1. Differentially private and decentralized randomized power method
- Author
-
Nicolas, Julien, Sabater, César, Maouche, Mohamed, Mokhtar, Sonia Ben, and Coates, Mark
- Subjects
Computer Science - Machine Learning ,Computer Science - Cryptography and Security ,Mathematics - Numerical Analysis ,Statistics - Machine Learning - Abstract
The randomized power method has gained significant interest due to its simplicity and efficient handling of large-scale spectral analysis and recommendation tasks. As modern datasets contain sensitive private information, we need to give formal guarantees on the possible privacy leaks caused by this method. This paper focuses on enhancing privacy preserving variants of the method. We propose a strategy to reduce the variance of the noise introduced to achieve Differential Privacy (DP). We also adapt the method to a decentralized framework with a low computational and communication overhead, while preserving the accuracy. We leverage Secure Aggregation (a form of Multi-Party Computation) to allow the algorithm to perform computations using data distributed among multiple users or devices, without revealing individual data. We show that it is possible to use a noise scale in the decentralized setting that is similar to the one in the centralized setting. We improve upon existing convergence bounds for both the centralized and decentralized versions. The proposed method is especially relevant for decentralized applications such as distributed recommender systems, where privacy concerns are paramount.
- Published
- 2024