30 results on '"Moon -- Exploration"'
Search Results
2. AMORE - Mission concept overview for a progressively independent and self-sustainable lunar habitat
- Author
-
Joshi, Apoorva, Korn, Christian, Magkos, Michail, Amara, Yassin, Anil, Abhishek, Bhattacherjee, Souktik, Dargent de Vicente, Sisinio, Haffmans, Patrick, Heinz, Nicolas, Hinkel, Andrea, Karakas, Merve, Kolchin, Aleksandar, Mani, Vipul, Skrypnyk, Ilja, Stadtmüller, Anne, Joshi, Apoorva, Korn, Christian, Magkos, Michail, Amara, Yassin, Anil, Abhishek, Bhattacherjee, Souktik, Dargent de Vicente, Sisinio, Haffmans, Patrick, Heinz, Nicolas, Hinkel, Andrea, Karakas, Merve, Kolchin, Aleksandar, Mani, Vipul, Skrypnyk, Ilja, and Stadtmüller, Anne
- Abstract
Throughout the last decade a renewed interest for lunar space exploration has been expressed through the announcements of many ambitious missions such as Artemis. Annually the Space Station Design Workshop (SSDW) tasks students and young professionals to design a space station concept in a con-current engineering environment. In line with the elevated interest on the Moon this year's SSDW was centred around a self-sustainable lunar habitat. This paper presents the conceptual design of Team Blue at the SSDW 2021. Advanced Moon Operations and Resource Extraction (AMORE) is conceptu-alized as a public-private cooperation for the creation of a lunar platform that acts as an outpost for human exploration and robotic In-situ Resources Utilization (ISRU). AMORE’s proposed location is near the rim of Shackleton Crater at the Lunar South Pole. This location provides opportunities in science and ISRU and favourable sun coverage and thermal conditions. The terrain offers a natural shield for debris and storage advantages for ISRU. The mission architecture allows for incremental crew size increase through a modular dome structure, an initial prioritization of ISRU and a sustainable resource management strategy. Based on the identified system requirements, the initial configuration envisions one core module and two modular structures that would serve as greenhouses or living spaces. The phasing of the base assembly is designed to allow for adequate conditions of an increasing crew size capacity. The greenhouse modules are designed to provide all required oxygen and most required food supply. The modules are constructed using lightweight inflatable structures, while a regolith shell will provide radiation as well as thermal and micrometeorite protection. For reliable communication, a cus-tom relay network named Lunar Earth Telecommand Telemetry Relay (LETTER) is proposed. The mis-sion architecture analysis includes several methods to financially utilize the mission. These include
- Published
- 2022
3. Designing greenhouse subsystems for a lunar mission: the LOOPS - M Project
- Author
-
Restivo Alessi, Riccardo, Metelli, Giulio, Bergami, Alessio, Furlani, Luca, Garegnani, Marco, Pagliarello, Riccardo, Boscia, Michela, Piras, Michela, Kumar, Sidhant, Torrini, Tommaso, Picariello, William, Salvitti, Damiano, Pirolo, Carlo, Monello, Tommaso, Dragonetti, Walter, Martinelli, Stefano, Panetti, Marco, Pozzi, Chiara, Gargari, Matteo, Torlontano, Sofia, Marzioli, Paolo, Gugliermetti, Luca, Nardi, Luca, Lampazzi, Elena, Benvenuto, Eugenio, Santoni, Fabio, Restivo Alessi, Riccardo, Metelli, Giulio, Bergami, Alessio, Furlani, Luca, Garegnani, Marco, Pagliarello, Riccardo, Boscia, Michela, Piras, Michela, Kumar, Sidhant, Torrini, Tommaso, Picariello, William, Salvitti, Damiano, Pirolo, Carlo, Monello, Tommaso, Dragonetti, Walter, Martinelli, Stefano, Panetti, Marco, Pozzi, Chiara, Gargari, Matteo, Torlontano, Sofia, Marzioli, Paolo, Gugliermetti, Luca, Nardi, Luca, Lampazzi, Elena, Benvenuto, Eugenio, and Santoni, Fabio
- Abstract
The 2020s is a very important decade in the space sector, where international cooperation is moving towards the exploration of the Moon and will lead to stable lunar settlements, which will require new, innovative, and efficient technologies. In this context, the project LOOPS–M (Lunar Operative Outpost for the Production and Storage of Microgreens) was created by students from Sapienza University of Rome with the objective of designing some of the main features of a lunar greenhouse. The project was developed for the IGLUNA 2021 campaign, an interdisciplinary platform coordinated by Space Innovation as part of the ESA Lab@ initiative. The LOOPS-M mission was successfully concluded during the Virtual Field Campaign that took place in July 2021. This project is a follow-up of the V-GELM Project, which took part in IGLUNA 2020 with the realization in Virtual Reality of a Lunar Greenhouse: a simulation of the main operations connected to the cultivation module, the HORT3 , which was already developed by ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) during the AMADEE-18 mission inside the HORTSPACE project. This paper will briefly describe the main features designed and developed for the lunar greenhouse and their simulation in a VR environment: an autonomous cultivation system able to handle the main cultivation tasks of the previous cultivation system, a bioconversion system that can recycle into new resources the cultivation waste with the use of insects as a biodegradation system, and a shield able of withstanding hypervelocity impacts and the harsh lunar environment. A wide overview of the main challenges faced, and lessons learned by the team to obtain these results, will be given. The first challenge was the initial inexperience that characterized all the team members, being for most the first experience with an activity structured as a space mission, starting with little to no know-how regarding the software and
- Published
- 2022
4. Hàbitats humans per a altres mons
- Author
-
Universitat Politècnica de Catalunya. Departament de Física, Moreno Lupiáñez, Manuel, Pérez Jiménez, Alvaro, Universitat Politècnica de Catalunya. Departament de Física, Moreno Lupiáñez, Manuel, and Pérez Jiménez, Alvaro
- Abstract
Per a descobrir la viabilitat de la creació i transport d'un hàbitat per altres mons, cal realitzar infinitud d'estudis per poder portar-ho a la realitat. Aquest projecte se centrarà en el disseny i dimensionament d'un hàbitat, en la destinació dels espais i la maquinària mínima necessària per a la vida en altres indrets del sistema solar. Per començar el projecte s'haurà de trobar quin mitjà de transport podrà portar l'habitacle fins a la Lluna, d'aquest haurem d'obtenir la càrrega útil i dimensions màximes admissibles. En el moment que sapiguem com arribar, seria crucial buscar una font d'energia, la qual aportarà electricitat a tota la maquinària destinada al suport de vida i als aparells d'ús quotidià. En dissenyar l'habitacle caldrà saber a quins riscos estarà exposat, cal remarcar que la Lluna és considerat un medi extrem, on hi ha grans nivells de radiació còsmica i materials tòxics pels humans. També cal dir que la falta per descobrir molta informació sobre el nostre satèl·lit, com l'estabilitat del terra, ubicació d'aigua, zones en foscor continua tot això també suposa un risc. La selecció de materials serà rellevant per aquesta missió, ja que s'haurà d'escollir els que tinguin majors prestacions amb la menor densitat possible, per mantenir un baix pes. També s'haurà de tindre en compte els materials que s'utilitzaran per a protegir-se de les temperatures extremes, la radiació i els impactes dels meteorits. Un cop hàgim seleccionat el material estructural es podrà procedir al dimensionament de les bigues estructurals gràcies a càlculs teòrics els quals seran comprovats amb simulacions. Si les simulacions són positives el pas següent, serà el càlcul del pes de l'estructura. I serà sumat el pes de la maquinària, mobiliari, alimentació i aigua i oxigen. Un cop el pes total sigui calculat serà comparat amb la càrrega màxima admissible i en el cas que sigui inferior, sabrem que la missió podria ser viable. En cas afirmatiu, es podrà pressupostar el capital mínim, In order to discover the feasibility of developing and transporting a habitat to other worlds, it’s necessary to analyze and create a lot of different studies to bring this to reality. This project focuses on the design and sizing of a habitat, the analyze of the best location of rooms and the minimum machines and devices needed for life in other spaces of the solar system. In order to start this project, we should find the best way to transport the living space from the Earth to the Moon, and to analyze the range of maximum payload and allowable dimensions. Once we know how to arrive, it would be crucial to look for a source of energy, that will provide electricity to the life support devices and to the domestic appliances. When designing the living structure, it will be necessary to know the risks to which it will be exposed to, as the Moon is considered an extreme environment with high levels of cosmic radiation and toxic materials for human beings. We should also have in mind that there is a relevant lack of information regarding our satellite as the stability of the land, the water location and the areas in permanent darkness that add additional risks to our project. The selection of materials will be most relevant for this mission, as the maximum performance with the lowest possible density has to be selected, in order to maintain a low level of load. The chosen materials must protect against extreme temperatures, radiation, and meteorite impacts. Once the structural material has been selected, we should start sizing the structural elements using theoretical calculations that will be verified simulations. If the simulations are positive, the next step will be calculating the weight of the structure, algo taking into consideration, the weight of the machines, furniture, food, water, and oxygen. Once the total weight has been calculated, it needs to be compared to the maximum allowable load and, in the event that is still lower, we will know that the mission cou
- Published
- 2022
5. Designing greenhouse subsystems for a lunar mission: the LOOPS - M Project
- Author
-
Riccardo Restivo Alessi, Giulio Metelli, Alessio Bergami, Luca Furlani, Marco Garegnani, Riccardo Pagliarello, Michela Boscia, Michela Piras, Sidhant Kumar, Tommaso Torrini, William Picariello, Damiano Salvitti, Carlo Pirolo, Tommaso Monello, Walter Dragonetti, Stefano Martinelli, Marco Panetti, Chiara Pozzi, Matteo Gargari, Sofia Torlontano, Paolo Marzioli, Luca Gugliermetti, Luca Nardi, Elena Lampazzi, Eugenio Benvenuto, and Fabio Santoni
- Subjects
IGLUNA ,Lluna -- Exploració ,Aeronàutica i espai::Astronàutica::Enginyeria aeroespacial [Àrees temàtiques de la UPC] ,Moon -- Exploration ,Education ,LOOPS-M - Abstract
The 2020s is a very important decade in the space sector, where international cooperation is moving towards the exploration of the Moon and will lead to stable lunar settlements, which will require new, innovative, and efficient technologies. In this context, the project LOOPS–M (Lunar Operative Outpost for the Production and Storage of Microgreens) was created by students from Sapienza University of Rome with the objective of designing some of the main features of a lunar greenhouse. The project was developed for the IGLUNA 2021 campaign, an interdisciplinary platform coordinated by Space Innovation as part of the ESA Lab@ initiative. The LOOPS-M mission was successfully concluded during the Virtual Field Campaign that took place in July 2021. This project is a follow-up of the V-GELM Project, which took part in IGLUNA 2020 with the realization in Virtual Reality of a Lunar Greenhouse: a simulation of the main operations connected to the cultivation module, the HORT3 , which was already developed by ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development) during the AMADEE-18 mission inside the HORTSPACE project. This paper will briefly describe the main features designed and developed for the lunar greenhouse and their simulation in a VR environment: an autonomous cultivation system able to handle the main cultivation tasks of the previous cultivation system, a bioconversion system that can recycle into new resources the cultivation waste with the use of insects as a biodegradation system, and a shield able of withstanding hypervelocity impacts and the harsh lunar environment. A wide overview of the main challenges faced, and lessons learned by the team to obtain these results, will be given. The first challenge was the initial inexperience that characterized all the team members, being for most the first experience with an activity structured as a space mission, starting with little to no know-how regarding the software and hardware needed for the project, and how to structure documentation and tasks, which was acquired throughout the year. An added difficulty was the nature of LOOPS-M, which included very different objectives that required different fields of expertise, ranging from various engineering sectors to biology and entomology. During the year, the team managed to learn how to handle all these hurdles and the organizational standpoint, working as a group, even if remotely due to the Covid-19 pandemic. Through careful planning, hard work and the help of supervisors, the activity was carried out through reviews, up to the prototyping phase and the test campaign with a successful outcome in each aspect of the project. By the end of the year everyone involved had acquired new knowledge, both practical and theoretical, and learned how to reach out and present their work to sponsors and to the scientific community.
- Published
- 2022
- Full Text
- View/download PDF
6. AMORE - Mission concept overview for a progressively independent and self-sustainable lunar habitat
- Author
-
Apoorva Joshi, Christian Korn, Michail Magkos, Yassin Amara, Abhishek Anil, Souktik Bhattacherjee, Sisinio Dargent de Vicente, Patrick Haffmans, Nicolas Heinz, Andrea Hinkel, Merve Karakas, Aleksandar Kolchin, Vipul Mani, Ilja Skrypnyk, and Anne Stadtmüller
- Subjects
Outer space -- Exploration ,ISRU ,SSDW ,Space stations ,AMORE ,Espai exterior -- Exploració ,Lunar-base ,Self-sustainability ,Estacions espacials ,Space-exploration ,Lluna -- Exploració ,Moon -- Exploration ,Moon ,Aeronàutica i espai::Astronàutica [Àrees temàtiques de la UPC] - Abstract
Throughout the last decade a renewed interest for lunar space exploration has been expressed through the announcements of many ambitious missions such as Artemis. Annually the Space Station Design Workshop (SSDW) tasks students and young professionals to design a space station concept in a con-current engineering environment. In line with the elevated interest on the Moon this year's SSDW was centred around a self-sustainable lunar habitat. This paper presents the conceptual design of Team Blue at the SSDW 2021. Advanced Moon Operations and Resource Extraction (AMORE) is conceptu-alized as a public-private cooperation for the creation of a lunar platform that acts as an outpost for human exploration and robotic In-situ Resources Utilization (ISRU). AMORE’s proposed location is near the rim of Shackleton Crater at the Lunar South Pole. This location provides opportunities in science and ISRU and favourable sun coverage and thermal conditions. The terrain offers a natural shield for debris and storage advantages for ISRU. The mission architecture allows for incremental crew size increase through a modular dome structure, an initial prioritization of ISRU and a sustainable resource management strategy. Based on the identified system requirements, the initial configuration envisions one core module and two modular structures that would serve as greenhouses or living spaces. The phasing of the base assembly is designed to allow for adequate conditions of an increasing crew size capacity. The greenhouse modules are designed to provide all required oxygen and most required food supply. The modules are constructed using lightweight inflatable structures, while a regolith shell will provide radiation as well as thermal and micrometeorite protection. For reliable communication, a cus-tom relay network named Lunar Earth Telecommand Telemetry Relay (LETTER) is proposed. The mis-sion architecture analysis includes several methods to financially utilize the mission. These include a range of services on the lunar surface such as training facilities for deep space missions, leasing habitats to other Moon explorers, and performing scientific and technological demonstrations. A variety of rovers will be used throughout the mission that will assist in various aspects. In addition to this, a scalable hybrid power generation system that utilizes the abundant sunlight and nuclear energy assures a suffi-cient power supply throughout the entire mission lifetime. This research presents a holistic architecture for a Moon base, which provides an approach to initially utilize the Moon. Within this context, the mission concept is primarily based on already existing or currently in-development technologies. Hence, AMORE offers an approach for a financially and technologically feasible as well as a continuous and expandable human presence on the lunar surface
- Published
- 2022
7. Hàbitats humans per a altres mons
- Author
-
Pérez Jiménez, Alvaro, Moreno Lupiáñez, Manuel, and Universitat Politècnica de Catalunya. Departament de Física
- Subjects
Material estructural ,Life suport ,Structural material ,Space colonies ,Payload ,Termal protection ,Suport de vida ,Space distribution ,Space stations ,Protecció tèrmica ,Habitats on the Moon ,Distribució d’espais ,Estacions espacials ,Protecció radiològica ,Hàbitats a la Lluna ,Regolita ,Estructura ,Lluna -- Exploració ,Moon -- Exploration ,Aeronàutica i espai::Astronàutica [Àrees temàtiques de la UPC] ,Colònies espacials ,Carrega útil ,Radiological protection - Abstract
Per a descobrir la viabilitat de la creació i transport d'un hàbitat per altres mons, cal realitzar infinitud d'estudis per poder portar-ho a la realitat. Aquest projecte se centrarà en el disseny i dimensionament d'un hàbitat, en la destinació dels espais i la maquinària mínima necessària per a la vida en altres indrets del sistema solar. Per començar el projecte s'haurà de trobar quin mitjà de transport podrà portar l'habitacle fins a la Lluna, d'aquest haurem d'obtenir la càrrega útil i dimensions màximes admissibles. En el moment que sapiguem com arribar, seria crucial buscar una font d'energia, la qual aportarà electricitat a tota la maquinària destinada al suport de vida i als aparells d'ús quotidià. En dissenyar l'habitacle caldrà saber a quins riscos estarà exposat, cal remarcar que la Lluna és considerat un medi extrem, on hi ha grans nivells de radiació còsmica i materials tòxics pels humans. També cal dir que la falta per descobrir molta informació sobre el nostre satèl·lit, com l'estabilitat del terra, ubicació d'aigua, zones en foscor continua tot això també suposa un risc. La selecció de materials serà rellevant per aquesta missió, ja que s'haurà d'escollir els que tinguin majors prestacions amb la menor densitat possible, per mantenir un baix pes. També s'haurà de tindre en compte els materials que s'utilitzaran per a protegir-se de les temperatures extremes, la radiació i els impactes dels meteorits. Un cop hàgim seleccionat el material estructural es podrà procedir al dimensionament de les bigues estructurals gràcies a càlculs teòrics els quals seran comprovats amb simulacions. Si les simulacions són positives el pas següent, serà el càlcul del pes de l'estructura. I serà sumat el pes de la maquinària, mobiliari, alimentació i aigua i oxigen. Un cop el pes total sigui calculat serà comparat amb la càrrega màxima admissible i en el cas que sigui inferior, sabrem que la missió podria ser viable. En cas afirmatiu, es podrà pressupostar el capital mínim In order to discover the feasibility of developing and transporting a habitat to other worlds, it’s necessary to analyze and create a lot of different studies to bring this to reality. This project focuses on the design and sizing of a habitat, the analyze of the best location of rooms and the minimum machines and devices needed for life in other spaces of the solar system. In order to start this project, we should find the best way to transport the living space from the Earth to the Moon, and to analyze the range of maximum payload and allowable dimensions. Once we know how to arrive, it would be crucial to look for a source of energy, that will provide electricity to the life support devices and to the domestic appliances. When designing the living structure, it will be necessary to know the risks to which it will be exposed to, as the Moon is considered an extreme environment with high levels of cosmic radiation and toxic materials for human beings. We should also have in mind that there is a relevant lack of information regarding our satellite as the stability of the land, the water location and the areas in permanent darkness that add additional risks to our project. The selection of materials will be most relevant for this mission, as the maximum performance with the lowest possible density has to be selected, in order to maintain a low level of load. The chosen materials must protect against extreme temperatures, radiation, and meteorite impacts. Once the structural material has been selected, we should start sizing the structural elements using theoretical calculations that will be verified simulations. If the simulations are positive, the next step will be calculating the weight of the structure, algo taking into consideration, the weight of the machines, furniture, food, water, and oxygen. Once the total weight has been calculated, it needs to be compared to the maximum allowable load and, in the event that is still lower, we will know that the mission cou
- Published
- 2022
8. Lunar ISRU energy storage and electricity generation
- Author
-
Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos, Fernández Palos, Mario, Serra, Pol, Fereres, Sonia, Stephenson, Keith, González Cinca, Ricardo, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos, Fernández Palos, Mario, Serra, Pol, Fereres, Sonia, Stephenson, Keith, and González Cinca, Ricardo
- Abstract
Fifty years after the first human step on the Moon, many challenges for its exploration have yet to be overcome. Among them, the survival of the crew and/or lunar assets during the lunar night is mandatory for long duration missions. The environmental conditions of the lunar surface and its day-night cycle, with long periods of darkness, make the provision of energy a critical challenge. Several approaches have recently been considered to store and provide energy in the surface of the Moon by means of ISRU (In-Situ Resource Utilisation), Postprint (updated version)
- Published
- 2020
9. Disseny d'un vehicle lunar per facilitar el transport d'astronautes
- Author
-
Universitat Politècnica de Catalunya. Departament d’Enginyeria Gràfica i de Disseny, López Membrilla, Manuel, Puigjaner Muñoz, Joaquim, Universitat Politècnica de Catalunya. Departament d’Enginyeria Gràfica i de Disseny, López Membrilla, Manuel, and Puigjaner Muñoz, Joaquim
- Abstract
L’any 1951 Arthur C. Clarke escriptor mes conegut com l’autor de la novel·la “2001 una odissea en el espai” pública l’obra “Les arenes de Mart” el qual narra la historia d’un escriptor que viatja en la primera nau que fa el trajecte entre la Terra i el Planeta Vermell. Així doncs, ja des de el segle passat l’interès pel planeta vermell per l’esser humà esdevingué en un exercici de creativitat. Actualment, la NASA s’ha proposat portar a la humanitat a Mart en el any 2033, i es que independentment de l’any en que l’home arribi a Mart en aquest futur proper, hi ha un pas previ que cal fer, colonitzar la Lluna. Partint d’aquesta premissa, el present document te com a objectiu principal el desenvolupament conceptual d’un vehicle pel transport d’astronautes en la superfície de la Lluna. D’aquesta manera es mostren les diferents etapes implicades des del naixement de la idea fins la conceptualització, així com el processos de fabricació implicats i l’impacte ambiental provocat per aquets mateixos. Per tal de dur a terme aquesta tasca, l’autor a utilitzat recursos d’investigació com, patents, fitxes tècniques, catàlegs i l’anàlisi d’antecedents per consolidar una base sobre la qual treballar. Donat que el vehicle present te com a finalitat el transport d’astronautes i l’exploració de la superfície Lunar implica conèixer les característiques de l’entorn hostil de la Lluna així com les necessitats fisiològiques dels propis astronautes. Des d’aquest punt de partida, s’apliquen eines especifiques del grau de Disseny Industrial i Desenvolupament del Producte per tal de confeccionar una proposta vàlida conceptual que satisfà els requisits implicats en la naturalesa d’un vehicle com aquest., In the year 1951 Arthur C. Clarke more known as the author of the novel “2001 an Odyssey in the space” public work “The Sands of Mars” which tells the Story of a writer who traveled in the first ship that makes the journey between Earth and the Red Planet. So, since last century, interest in the red Planet for human beings became a creative exercise. Currently, NASA has proposed to bring humanity to Mars in the year 2033, and it is that regardless of the year the man arrives on Mars in the near future, there is a previous step to be done, colonize the moon. Based on this premise, this document has as its main objective the conceptual development of a vehicle for the transport of astronauts on the Surface of the moon. In this way we show the different stages involved from the birth of the idea to the conceptualization, as well as the manufacturing processes involved and the environmental impact caused by these same ones. In order to carry out this task, the author has used research resources such as patents, technical specifications, catalogues and background analysis to consolidate a basis on which to work. Since the present vehicle has the purpose of transporting astronauts and the exploration of the Lunar Surface implies knowing the characteristics of the moon’s hostile environment and physiological needs of the astronauts themselves. From this starting point, specific tools for the degree in industrial design and product development are applied to create a valid concept that satisfies the requirements involved in the nature of a vehicle like this.
- Published
- 2020
10. Disseny d'un vehicle lunar per facilitar el transport d'astronautes
- Author
-
Puigjaner Muñoz, Joaquim, López Membrilla, Manuel, and Universitat Politècnica de Catalunya. Departament d’Enginyeria Gràfica i de Disseny
- Subjects
Colonization ,Futur ,Arquitectura::Disseny::Disseny industrial [Àrees temàtiques de la UPC] ,Enginyeria mecànica::Disseny i construcció de vehicles [Àrees temàtiques de la UPC] ,Mars ,Space vehicles ,Mart ,Earth ,Astronauta ,Vehicles espacials ,Colonització ,Concepte ,Vehicle ,Astronaut ,Moon surface ,Lluna ,Lunar surface vehicles ,Rover ,Terra ,Superfície lunar ,Lluna -- Exploració ,Moon -- Exploration ,NASA ,Moon ,Aeronàutica i espai::Astronàutica [Àrees temàtiques de la UPC] - Abstract
L’any 1951 Arthur C. Clarke escriptor mes conegut com l’autor de la novel·la “2001 una odissea en el espai” pública l’obra “Les arenes de Mart” el qual narra la historia d’un escriptor que viatja en la primera nau que fa el trajecte entre la Terra i el Planeta Vermell. Així doncs, ja des de el segle passat l’interès pel planeta vermell per l’esser humà esdevingué en un exercici de creativitat. Actualment, la NASA s’ha proposat portar a la humanitat a Mart en el any 2033, i es que independentment de l’any en que l’home arribi a Mart en aquest futur proper, hi ha un pas previ que cal fer, colonitzar la Lluna. Partint d’aquesta premissa, el present document te com a objectiu principal el desenvolupament conceptual d’un vehicle pel transport d’astronautes en la superfície de la Lluna. D’aquesta manera es mostren les diferents etapes implicades des del naixement de la idea fins la conceptualització, així com el processos de fabricació implicats i l’impacte ambiental provocat per aquets mateixos. Per tal de dur a terme aquesta tasca, l’autor a utilitzat recursos d’investigació com, patents, fitxes tècniques, catàlegs i l’anàlisi d’antecedents per consolidar una base sobre la qual treballar. Donat que el vehicle present te com a finalitat el transport d’astronautes i l’exploració de la superfície Lunar implica conèixer les característiques de l’entorn hostil de la Lluna així com les necessitats fisiològiques dels propis astronautes. Des d’aquest punt de partida, s’apliquen eines especifiques del grau de Disseny Industrial i Desenvolupament del Producte per tal de confeccionar una proposta vàlida conceptual que satisfà els requisits implicats en la naturalesa d’un vehicle com aquest. In the year 1951 Arthur C. Clarke more known as the author of the novel “2001 an Odyssey in the space” public work “The Sands of Mars” which tells the Story of a writer who traveled in the first ship that makes the journey between Earth and the Red Planet. So, since last century, interest in the red Planet for human beings became a creative exercise. Currently, NASA has proposed to bring humanity to Mars in the year 2033, and it is that regardless of the year the man arrives on Mars in the near future, there is a previous step to be done, colonize the moon. Based on this premise, this document has as its main objective the conceptual development of a vehicle for the transport of astronauts on the Surface of the moon. In this way we show the different stages involved from the birth of the idea to the conceptualization, as well as the manufacturing processes involved and the environmental impact caused by these same ones. In order to carry out this task, the author has used research resources such as patents, technical specifications, catalogues and background analysis to consolidate a basis on which to work. Since the present vehicle has the purpose of transporting astronauts and the exploration of the Lunar Surface implies knowing the characteristics of the moon’s hostile environment and physiological needs of the astronauts themselves. From this starting point, specific tools for the degree in industrial design and product development are applied to create a valid concept that satisfies the requirements involved in the nature of a vehicle like this.
- Published
- 2020
11. Modelling and Simulation of the Primary Power Distribution of a Lunar Habitat
- Author
-
Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos, Fernández Palos, Mario, Cowley, Aidan, González Cinca, Ricardo, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos, Fernández Palos, Mario, Cowley, Aidan, and González Cinca, Ricardo
- Abstract
A MATLAB/Simulink model of the Primary Power Distribution System of a lunar habitat is presented. The model can be adapted to multiple scenarios, and is able to interface with computer models of other habitat subsystems. A constant supply of power is considered regardless of the source and the time of the day, regulating the bus voltage when required. The electrical system of the International Space Station is used for reference and validation. The model has been tested in two scenarios representing two locations on the surface of the Moon., Peer Reviewed, Postprint (published version)
- Published
- 2019
12. Thermoelectric generators for long duration lunar missions
- Author
-
Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos, Serra, Pol, González Cinca, Ricardo, Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos, Serra, Pol, and González Cinca, Ricardo
- Abstract
The number of lunar missions involving the deployment of probes, rovers and other equipment is expected to raise significantly. Some of these missions will face the challenge to survive the night on the Moon, with very low temperatures on the surface. Solar thermal energy can be stored during the day and transformed into electricity at night. We present a study of the performance of thermoelectric modules. Some of the modules are used in simulations of a thermal energy storage system, which includes the test of different materials as a thermal mass. The power generated in all the cases is obtained., Peer Reviewed, Postprint (published version)
- Published
- 2019
13. Thermoelectric generators for long duration lunar missions
- Author
-
Serra, Pol, González Cinca, Ricardo|||0000-0003-3920-9103, Universitat Politècnica de Catalunya. Departament de Física, and Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos
- Subjects
Energia solar -- Aprofitament ,Solar thermal energy ,Physics::Space Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,AEROSPACE SYSTEMS ,Moon--Temperature and radiation ,Astrophysics::Earth and Planetary Astrophysics ,Thermoelectricity ,Termoelectricitat ,Lluna -- Exploració ,Aeronàutica i espai [Àrees temàtiques de la UPC] ,Moon -- Exploration - Abstract
The number of lunar missions involving the deployment of probes, rovers and other equipment is expected to raise significantly. Some of these missions will face the challenge to survive the night on the Moon, with very low temperatures on the surface. Solar thermal energy can be stored during the day and transformed into electricity at night. We present a study of the performance of thermoelectric modules. Some of the modules are used in simulations of a thermal energy storage system, which includes the test of different materials as a thermal mass. The power generated in all the cases is obtained.
- Published
- 2019
14. Lunar ISRU Energy Storage and Electricity Generation
- Author
-
Pol Serra, Mario F. Palos, Keith Stephenson, Sonia Fereres, Ricard González-Cinca, Universitat Politècnica de Catalunya. Departament de Física, and Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos
- Subjects
Electric power production ,Lunar habitat ,MATERIALS ,Aerospace Engineering ,02 engineering and technology ,Thermal energy storage ,01 natural sciences ,Energy storage ,Resource (project management) ,0203 mechanical engineering ,0103 physical sciences ,Low temperatures ,Lluna -- Exploració ,Moon ,010303 astronomy & astrophysics ,Física::Astronomia i astrofísica::Sistema solar [Àrees temàtiques de la UPC] ,Energia solar -- Electricitat ,Energia solar -- Aprofitament ,020301 aerospace & aeronautics ,Solar thermal energy ,business.industry ,MODELLING ,In situ resource utilization ,Energia elèctrica -- Producció ,Thermoelectricity ,Solar energy ,Planetology ,Thermal energy storage system ,Electricity generation ,MODEL-BASED APPROACH ,SIMULATION ,Systems engineering ,SPACE SOLAR POWER STATION ,Environmental science ,Heat rejection ,Electricity ,Termoelectricitat ,Aeronàutica i espai [Àrees temàtiques de la UPC] ,business ,Moon -- Exploration - Abstract
Fifty years after the first human step on the Moon, many challenges for its exploration have yet to be overcome. Among them, the survival of the crew and/or lunar assets during the lunar night is mandatory for long duration missions. The environmental conditions of the lunar surface and its day-night cycle, with long periods of darkness, make the provision of energy a critical challenge. Several approaches have recently been considered to store and provide energy in the surface of the Moon by means of ISRU (In-Situ Resource Utilisation). We present a trade-off analysis of the options identified for an ISRU-based system to store heat and generate electricity for lunar missions with both robotic and human activities. A critical review of the energy requirements for a mission scenario consisting of long duration stays on the lunar surface has been carried out. Technologies potentially suitable for system components have been identified. These technologies are related to solar energy collection, heat transport, heat storage, heat-to-electricity conversion, and heat rejection. The outcome of the trade-off analysis provides a selection of the most suitable technologies to use in an ISRU-based heat storage and electricity generation system.
- Published
- 2019
- Full Text
- View/download PDF
15. Modelling and Simulation of the Primary Power Distribution of a Lunar Habitat
- Author
-
Fernández Palos, Mario, Cowley, Aidan, González Cinca, Ricardo|||0000-0003-3920-9103, Universitat Politècnica de Catalunya. Departament de Física, and Universitat Politècnica de Catalunya. BIOCOM-SC - Grup de Biologia Computacional i Sistemes Complexos
- Subjects
Electric power systems ,Electric power production ,Energia solar -- Aprofitament ,ISS ,Electrical power system ,Space vehicles ,Energia elèctrica -- Producció ,Lluna -- Exploració ,Vehicles espacials ,Aeronàutica i espai [Àrees temàtiques de la UPC] ,Moon -- Exploration ,Space stations--Electric equipment ,MATLAB/Simulink - Abstract
A MATLAB/Simulink model of the Primary Power Distribution System of a lunar habitat is presented. The model can be adapted to multiple scenarios, and is able to interface with computer models of other habitat subsystems. A constant supply of power is considered regardless of the source and the time of the day, regulating the bus voltage when required. The electrical system of the International Space Station is used for reference and validation. The model has been tested in two scenarios representing two locations on the surface of the Moon.
- Published
- 2019
16. SN Video Humanities and Social Sciences. Emerging Lunar Economy
- Author
-
Springer Nature (Firm), publisher.
- Published
- 2021
17. Autonomous optical navigation for orbits around Earth–Moon collinear libration points
- Author
-
Josep Virgili Llop
- Subjects
Spacecraft ,Computer science ,business.industry ,Aerospace Engineering ,Lagrangian point ,Navigation ,Momentum ,Optical navigation ,Space vehicles -- Piloting ,Aeronàutica i espai::Astronàutica::Navegació espacial [Àrees temàtiques de la UPC] ,Libration point ,Libration ,Orbit (dynamics) ,Point (geometry) ,Lluna -- Exploració ,Astrophysics::Earth and Planetary Astrophysics ,Aerospace engineering ,Moon -- Exploration ,Moon ,business ,Optical ,Simulation ,Astronàutica ,Halo orbit - Abstract
The analysis of optical navigation in an Earth–Moon libration point orbit is examined. Missions to libration points have been winning momentum during the last decades. Its unique characteristics make it suitable for a number of operational and scientific goals. Literature aimed to study dynamics, guidance and control of unstable orbits around collinear libration points is vast. In particular, several papers deal with the optimisation of the Δv budget associated to the station-keeping of these orbits. One of the results obtained in literature establishes the critical character of the Moon–Earth system in this aspect. The reason for this behaviour is twofold: high Δv cost and short optimal manoeuvre spacing. Optical autonomous navigation can address the issue of allowing a more flexible manoeuvre design. This technology has been selected to overcome similar difficulties in other critical scenarios. This paper analyses in detail this solution. A whole GNC system is defined to meet the requirements imposed by the unstable dynamic environment. Finally, a real simulation of a spacecraft following a halo orbit of the L2 Moon–Earth system is carried out to assess the actual capabilities of the optical navigation in this scenario.
- Published
- 2013
- Full Text
- View/download PDF
18. NOVA. Episode 11, Back to the Moon
- Author
-
WGBH (Television station : Boston, Mass.), production company., Public Broadcasting Service (U.S.), film distributor., Wright, James (James M.), director., Riley, Christopher, 1967- producer., and Meyers, Eric, 1959- narrator.
- Published
- 2019
19. Daily watch. Who owns the moon?
- Author
-
Economist Films, production company., Economist Group, publisher., Jeong, Vicky, speaker., and Morton, Oliver, speaker.
- Published
- 2019
20. Marte o la Luna (robots o humanos)
- Author
-
Barceló Garcia, Miquel and Barceló Garcia, Miquel
- Abstract
Postprint (author's final draft)
- Published
- 2016
21. Autonomous optical navigation for orbits around Earth-Moon collinear libration points
- Author
-
Virgili Llop, Josep and Virgili Llop, Josep
- Abstract
The analysis of optical navigation in an Earth–Moon libration point orbit is examined. Missions to libration points have been winning momentum during the last decades. Its unique characteristics make it suitable for a number of operational and scientific goals. Literature aimed to study dynamics, guidance and control of unstable orbits around collinear libration points is vast. In particular, several papers deal with the optimisation of the Δv budget associated to the station-keeping of these orbits. One of the results obtained in literature establishes the critical character of the Moon–Earth system in this aspect. The reason for this behaviour is twofold: high Δv cost and short optimal manoeuvre spacing. Optical autonomous navigation can address the issue of allowing a more flexible manoeuvre design. This technology has been selected to overcome similar difficulties in other critical scenarios. This paper analyses in detail this solution. A whole GNC system is defined to meet the requirements imposed by the unstable dynamic environment. Finally, a real simulation of a spacecraft following a halo orbit of the L2 Moon–Earth system is carried out to assess the actual capabilities of the optical navigation in this scenario., Peer Reviewed, Postprint (published version)
- Published
- 2013
22. From the Earth to the Moon
- Author
-
Film Platform, film distributor., Terranoa (Firm), film distributor., Abela, Alexander, 1965- director., Grenon, Valérie, producer., and Wilcox, Hester, narrator.
- Published
- 2015
23. Google's [dollar sign]20M race to the Moon.
- Author
-
Bloomberg LP, production company.
- Published
- 2015
24. First Man (Neil Armstrong)
- Author
-
CBS News. Production company, Armstrong, Neil, 1930-2012. Interviewee, Bradley, Ed, 1941-2006. Reporter, Weitzner, Mitch. Producer, and Weitzner, Mitch, producer
- Published
- 2005
25. For all mankind
- Author
-
Janus Films, film distributor., Criterion Collection (Firm), film distributor., Reinert, Al, director, producer., and Breier, Betsy Broyles, producer.
- Published
- 1989
26. Astronaut filming LEM on moon with lunar TV camera CP4946
- Author
-
Photographic Collection, P0353, Westinghouse/National Electronics Museum, Photographic Collection, P0353, and Westinghouse/National Electronics Museum
- Abstract
Artist rendition of an astronaut filming LEM (lunar excursion module) on moon with lunar TV camera CP4946
- Published
- 1964
27. Astronaut on lunar surface holding lunar TV camera connected to LEM by hose
- Author
-
Photographic Collection, P0404, Westinghouse/National Electronics Museum, Photographic Collection, P0404, and Westinghouse/National Electronics Museum
- Abstract
Artist rendition of an astronaut on lunar surface holding lunar TV camera connected to LEM (lunar excursion module) by hose
- Published
- 1964
28. Astronaut filming LEM on moon with lunar TV camera CP17908
- Author
-
Photographic Collection, P0347, Westinghouse/National Electronics Museum, Photographic Collection, P0347, and Westinghouse/National Electronics Museum
- Abstract
Artist rendition of an astronaut filming LEM (lunar excursion module) on moon with lunar TV camera CP17908
- Published
- 1964
29. Apollo 12 Alan Bean taking core sample
- Author
-
Photographic Collection, P0390, Westinghouse/National Electronics Museum, Photographic Collection, P0390, and Westinghouse/National Electronics Museum
- Abstract
Alan Bean taking core sample during the Apollo 12 mission to the moon. He later used the first color lunar camera and broke it after aiming it at the sun. The photo was taken by astronaut Charles Conrad.
30. Marte o la Luna (robots o humanos)
- Author
-
Barceló Garcia, Miquel
- Subjects
Sistema solar ,Robòtica ,Space flights ,Vol espacial a Mart ,Mars (Planet) -- Exploration ,Robots autònoms ,Vols espacials ,Robotics ,Viatges interplanetaris ,Autonomous robots ,Space flight to Mars ,Astronautics ,Interplanetary voyages ,Lluna -- Exploració ,Mart (Planeta) -- Exploració ,Aeronàutica i espai::Astronàutica [Àrees temàtiques de la UPC] ,Moon -- Exploration ,European Space Agency ,Solar system ,Astronàutica
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.