1. Slowing Down the 'Magic Bullet': Encapsulation of Imatinib in Fe-MOF for Cardiotoxicity Reduction and Improvement in Anticancer Activity
- Author
-
Weronika Strzempek, Elżbieta Menaszek, Monika Papież, and Barbara Gil
- Subjects
imatinib ,metal-organic frameworks ,cardiotoxicity inhibition ,FeMIL-100 ,FeMIL-101-NH2 ,lymphoblastic leukemia ,Organic chemistry ,QD241-441 - Abstract
Imatinib, a small molecule kinase inhibitor, is used as a cancer growth blocker. However, one of its most serious side effects is congestive cardiac failure. Reducing drug toxicity may be achieved through the use of drug delivery systems. Biocompatible metal-organic framework (MOF) materials, namely FeMIL-100 and FeMIL-101-NH2, were employed as potential imatinib carriers. They efficiently delivered the drug as an anticancer agent while minimizing cardiotoxicity. Notably, the release of imatinib from FeMIL-100 was rapid in acidic conditions and slower in pH-neutral environments, allowing targeted delivery to cancer cells. The carrier’s pH-dependent stability governed the drug release mechanism. Two release models—Korsmeyer–Peppas and Weibull—were fitted to the experimental data and discussed in terms of drug release from a rigid microporous matrix. Cytotoxicity tests were conducted on two cell lines: HL60 (a model cell line for acute myeloid leukemia) and H9c2 (a cell line for cardiomyocytes). Overall, the metal-organic framework (MOF) carriers mitigated imatinib’s adverse effects without compromising its effectiveness.
- Published
- 2024
- Full Text
- View/download PDF