1. The South Atlantic Dipole via multichannel singular spectrum analysis
- Author
-
Gaston Manta, Eviatar Bach, Stefanie Talento, Marcelo Barreiro, Sabrina Speich, and Michael Ghil
- Subjects
Medicine ,Science - Abstract
Abstract This study analyzes coupled atmosphere–ocean variability in the South Atlantic Ocean. To do so, we characterize the spatio-temporal variability of annual mean sea-surface temperature (SST) and sea-level pressure (SLP) using Multichannel Singular Spectrum Analysis (M-SSA). We applied M-SSA to ERA5 reanalysis data (1959–2022) of South Atlantic SST and SLP, both individually and jointly, and identified a nonlinear trend, as well as two climate oscillations. The leading oscillation, with a period of 13 years, consists of a basin-wide southwest–northeast dipole and is observed both in the individual variables and in the coupled analysis. This mode is reminiscent of the already known South Atlantic Dipole, and it is probably related to the Pacific Decadal Oscillation and to El Niño–Southern Oscillation in the Pacific Ocean. The second oscillation has a 5-year period and also displays a dipolar structure. The main difference between the spatial structure of the decadal, 13-year, and the interannual, 5-year mode is that, in the first one, the SST cold tongue region in the southeast Atlantic’s Cape Basin is included in the pole closer to the equator. Together, these two oscillatory modes, along with the trend, capture almost 40% of the total interannual variability of the SST and SLP fields, and of their co-variability. These results provide further insights into the spatio-temporal evolution of SST and SLP variability in the South Atlantic, in particular as it relates to the South Atlantic Dipole and its predictability.
- Published
- 2024
- Full Text
- View/download PDF