Zhang, B., Zwart, F., Ayre, M., Boenke, T., Corral van Damme, C., Kuulkers, E., Lumb, D., Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), National Institute for Nuclear Physics (INFN), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Canada's National Laboratory for Particle and Nuclear Physics (TRIUMF), Università di Bologna [Bologna] (UNIBO), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Spectrochimie Infrarouge et Raman - UMR 8516 (LASIR), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Aix Marseille Université (AMU)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Universitat Autònoma de Barcelona [Barcelona] (UAB), Astronomy, den Herder, J. W., Atteia, J. L., Bonnet Bidaud, J. M., Cadoux, F. R., Cais, P., Caliandro, G. A., Castro Tirado, A. J., D'Aì, A., De Luca, A., De Martino, D., Dercksen, J. P. C., De Pasquale, M., Di Salvo, T., Erkut, M. H., Finger, M. H., Fraser, G. W., Galloway, D. K., Galvez Sanchez, J. L., Giles, A. B., Hartmann, D. H., Haswell, C. A., in't Zand, J. J. M., Jacobs, H. M., Kuiper, L. M., Lamb, F. K., Laubert, P. P., Maccarone, T. J., Mchardy, I. M., Miller, M. C., Miller, J. M., Norton, A. J., Olsen, P. E. H., Orleanski, P., Osborne, J. P., Paolillo, Maurizio, Paredes, J. M., Penacchioni, A. V., Perez, M. A., Ray, P. S., Rossi, E. M. R., Schwope, A. D., Seyler, J. Y., Smith, D. M., Smith, P. J., Steiner, A. W., Strohmayer, T. E., Torrejon, J. M., Torres, D. F., and Wilson Hodge, C. A.
- Subjects
x-ray and γ-ray instrumentation ,compact objects ,microchannel plates ,X-ray detectors ,X-ray imaging ,X-ray spectroscopy ,X-ray timing ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,Vision ,Observatories ,Field of view ,01 natural sciences ,7. Clean energy ,neutron stars ,Observatory ,010303 astronomy & astrophysics ,Physics ,Equipment and services ,Astrophysics::Instrumentation and Methods for Astrophysics ,Steradian ,[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astrophysics - Instrumentation and Methods for Astrophysics ,X-ray detector ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Cosmic Vision ,Spectral resolution ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,NO ,microchannel plate ,Settore FIS/05 - Astronomia e Astrofisica ,X-rays ,compact object ,0103 physical sciences ,Electronic ,Optical and Magnetic Materials ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,dense hadronic matter ,Sensors ,010308 nuclear & particles physics ,Astronomy ,Accretion (astrophysics) ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Neutron star ,13. Climate action ,[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Gamma-ray burst ,astro-ph.IM - Abstract
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study., Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91442T
- Published
- 2014
- Full Text
- View/download PDF
22. Imprints of superfluidity on magnetoelastic quasiperiodic oscillations of soft gamma-ray repeaters
- Author
-
Nikolaos Stergioulas, Pablo Cerdá-Durán, Ewald Müller, Michael Gabler, and José A. Font
- Subjects
Physics ,Quantum fluid ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,General Physics and Astronomy ,Astrophysics ,Magnetar ,01 natural sciences ,Magnetic field ,Superfluidity ,Neutron star ,Quasiperiodic function ,Excited state ,0103 physical sciences ,010303 astronomy & astrophysics - Abstract
Our numerical simulations show that axisymmetric, torsional, magnetoelastic oscillations of magnetars with a superfluid core can explain the whole range of observed quasiperiodic oscillations (QPOs) in the giant flares of soft gamma-ray repeaters. There exist constant phase QPOs at $f\ensuremath{\lesssim}150\text{ }\text{ }\mathrm{Hz}$ and resonantly excited high-frequency QPOs ($fg500\text{ }\text{ }\mathrm{Hz}$), in good agreement with observations. The range of magnetic field strengths required to match the observed QPO frequencies agrees with that from spin-down estimates. These results suggest that there is at least one superfluid species in magnetar cores.
- Published
- 2013
23. Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations
- Author
-
José A. Font, Pablo Cerdá-Durán, Ewald Müller, Michael Gabler, and Nikolaos Stergioulas
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Field line ,Astrophysics::High Energy Astrophysical Phenomena ,Continuum (design consultancy) ,FOS: Physical sciences ,Astronomy and Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics ,Magnetar ,01 natural sciences ,Asteroseismology ,General Relativity and Quantum Cosmology ,Magnetic field ,Dipole ,Neutron star ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Magnetohydrodynamics ,010306 general physics ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We study magneto-elastic oscillations of highly magnetized neutron stars (magnetars) which have been proposed as an explanation for the quasi-periodic oscillations (QPOs) appearing in the decaying tail of the giant flares of soft gamma-ray repeaters (SGRs). We extend previous studies by investigating various magnetic field configurations, computing the Alfv��n spectrum in each case and performing magneto-elastic simulations for a selected number of models. By identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR 1806-20) with the fundamental Alfv��n QPOs, we estimate the required surface magnetic field strength. For the magnetic field configurations investigated (dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal component and a toroidal field confined to the region of field lines closing inside the star, and for poloidal fields with an additional quadrupole-like component) the estimated dipole spin-down magnetic fields are between 8x10^14 G and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources producing giant flares. A number of these models exhibit a rich Alfv��n continuum revealing new turning points which can produce QPOs. This allows one to explain most of the observed QPO frequencies as associated with magneto-elastic QPOs. In particular, we construct a possible configuration with two turning points in the spectrum which can explain all observed QPOs of SGR 1900+14. Finally, we find that magnetic field configurations which are entirely confined in the crust (if the core is assumed to be a type I superconductor) are not favoured, due to difficulties in explaining the lowest observed QPO frequencies (f, 21 pages, 16 figures, 6 tables, matched to version accepted by MNRAS with extended comparison/discussion to previous work
- Published
- 2012
24. Magneto-elastic torsional oscillations of magnetars
- Author
-
Ewald Müller, Pablo Cerdá-Durán, José A. Font, Michael Gabler, and Nikolaos Stergioulas
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,History ,Astrophysics::High Energy Astrophysical Phenomena ,Equator ,FOS: Physical sciences ,Magneto elastic ,Astrophysics ,General Relativity and Quantum Cosmology (gr-qc) ,Magnetar ,General Relativity and Quantum Cosmology ,Computer Science Applications ,Education ,Magnetic field ,Neutron star ,Dipole ,Astrophysics - Solar and Stellar Astrophysics ,Torsional oscillations ,Elasticity (economics) ,Astrophysics - High Energy Astrophysical Phenomena ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We extend a general-relativistic ideal magneto-hydrodynamical code to include the effects of elasticity. Using this numerical tool we analyse the magneto-elastic oscillations of highly magnetised neutron stars (magnetars). In simulations without magnetic field we are able to recover the purely crustal shear oscillations within an accuracy of about a few per cent. For dipole magnetic fields between 5 x 10^13 and 10^15 G the Alfv\'en oscillations become modified substantially by the presence of the crust. Those quasi-periodic oscillations (QPOs) split into three families: Lower QPOs near the equator, Edge QPOs related to the last open field line and Upper QPOs at larger distance from the equator. Edge QPOs are called so because they are related to an edge in the corresponding Alfv\'en continuum. The Upper QPOs are of the same kind, while the Lower QPOs are turning-point QPOs, related to a turning point in the continuous spectrum., Comment: 6 pages, 1 figure, 1 table, Proceedings of NEB14, to appear in J. Phys.: Conf. Ser
- Published
- 2010
- Full Text
- View/download PDF
25. Nonlinear radial oscillations of neutron stars
- Author
-
Nils Andersson, Michael Gabler, and Ulrich Sperhake
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,General relativity ,Time evolution ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,01 natural sciences ,General Relativity and Quantum Cosmology ,Computational physics ,Stars ,Numerical relativity ,Nonlinear system ,Neutron star ,Classical mechanics ,Astrophysics - Solar and Stellar Astrophysics ,Nonlinear resonance ,0103 physical sciences ,Nonlinear Oscillations ,010306 general physics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
The effects of nonlinear oscillations in compact stars are attracting considerable current interest. In order to study such phenomena in the framework of fully nonlinear general relativity, highly accurate numerical studies are required. We present a numerical scheme specifically tailored for studies, based on formulating the time evolution in terms of deviations from a stationary equilibrium configuration. Using this technique, we investigate nonlinear effects associated with radial oscillations of neutron stars for a wide range of amplitudes. In particular, we discuss mode coupling due to nonlinear interactions, the occurrence of resonance phenomena, shock formation near the stellar surface as well as the capacity of nonlinearities to stabilize perturbatively unstable neutron star models., Comment: 15 pages, 10 figures, 9 tables; To match published version in Phys.Rev.D; discussion about interpretation of the expression "mode coupling" and one figure added
- Published
- 2009
- Full Text
- View/download PDF
26. Coevolution of languages and genes on the island of Sumba, eastern Indonesia
- Author
-
Herawati Sudoyo, J. Stephen Lansing, Joseph C. Watkins, Tatiana M. Karafet, Peter Norquest, Murray P. Cox, John W. Schoenfelder, Sean S. Downey, Michael F. Hammer, Brian Hallmark, and Brandon Michael Gabler
- Subjects
Male ,Time Factors ,Foraging ,Social Sciences ,Models, Psychological ,Biology ,Swadesh list ,Geographical distance ,Humans ,Cognate ,Letters ,Temporal scales ,Phylogeny ,Coevolution ,Language ,Genetics ,Chromosomes, Human, Y ,Multidisciplinary ,Models, Genetic ,Genetic Variation ,Linguistics ,Austronesian languages ,Biological Evolution ,language.human_language ,Genealogy ,Indonesian ,Indonesia ,language - Abstract
Numerous studies indicate strong associations between languages and genes among human populations at the global scale, but all broader scale genetic and linguistic patterns must arise from processes originating at the community level. We examine linguistic and genetic variation in a contact zone on the eastern Indonesian island of Sumba, where Neolithic Austronesian farming communities settled and began interacting with aboriginal foraging societies ≈3,500 years ago. Phylogenetic reconstruction based on a 200-word Swadesh list sampled from 29 localities supports the hypothesis that Sumbanese languages derive from a single ancestral Austronesian language. However, the proportion of cognates (words with a common origin) traceable to Proto-Austronesian (PAn) varies among language subgroups distributed across the island. Interestingly, a positive correlation was found between the percentage of Y chromosome lineages that derive from Austronesian (as opposed to aboriginal) ancestors and the retention of PAn cognates. We also find a striking correlation between the percentage of PAn cognates and geographic distance from the site where many Sumbanese believe their ancestors arrived on the island. These language–gene–geography correlations, unprecedented at such a fine scale, imply that historical patterns of social interaction between expanding farmers and resident hunter-gatherers largely explain community-level language evolution on Sumba. We propose a model to explain linguistic and demographic coevolution at fine spatial and temporal scales.
- Published
- 2007
27. Properties of gamma-ray decay lines in 3D core-collapse supernova models, with application to SN 1987A and Cas A
- Author
-
Annop Wongwathanarat, H-T Janka, Keiichi Maeda, Alexander Heger, A. Menon, Anders Jerkstrand, Roland Diehl, Claes Fransson, Dennis Alp, Michael Gabler, and Josefin Larsson
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,010308 nuclear & particles physics ,Gamma ray ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Type II supernova ,01 natural sciences ,7. Clean energy ,Supernova ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Radiative transfer ,Current (fluid) ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Radioactive decay ,Line (formation) - Abstract
Comparison of theoretical line profiles to observations provides important tests for supernova explosion models. We study the shapes of radioactive decay lines predicted by current 3D core-collapse explosion simulations, and compare these to observations of SN 1987A and Cas A. Both the widths and shifts of decay lines vary by several thousand kilometers per second depending on viewing angle. The line profiles can be complex with multiple peaks. By combining observational constraints from 56Co decay lines, 44Ti decay lines, and Fe IR lines, we delineate a picture of the morphology of the explosive burning ashes in SN 1987A. For M_ZAMS=15-20 Msun progenitors exploding with ~1.5 *10^51 erg, ejecta structures suitable to reproduce the observations involve a bulk asymmetry of the 56Ni of at least ~400 km/s and a bulk velocity of at least ~1500 km/s. By adding constraints to reproduce the UVOIR bolometric light curve of SN 1987A up to 600d, an ejecta mass around 14 Msun is favoured. We also investigate whether observed decay lines can constrain the neutron star (NS) kick velocity. The model grid provides a constraint V_NS > V_redshift, and applying this to SN 1987A gives a NS kick of at least 500 km/s. For Cas A, our single model provides a satisfactory fit to the NuSTAR observations and reinforces the result that current neutrino-driven core-collapse SN models can achieve enough bulk asymmetry in the explosive burning material. Finally, we investigate the internal gamma-ray field and energy deposition, and compare the 3D models to 1D approximations., 29 pages, published in MNRAS
- Full Text
- View/download PDF
28. X-Ray Absorption in Young Core-collapse Supernova Remnants.
- Author
-
Dennis Alp, Josefin Larsson, Claes Fransson, Michael Gabler, Annop Wongwathanarat, and Hans-Thomas Janka
- Subjects
X-ray absorption ,SUPERNOVA remnants ,NEUTRINOS ,SCATTERING (Physics) ,LIGHT absorption - Abstract
The material expelled by core-collapse supernova (SN) explosions absorbs X-rays from the central regions. We use SN models based on three-dimensional neutrino-driven explosions to estimate optical depths to the center of the explosion, compare different progenitor models, and investigate the effects of explosion asymmetries. The optical depths below 2 keV for progenitors with a remaining hydrogen envelope are expected to be high during the first century after the explosion due to photoabsorption. A typical optical depth is 100 t
4 −2 E−2 , where t4 is the time since the explosion in units of 10,000 days (∼27 years) and E is the energy in units of keV. Compton scattering dominates above 50 keV, but the scattering depth is lower and reaches unity at ∼1000 days at 1 MeV. The optical depths are approximately an order of magnitude lower for hydrogen-stripped progenitors. The metallicity of the SN ejecta is much higher than that in the interstellar medium, which enhances photoabsorption and makes absorption edges stronger. These results are applicable to young SN remnants in general, but we explore the effects on observations of SN 1987A and the compact object in Cas A in detail. For SN 1987A, the absorption is high and the X-ray upper limits of ∼100 on a compact object are approximately an order of magnitude less constraining than previous estimates using other absorption models. The details are presented in an accompanying paper. For the central compact object in Cas A, we find no significant effects of our more detailed absorption model on the inferred surface temperature. [ABSTRACT FROM AUTHOR]- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.