Thomas A Willis, Michelle Collinson, Liz Glidewell, Amanda J Farrin, Michael Holland, David Meads, Claire Hulme, Duncan Petty, Sarah Alderson, Suzanne Hartley, Armando Vargas-Palacios, Paul Carder, Stella Johnson, Robbie Foy, and ASPIRE programme team
BACKGROUND:In primary care, multiple priorities and system pressures make closing the gap between evidence and practice challenging. Most implementation studies focus on single conditions, limiting generalisability. We compared an adaptable implementation package against an implementation control and assessed effects on adherence to four different evidence-based quality indicators. METHODS AND FINDINGS:We undertook two parallel, pragmatic cluster-randomised trials using balanced incomplete block designs in general practices in West Yorkshire, England. We used 'opt-out' recruitment, and we randomly assigned practices that did not opt out to an implementation package targeting either diabetes control or risky prescribing (Trial 1); or blood pressure (BP) control or anticoagulation in atrial fibrillation (AF) (Trial 2). Within trials, each arm acted as the implementation control comparison for the other targeted indicator. For example, practices assigned to the diabetes control package acted as the comparison for practices assigned to the risky prescribing package. The implementation package embedded behaviour change techniques within audit and feedback, educational outreach, and computerised support, with content tailored to each indicator. Respective patient-level primary endpoints at 11 months comprised the following: achievement of all recommended levels of haemoglobin A1c (HbA1c), BP, and cholesterol; risky prescribing levels; achievement of recommended BP; and anticoagulation prescribing. Between February and March 2015, we recruited 144 general practices collectively serving over 1 million patients. We stratified computer-generated randomisation by area, list size, and pre-intervention outcome achievement. In April 2015, we randomised 80 practices to Trial 1 (40 per arm) and 64 to Trial 2 (32 per arm). Practices and trial personnel were not blind to allocation. Two practices were lost to follow-up but provided some outcome data. We analysed the intention-to-treat (ITT) population, adjusted for potential confounders at patient level (sex, age) and practice level (list size, locality, pre-intervention achievement against primary outcomes, total quality scores, and levels of patient co-morbidity), and analysed cost-effectiveness. The implementation package reduced risky prescribing (odds ratio [OR] 0.82; 97.5% confidence interval [CI] 0.67-0.99, p = 0.017) with an incremental cost-effectiveness ratio of £1,359 per quality-adjusted life year (QALY), but there was insufficient evidence of effect on other primary endpoints (diabetes control OR 1.03, 97.5% CI 0.89-1.18, p = 0.693; BP control OR 1.05, 97.5% CI 0.96-1.16, p = 0.215; anticoagulation prescribing OR 0.90, 97.5% CI 0.75-1.09, p = 0.214). No statistically significant effects were observed in any secondary outcome except for reduced co-prescription of aspirin and clopidogrel without gastro-protection in patients aged 65 and over (adjusted OR 0.62; 97.5% CI 0.39-0.99; p = 0.021). Main study limitations concern our inability to make any inferences about the relative effects of individual intervention components, given the multifaceted nature of the implementation package, and that the composite endpoint for diabetes control may have been too challenging to achieve. CONCLUSIONS:In this study, we observed that a multifaceted implementation package was clinically and cost-effective for targeting prescribing behaviours within the control of clinicians but not for more complex behaviours that also required patient engagement. TRIAL REGISTRATION:The study is registered with the ISRCTN registry (ISRCTN91989345).