12 results on '"Mileti, O."'
Search Results
2. An ACE2-Alamandine Axis Modulates the Cardiac Performance of the Goldfish Carassius auratus via the NOS/NO System
- Author
-
Mariacristina Filice, Rosa Mazza, Sandra Imbrogno, Olga Mileti, Noemi Baldino, Amilcare Barca, Gianmarco Del Vecchio, Tiziano Verri, Alfonsina Gattuso, Maria Carmela Cerra, Filice, M., Mazza, R., Imbrogno, S., Mileti, O., Baldino, N., Barca, A., Del Vecchio, G., Verri, T., Gattuso, A., and Cerra, M. C.
- Subjects
NOS/NO system ,teleost ,Physiology ,Clinical Biochemistry ,ACE2 ,almandine ,heart ,Carassius auratus ,Carassius auratu ,Cell Biology ,Molecular Biology ,Biochemistry - Abstract
Alamandine is a peptide of the Renin Angiotensin System (RAS), either generated from Angiotensin A via the Angiotensin Converting Enzyme 2 (ACE2), or directly from Ang-(1–7). In mammals, it elicits cardioprotection via Mas-related G-protein-coupled receptor D (MrgD), and the NOS/NO system. In teleost fish, RAS is known to modulate heart performance. However, no information is available on the presence of a cardioactive ACE2/Alamandine axis. To fill this gap, we used the cyprinid teleost Carassius auratus (goldfish) for in silico and in vitro analyses. Via the NCBI Blast P suite we found that in cyprinids ace2 is phylogenetically detectable in a subcluster of proteins including ace2-like isoforms, and is correlated with a hypoxia-dependent pathway. By real-time PCR, Western Blotting, and HPLC, ACE2 and Alamandine were identified in goldfish heart and plasma, respectively. Both increased after chronic exposure to low O2 (2.6 mg O2 L−1). By using an ex-vivo working goldfish-heart preparation, we observed that in vitro administration of exogenous Alamandine dose-dependently stimulates myocardial contractility starting from 10−11 M. The effect that involved Mas-related receptors and PKA occurred via the NOS/NO system. This was shown by exposing the perfused heart to the NOS inhibitor L-NMMA (10−5 M) that abolished the cardiac effect of Alamandine and was supported by the increased expression of the phosphorylated NOS enzyme in the extract from goldfish heart exposed to 10−10 M Alamandine. Our data are the first to show that an ACE2/Alamandine axis is present in the goldfish C. auratus and, to elicit cardiac modulation, requires the obligatory involvement of the NOS/NO system.
- Published
- 2022
- Full Text
- View/download PDF
3. Rheological and Textural Investigation to Design Film for Packaging from Potato Peel Waste.
- Author
-
Mileti O, Baldino N, Marchio V, Lupi FR, and Gabriele D
- Abstract
The recovery of potato waste for circular-economy purposes is a growing area of industrial research. This waste, rich in nutrients and potential for reuse, can be a valuable source of starch for packaging applications. Rheology plays a crucial role in characterizing film-forming solutions before casting. In this work, packaging film was prepared from potato waste using rheological information to formulate the film-forming solution. To this aim, rheological measurements were carried out on starch/glycerol-only samples, and the data obtained were used to optimize the formulation from the waste. The polyphenol content of the peels was analyzed, and the resulting films were comprehensively characterized. This included assessments of color, extensibility, Fourier-transform infrared (FT-IR) spectroscopy, surface microscopy, and contact angle. Polyphenol-loaded films, suitable for packaging applications, were developed from potato waste. These films exhibited distinct properties compared to those made with pure starch, including an improved wettability of about 75° for the best sample and a high elastic modulus of about 36 MPa, which reduces the deformability but enhances the resistance against the stress. Through rheological studies, we were able to design films from potato peel waste. These films demonstrated promising mechanical performance.
- Published
- 2024
- Full Text
- View/download PDF
4. Rheological Performance and Differences between Laboratory-Aged and RAP Bitumen.
- Author
-
Baldino N, Mileti O, Marchesano YM, Lupi FR, Gabriele D, and Paolini M
- Abstract
Traditional recycled asphalt pavement (RAP) binder extraction is not a cost-effective and sustainable option for a quick field study because it requires the use of a huge amount of solvent. Hence, most of the studies on asphalt pavement are carried out with laboratory-aged bitumen in accordance with well-established procedures, i.e., the pressure aging vessel (PAV). Unfortunately, some studies highlight the differences between bitumen aged in the laboratory and in service because it is difficult to reproduce extreme conditions such as real conditions, both atmospheric and load; and this also affects the choice and use of rejuvenators, sometimes compromising the interpretation of results. This study aims to compare the thermo-rheological behavior of a 70/100 bitumen aged with the PAV and two different binders extracted by RAPs. The rheological performances of bitumens were compared in temperature and by dynamic oscillatory tests and steady-state tests, resulting in strength and viscosity values higher for samples with RAP binders compared to the PAV sample. The same bitumens were tested with the addition of a 3% w / w of soybean oil (SO). The results show a decrease in the moduli and viscosity at all the temperatures investigated when SO is added to the laboratory-aged bitumen, while no appreciable differences are evident on naturally aged samples added with SO. Differences were evaluated in terms of cross-over frequency and rheological parameters. Furthermore, the SO effect showed substantial differences, especially in viscosity values, indicating that the study of regenerated or modified bitumen from aged bitumen still requires study, as current standard techniques and procedures cannot emulate real aging conditions well.
- Published
- 2024
- Full Text
- View/download PDF
5. 3D-Printed Alginate/Pectin-Based Patches Loaded with Olive Leaf Extracts for Wound Healing Applications: Development, Characterization and In Vitro Evaluation of Biological Properties.
- Author
-
Patitucci F, Motta MF, Dattilo M, Malivindi R, Leonetti AE, Pezzi G, Prete S, Mileti O, Gabriele D, Parisi OI, and Puoci F
- Abstract
Traditional wound dressings may lack suitability for diverse wound types and individual patient requirements. In this context, this study aimed to innovate wound care by developing a 3D-printed patch using alginate and pectin and incorporating Olive Leaf Extract (OLE) as an active ingredient. Different polymer-to-plasticizer ratios were systematically examined to formulate a printable ink with optimal viscosity. The resultant film, enriched with OLE, exhibited a substantial polyphenolic content of 13.15 ± 0.41 mg CAE/g, showcasing significant antioxidant and anti-inflammatory properties. Notably, the film demonstrated potent scavenging abilities against DPPH, ABTS, and NO radicals, with IC
50 values of 0.66 ± 0.07, 0.47 ± 0.04, and 2.02 ± 0.14 mg/mL, respectively. In vitro release and diffusion studies were carried out and the release profiles revealed an almost complete release of polyphenols from the patch within 48 h. Additionally, the fabricated film exhibited the capacity to enhance cell motility and accelerate wound healing, evidenced by increased collagen I expression in BJ fibroblast cells. Structural assessments affirmed the ability of the patch to absorb exudates and maintain the optimal moisture balance, while biocompatibility studies underscored its suitability for biomedical applications. These compelling findings endorse the potential application of the developed film in advanced wound care, with the prospect of tailoring patches to individual patient needs.- Published
- 2024
- Full Text
- View/download PDF
6. Interfacial Rheological Study of β-Casein/Pectin Mixtures at the Air/Water Interface.
- Author
-
Mileti O, Baldino N, Luzzi S, Lupi FR, and Gabriele D
- Abstract
Colloidal food products, such as emulsions, foams, gels, and dispersions, are complex systems that need the presence of stabilizing agents to enable their formation and provide stability. Proteins are often used for food foams and emulsions because of their ability to lower interfacial tension and make viscoelastic interfaces. Generally, to improve the resistance against rupture, polysaccharides are used in association with the proteins. Pectin is a complex polysaccharide that can help to stabilize foams or emulsions. This work aims at studying the mechanical resistance of the interface formed by mixtures of β-casein and pectin at high and low methoxylation degrees at the air/water interface using dilatational and shear kinematics. Frequency sweep tests, in the linear region, were performed in shear at different aging times and in dilatational mode, and the rheological data were analyzed. The transient data of the surface tension were analyzed by kinetic models to obtain the characteristic rates of the interfacial phenomena. The kinetic mechanisms of the protein/pectin mixed systems are controlled by protein and show a weak gel behavior for short aging times. The interfaces obtained with both pectins in a mixture with β-casein evolved with time, gelling and showing a solid-like behavior at concentrations of 1 and 10 g/L and after 3.5 h of aging time. The interfacial shear trend obtained suggests a good stabilizing effect of the pectins from citrus with long aging times.
- Published
- 2024
- Full Text
- View/download PDF
7. Starch films loaded with tannin: the study of rheological and physical properties.
- Author
-
Mileti O, Mammolenti D, Baldino N, Lupi FR, and Gabriele D
- Subjects
- Tensile Strength, Permeability, Food Packaging, Tannins, Starch chemistry
- Abstract
Recently, the research on innovative food packaging has been oriented toward biodegradable materials to lower the environmental impact generated by conventional plastics. The films often carry functional additives interacting with the matrix and modifying its physical properties. In this work tannin, a scarcely exploited active additive, was used to obtain potato starch-based films, and its content was optimized on the basis of mechanical and microscopic tests. Rheological measurements were adopted to evaluate the tannin-starch interaction and the microstructure of the film forming solutions (FFSs). Their thickness, color, thermal conductivity, elastic modulus (E
el ), elongation at break (EAB), surface wettability and water solubility were evaluated. Furthermore, microstructure was investigated through Fourier-transform infrared spectroscopy (FTIR), polarized light (POM) and scanning electron microscopy (SEM). It was observed that all FFSs behave as weak gels and tannin addition weakens the gel structure and decreases the gelatinization temperature from about 60 °C to 57 °C. Plastic and deformable films (Eel = 1.96 MPa and EAB = 189 %) were obtained at low tannin fractions, whereas, at a higher concentration, stiffer films (Eel = 12 MPa and EAB = 10 %), with hydrophobic behavior were produced. Among the tested tannin fractions, an intermediate value of 1.7 % (w/w) was found to be promising for industrial purposes., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
8. Oil Extraction from Hemp Plant as a Potential Source of Cannabidiol for Healthy Protein Foods.
- Author
-
Mileti O, Baldino N, Paleologo MFO, Lupi FR, Marra M, Iacopetta D, and Gabriele D
- Abstract
In recent years, the increasing demand for alternative foods has shifted research toward new sources enriched with nutraceutical molecules. It is well known that many diseases are caused by oxidative stress; thus, the supplementation of antioxidants has been proposed to reduce it. Cannabis sativa L. is an interesting species that could provide an alternative source of antioxidants. This work aimed to investigate the possibility of optimizing the yield of cannabidiol (CBD) and recovering it from residual biomass (stalks), valorizing the residual biomass, and using this for protein bar preparation. Different extraction methods were used, and High-Pressure Liquid Chromatography (HPLC) analysis was used to analyze the extracts. Antioxidant power was investigated using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. The best results in terms of CBD yield were obtained via dynamic maceration after decarboxylation with a quantity of 26.7 ± 2 mg
CBD /graw material from inflorescences. The extract also shows good antioxidant power with an IC50 value of 38.1 ± 1.1 µg/mL measured using the DPPH assay. The CBD extract was added to the hemp oil to obtain dough for protein bars. The doughs were studied by taking rheological and technological measurements, and it was found that the protein bars could provide an excellent means for the consumption of products enriched with antioxidants because their CBD anti-inflammatory activity is preserved after cooking.- Published
- 2023
- Full Text
- View/download PDF
9. Formulation Study on Edible Film from Waste Grape and Red Cabbage.
- Author
-
Mileti O, Baldino N, Filice F, Lupi FR, Sinicropi MS, and Gabriele D
- Abstract
(1) Background: Recent research on the valorization of agro-industrial waste has attempted to obtain new products. Grape residue is a waste product used in the grape wine industry that is rich in anthocyanins, as well as leaves and waste parts from red cabbage processing. Anthocyanins, thanks to their various functionalities, can be recovered and used as active and intelligent agents in food packaging. Anthocyanins have antioxidant properties that help to prevent cardiovascular disease. (2) Methods: In this study, the process of extracting waste was studied using solvent and supercritical CO
2 extraction. The obtained anthocyanins were used in starch-based food film formulations. Several formulations were studied using rheometric techniques and the effect of adding anthocyanins on optimal film formulation was investigated. (3) Results: Solvent extractions resulted in a maximum extraction yield. The extracts obtained were used for the preparation of coating and edible films, optimized in the formulation. (4) Conclusions: The addition of anthocyanins to films resulted in increased sample structuring and mechanical properties that are valid for applications, like dipping using coverage methods. The packaging is also attractive and pH-sensitive.- Published
- 2023
- Full Text
- View/download PDF
10. Interfacial behavior of vegetable protein isolates at sunflower oil/water interface.
- Author
-
Mileti O, Baldino N, Lupi FR, and Gabriele D
- Subjects
- Animals, Sunflower Oil, Rheology, Soybean Proteins, Plant Proteins, Plant Proteins, Dietary, Helianthus
- Abstract
Proteins are widely used in the formation and stabilization of multiphase systems, thanks to their ability to adsorb at the interface reducing the interfacial tension and promoting the formation of viscoelastic layers. Owing to the growing consumer demand, the food industry is moving toward the growing use of plant-based proteins, suitable for consumers who do not eat products of animal origin, for either ethical or health reasons. Nevertheless, the scientific literature lacks information on the surface activity and emulsifying ability of these proteins. In this work, the interfacial properties of soy, hemp and brown rice isolate proteins were investigated at the interface with commercial sunflower oil (O/W) to evaluate their characteristics in view of potential uses in food applications such as emulsions, sauces, dressing, topping and soft foods. Dilatational and shear kinematic, with pendant drop and magnetic rod techniques, respectively, were used. The dilatational analysis was performed in static and dynamic conditions, to obtain the equilibrium adsorption isotherms and the rheological parameters of the interfacial layers under both oscillation and stress relaxation. The interfaces were studied in shear conditions with small amplitude oscillations and creep tests. The obtained results evidenced that all tested proteins are able to build a strong viscoelastic layer with properties comparable to those of animal proteins. Brown rice protein seems particularly effective in reducing the interfacial tension even if shear tests evidence that the interface is weaker than that obtained using hemp or soy protein. Hemp protein seems very promising for potential practical uses yielding intermediate interfacial tensions and strong viscoelastic layers., Competing Interests: Declaration of Competing Interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Noemi Baldino reports financial support was provided by University of Calabria., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
11. Emulgels Structured with Dietary Fiber for Food Uses: A Rheological Model.
- Author
-
Bruno E, Lupi FR, Mammolenti D, Mileti O, Baldino N, and Gabriele D
- Abstract
Emulgels are biphasic emulsified systems in which the continuous phase is structured with a specific gelling agent. In this work, a rheological and microscopic investigation of O/W emulgels prepared by structuring the aqueous (continuous) phase with citrus fiber was carried out with the aim of designing their macroscopic properties for food uses and predicting their characteristics with a rheological model. According to previous investigations, fiber suspensions behave as "particle gels" and, consequently, the derived emulgels' properties are strongly dependent on the fiber concentration and on process conditions adopted to produce them. Therefore, a rotor-stator system was used to prepare emulgels with increasing fiber content and with different levels of energy and power used for mixing delivered to the materials. An investigation of particle gels was then carried out, fixing the operating process conditions according to emulgel results. Furthermore, the effect of the dispersed (oil) phase volume fraction was varied and a modified semi-empirical Palierne model was proposed with the aim of optimizing a correlation between rheological properties and formulation parameters, fixing the process conditions.
- Published
- 2022
- Full Text
- View/download PDF
12. An ACE2-Alamandine Axis Modulates the Cardiac Performance of the Goldfish Carassius auratus via the NOS/NO System.
- Author
-
Filice M, Mazza R, Imbrogno S, Mileti O, Baldino N, Barca A, Del Vecchio G, Verri T, Gattuso A, and Cerra MC
- Abstract
Alamandine is a peptide of the Renin Angiotensin System (RAS), either generated from Angiotensin A via the Angiotensin Converting Enzyme 2 (ACE2), or directly from Ang-(1-7). In mammals, it elicits cardioprotection via Mas-related G-protein-coupled receptor D (MrgD), and the NOS/NO system. In teleost fish, RAS is known to modulate heart performance. However, no information is available on the presence of a cardioactive ACE2/Alamandine axis. To fill this gap, we used the cyprinid teleost Carassius auratus (goldfish) for in silico and in vitro analyses. Via the NCBI Blast P suite we found that in cyprinids ace2 is phylogenetically detectable in a subcluster of proteins including ace2-like isoforms, and is correlated with a hypoxia-dependent pathway. By real-time PCR, Western Blotting, and HPLC, ACE2 and Alamandine were identified in goldfish heart and plasma, respectively. Both increased after chronic exposure to low O
2 (2.6 mg O2 L-1 ). By using an ex-vivo working goldfish-heart preparation, we observed that in vitro administration of exogenous Alamandine dose-dependently stimulates myocardial contractility starting from 10-11 M. The effect that involved Mas-related receptors and PKA occurred via the NOS/NO system. This was shown by exposing the perfused heart to the NOS inhibitor L-NMMA (10-5 M) that abolished the cardiac effect of Alamandine and was supported by the increased expression of the phosphorylated NOS enzyme in the extract from goldfish heart exposed to 10-10 M Alamandine. Our data are the first to show that an ACE2/Alamandine axis is present in the goldfish C. auratus and, to elicit cardiac modulation, requires the obligatory involvement of the NOS/NO system.- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.