12 results on '"Mosquito microbiome"'
Search Results
2. Comprehensive characterization of internal and cuticle surface microbiota of laboratory-reared F1 Anopheles albimanus originating from different sites
- Author
-
Nsa Dada, Ana Cristina Benedict, Francisco López, Juan C. Lol, Mili Sheth, Nicole Dzuris, Norma Padilla, and Audrey Lenhart
- Subjects
Mosquito microbiota ,Anopheles albimanus ,Laboratory colonization ,Mosquito microbiome ,Next generation sequencing ,16S rRNA gene amplicon sequencing ,Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Research on mosquito-microbe interactions may lead to new tools for mosquito and mosquito-borne disease control. To date, such research has largely utilized laboratory-reared mosquitoes that typically lack the microbial diversity of wild populations. A logical progression in this area involves working under controlled settings using field-collected mosquitoes or, in most cases, their progeny. Thus, an understanding of how laboratory colonization affects the assemblage of mosquito microbiota would aid in advancing mosquito microbiome studies and their applications beyond laboratory settings. Methods Using high throughput 16S rRNA amplicon sequencing, the internal and cuticle surface microbiota of F1 progeny of wild-caught adult Anopheles albimanus from four locations in Guatemala were characterized. A total of 132 late instar larvae and 135 2–5 day-old, non-blood-fed virgin adult females that were reared under identical laboratory conditions, were pooled (3 individuals/pool) and analysed. Results Results showed location-associated heterogeneity in both F1 larval internal (p = 0.001; pseudo-F = 9.53) and cuticle surface (p = 0.001; pseudo-F = 8.51) microbiota, and only F1 adult cuticle surface (p = 0.001; pseudo-F = 4.5) microbiota, with a more homogenous adult internal microbiota (p = 0.12; pseudo-F = 1.6) across collection sites. Overall, ASVs assigned to Leucobacter, Thorsellia, Chryseobacterium and uncharacterized Enterobacteriaceae, dominated F1 larval internal microbiota, while Acidovorax, Paucibacter, and uncharacterized Comamonadaceae, dominated the larval cuticle surface. F1 adults comprised a less diverse microbiota compared to larvae, with ASVs assigned to the genus Asaia dominating both internal and cuticle surface microbiota, and constituting at least 70% of taxa in each microbial niche. Conclusions These results suggest that location-specific heterogeneity in filed mosquito microbiota can be transferred to F1 progeny under normal laboratory conditions, but this may not last beyond the F1 larval stage without adjustments to maintain field-derived microbiota. These findings provide the first comprehensive characterization of laboratory-colonized F1 An. albimanus progeny from field-derived mothers. This provides a background for studying how parentage and environmental conditions differentially or concomitantly affect mosquito microbiome composition, and how this can be exploited in advancing mosquito microbiome studies and their applications beyond laboratory settings.
- Published
- 2021
- Full Text
- View/download PDF
3. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium
- Author
-
Nsa Dada, Natapong Jupatanakul, Guillaume Minard, Sarah M. Short, Jewelna Akorli, and Luis Martinez Villegas
- Subjects
Mosquito microbiome ,Metabarcoding ,Metagenomics ,Metatranscriptomics ,Recommendations for mosquito microbiome research ,Microbiome data curation ,Microbial ecology ,QR100-130 - Abstract
Abstract In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts of data on different mosquito species, with various underlying physiological characteristics, and from diverse geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome research are lacking. To streamline methods in mosquito microbiome research and optimize data quality, reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research. Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology, while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the consortium and invite broader participation. It highlights the issues we view as most pressing to the community and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece: (1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will spark discussions around this area of disease vector biology, as well as encourage careful considerations in the design and implementation of mosquito microbiome research. Video Abstract
- Published
- 2021
- Full Text
- View/download PDF
4. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota
- Author
-
Diana Omoke, Mathew Kipsum, Samson Otieno, Edward Esalimba, Mili Sheth, Audrey Lenhart, Ezekiel Mugendi Njeru, Eric Ochomo, and Nsa Dada
- Subjects
Mosquito microbiota ,Mosquito microbiome ,Metabarcoding ,Insecticide resistance ,Anopheles gambiae s.s. ,16S rRNA gene amplicon sequencing ,Arctic medicine. Tropical medicine ,RC955-962 ,Infectious and parasitic diseases ,RC109-216 - Abstract
Abstract Background Insecticide resistance poses a growing challenge to malaria vector control in Kenya and around the world. Following evidence of associations between the mosquito microbiota and insecticide resistance, the microbiota of Anopheles gambiae sensu stricto (s.s.) from Tulukuyi village, Bungoma, Kenya, with differing permethrin resistance profiles were comparatively characterized. Methods Using the CDC bottle bioassay, 133 2–3 day-old, virgin, non-blood fed female F1 progeny of field-caught An. gambiae s.s. were exposed to five times (107.5 µg/ml) the discriminating dose of permethrin. Post bioassay, 50 resistant and 50 susceptible mosquitoes were subsequently screened for kdr East and West mutations, and individually processed for microbial analysis using high throughput sequencing targeting the universal bacterial and archaeal 16S rRNA gene. Results 47 % of the samples tested (n = 133) were resistant, and of the 100 selected for further processing, 99 % were positive for kdr East and 1 % for kdr West. Overall, 84 bacterial taxa were detected across all mosquito samples, with 36 of these shared between resistant and susceptible mosquitoes. A total of 20 bacterial taxa were unique to the resistant mosquitoes and 28 were unique to the susceptible mosquitoes. There were significant differences in bacterial composition between resistant and susceptible individuals (PERMANOVA, pseudo-F = 2.33, P = 0.001), with presence of Sphingobacterium, Lysinibacillus and Streptococcus (all known pyrethroid-degrading taxa), and the radiotolerant Rubrobacter, being significantly associated with resistant mosquitoes. On the other hand, the presence of Myxococcus, was significantly associated with susceptible mosquitoes. Conclusions This is the first report of distinct microbiota in An. gambiae s.s. associated with intense pyrethroid resistance. The findings highlight differentially abundant bacterial taxa between resistant and susceptible mosquitoes, and further suggest a microbe-mediated mechanism of insecticide resistance in mosquitoes. These results also indicate fixation of the kdr East mutation in this mosquito population, precluding further analysis of its associations with the mosquito microbiota, but presenting the hypothesis that any microbe-mediated mechanism of insecticide resistance would be likely of a metabolic nature. Overall, this study lays initial groundwork for understanding microbe-mediated mechanisms of insecticide resistance in African mosquito vectors of malaria, and potentially identifying novel microbial markers of insecticide resistance that could supplement existing vector surveillance tools.
- Published
- 2021
- Full Text
- View/download PDF
5. Comprehensive characterization of internal and cuticle surface microbiota of laboratory-reared F1Anopheles albimanus originating from different sites.
- Author
-
Dada, Nsa, Benedict, Ana Cristina, López, Francisco, Lol, Juan C., Sheth, Mili, Dzuris, Nicole, Padilla, Norma, and Lenhart, Audrey
- Subjects
CUTICLE ,MOSQUITOES ,ADULTS ,MICROBIAL diversity ,DENGUE hemorrhagic fever ,ANOPHELES - Abstract
Background: Research on mosquito-microbe interactions may lead to new tools for mosquito and mosquito-borne disease control. To date, such research has largely utilized laboratory-reared mosquitoes that typically lack the microbial diversity of wild populations. A logical progression in this area involves working under controlled settings using field-collected mosquitoes or, in most cases, their progeny. Thus, an understanding of how laboratory colonization affects the assemblage of mosquito microbiota would aid in advancing mosquito microbiome studies and their applications beyond laboratory settings. Methods: Using high throughput 16S rRNA amplicon sequencing, the internal and cuticle surface microbiota of F
1 progeny of wild-caught adult Anopheles albimanus from four locations in Guatemala were characterized. A total of 132 late instar larvae and 135 2–5 day-old, non-blood-fed virgin adult females that were reared under identical laboratory conditions, were pooled (3 individuals/pool) and analysed. Results: Results showed location-associated heterogeneity in both F1 larval internal (p = 0.001; pseudo-F = 9.53) and cuticle surface (p = 0.001; pseudo-F = 8.51) microbiota, and only F1 adult cuticle surface (p = 0.001; pseudo-F = 4.5) microbiota, with a more homogenous adult internal microbiota (p = 0.12; pseudo-F = 1.6) across collection sites. Overall, ASVs assigned to Leucobacter, Thorsellia, Chryseobacterium and uncharacterized Enterobacteriaceae, dominated F1 larval internal microbiota, while Acidovorax, Paucibacter, and uncharacterized Comamonadaceae, dominated the larval cuticle surface. F1 adults comprised a less diverse microbiota compared to larvae, with ASVs assigned to the genus Asaia dominating both internal and cuticle surface microbiota, and constituting at least 70% of taxa in each microbial niche. Conclusions: These results suggest that location-specific heterogeneity in filed mosquito microbiota can be transferred to F1 progeny under normal laboratory conditions, but this may not last beyond the F1 larval stage without adjustments to maintain field-derived microbiota. These findings provide the first comprehensive characterization of laboratory-colonized F1 An. albimanus progeny from field-derived mothers. This provides a background for studying how parentage and environmental conditions differentially or concomitantly affect mosquito microbiome composition, and how this can be exploited in advancing mosquito microbiome studies and their applications beyond laboratory settings. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
6. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota.
- Author
-
Omoke, Diana, Kipsum, Mathew, Otieno, Samson, Esalimba, Edward, Sheth, Mili, Lenhart, Audrey, Njeru, Ezekiel Mugendi, Ochomo, Eric, and Dada, Nsa
- Subjects
ANOPHELES gambiae ,PERMETHRIN ,INSECTICIDE resistance ,MOSQUITOES ,MOSQUITO vectors ,AGROBACTERIUM tumefaciens - Abstract
Background: Insecticide resistance poses a growing challenge to malaria vector control in Kenya and around the world. Following evidence of associations between the mosquito microbiota and insecticide resistance, the microbiota of Anopheles gambiae sensu stricto (s.s.) from Tulukuyi village, Bungoma, Kenya, with differing permethrin resistance profiles were comparatively characterized. Methods: Using the CDC bottle bioassay, 133 2–3 day-old, virgin, non-blood fed female F
1 progeny of field-caught An. gambiae s.s. were exposed to five times (107.5 µg/ml) the discriminating dose of permethrin. Post bioassay, 50 resistant and 50 susceptible mosquitoes were subsequently screened for kdr East and West mutations, and individually processed for microbial analysis using high throughput sequencing targeting the universal bacterial and archaeal 16S rRNA gene. Results: 47 % of the samples tested (n = 133) were resistant, and of the 100 selected for further processing, 99 % were positive for kdr East and 1 % for kdr West. Overall, 84 bacterial taxa were detected across all mosquito samples, with 36 of these shared between resistant and susceptible mosquitoes. A total of 20 bacterial taxa were unique to the resistant mosquitoes and 28 were unique to the susceptible mosquitoes. There were significant differences in bacterial composition between resistant and susceptible individuals (PERMANOVA, pseudo-F = 2.33, P = 0.001), with presence of Sphingobacterium, Lysinibacillus and Streptococcus (all known pyrethroid-degrading taxa), and the radiotolerant Rubrobacter, being significantly associated with resistant mosquitoes. On the other hand, the presence of Myxococcus, was significantly associated with susceptible mosquitoes. Conclusions: This is the first report of distinct microbiota in An. gambiae s.s. associated with intense pyrethroid resistance. The findings highlight differentially abundant bacterial taxa between resistant and susceptible mosquitoes, and further suggest a microbe-mediated mechanism of insecticide resistance in mosquitoes. These results also indicate fixation of the kdr East mutation in this mosquito population, precluding further analysis of its associations with the mosquito microbiota, but presenting the hypothesis that any microbe-mediated mechanism of insecticide resistance would be likely of a metabolic nature. Overall, this study lays initial groundwork for understanding microbe-mediated mechanisms of insecticide resistance in African mosquito vectors of malaria, and potentially identifying novel microbial markers of insecticide resistance that could supplement existing vector surveillance tools. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
7. Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium.
- Author
-
Dada, Nsa, Jupatanakul, Natapong, Minard, Guillaume, Short, Sarah M., Akorli, Jewelna, and Villegas, Luis Martinez
- Subjects
MOSQUITOES ,DATA curation ,DISEASE vectors ,MICROORGANISMS ,DATA analysis - Abstract
In the past decade, there has been increasing interest in mosquito microbiome research, leading to large amounts of data on different mosquito species, with various underlying physiological characteristics, and from diverse geographical locations. However, guidelines and standardized methods for conducting mosquito microbiome research are lacking. To streamline methods in mosquito microbiome research and optimize data quality, reproducibility, and comparability, as well as facilitate data curation in a centralized location, we are establishing the Mosquito Microbiome Consortium, a collaborative initiative for the advancement of mosquito microbiome research. Our overall goal is to collectively work on unraveling the role of the mosquito microbiome in mosquito biology, while critically evaluating its potential for mosquito-borne disease control. This perspective serves to introduce the consortium and invite broader participation. It highlights the issues we view as most pressing to the community and proposes guidelines for conducting mosquito microbiome research. We focus on four broad areas in this piece: (1) sampling/experimental design for field, semi-field, or laboratory studies; (2) metadata collection; (3) sample processing, sequencing, and use of appropriate controls; and (4) data handling and analysis. We finally summarize current challenges and highlight future directions in mosquito microbiome research. We hope that this piece will spark discussions around this area of disease vector biology, as well as encourage careful considerations in the design and implementation of mosquito microbiome research. 9AbpineHnudS4JNqJfbdjS Video Abstract [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
8. Comprehensive characterization of internal and cuticle surface microbiota of laboratory-reared F1 Anopheles albimanus originating from different sites
- Author
-
Juan C. Lol, Nsa Dada, Ana Cristina Benedict, Nicole Dzuris, Francisco López, Mili Sheth, Audrey Lenhart, and Norma Padilla
- Subjects
Entomology ,Cuticle ,RC955-962 ,Zoology ,Infectious and parasitic diseases ,RC109-216 ,Anopheles albimanus ,Animal Shells ,Laboratory colonization ,Next generation sequencing ,Arctic medicine. Tropical medicine ,Anopheles ,Animals ,Colonization ,Microbiome ,16S rRNA gene amplicon sequencing ,Larva ,biology ,Research ,Microbiota ,fungi ,Mosquito microbiota ,biology.organism_classification ,Guatemala ,Infectious Diseases ,Parasitology ,Instar ,Female ,Mosquito microbiome - Abstract
Background Research on mosquito-microbe interactions may lead to new tools for mosquito and mosquito-borne disease control. To date, such research has largely utilized laboratory-reared mosquitoes that typically lack the microbial diversity of wild populations. A logical progression in this area involves working under controlled settings using field-collected mosquitoes or, in most cases, their progeny. Thus, an understanding of how laboratory colonization affects the assemblage of mosquito microbiota would aid in advancing mosquito microbiome studies and their applications beyond laboratory settings. Methods Using high throughput 16S rRNA amplicon sequencing, the internal and cuticle surface microbiota of F1 progeny of wild-caught adult Anopheles albimanus from four locations in Guatemala were characterized. A total of 132 late instar larvae and 135 2–5 day-old, non-blood-fed virgin adult females that were reared under identical laboratory conditions, were pooled (3 individuals/pool) and analysed. Results Results showed location-associated heterogeneity in both F1 larval internal (p = 0.001; pseudo-F = 9.53) and cuticle surface (p = 0.001; pseudo-F = 8.51) microbiota, and only F1 adult cuticle surface (p = 0.001; pseudo-F = 4.5) microbiota, with a more homogenous adult internal microbiota (p = 0.12; pseudo-F = 1.6) across collection sites. Overall, ASVs assigned to Leucobacter, Thorsellia, Chryseobacterium and uncharacterized Enterobacteriaceae, dominated F1 larval internal microbiota, while Acidovorax, Paucibacter, and uncharacterized Comamonadaceae, dominated the larval cuticle surface. F1 adults comprised a less diverse microbiota compared to larvae, with ASVs assigned to the genus Asaia dominating both internal and cuticle surface microbiota, and constituting at least 70% of taxa in each microbial niche. Conclusions These results suggest that location-specific heterogeneity in filed mosquito microbiota can be transferred to F1 progeny under normal laboratory conditions, but this may not last beyond the F1 larval stage without adjustments to maintain field-derived microbiota. These findings provide the first comprehensive characterization of laboratory-colonized F1An. albimanus progeny from field-derived mothers. This provides a background for studying how parentage and environmental conditions differentially or concomitantly affect mosquito microbiome composition, and how this can be exploited in advancing mosquito microbiome studies and their applications beyond laboratory settings.
- Published
- 2021
9. Metagenomic Virome Analysis of Culex Mosquitoes from Kenya and China.
- Author
-
Atoni, Evans, Wang, Yujuan, Karungu, Samuel, Waruhiu, Cecilia, Zohaib, Ali, Obanda, Vincent, Agwanda, Bernard, Mutua, Morris, Xia, Han, and Yuan, Zhiming
- Subjects
- *
CULEX , *VIRAL genomes , *METAGENOMICS , *ARTHROPODA , *PUBLIC health - Abstract
Many blood-feeding arthropods are known vectors of viruses that are a source of unprecedented global health concern. Mosquitoes are an integral part of these arthropod vectors. Advancements in next-generation sequencing and bioinformatics has expanded our knowledge on the richness of viruses harbored by arthropods. In the present study, we applied a metagenomic approach to determine the intercontinental virome diversity of Culex quinquefasciatus and Culex tritaeniorhynchus in Kwale, Kenya and provinces of Hubei and Yunnan in China. Our results showed that viromes from the three locations were strikingly diverse and comprised 30 virus families specific to vertebrates, invertebrates, plants, and protozoa as well as unclassified group of viruses. Though sampled at different times, both Kwale and Hubei mosquito viromes were dominated by vertebrate viruses, in contrast to the Yunnan mosquito virome, which was dominated by insect-specific viruses. However, each virome was unique in terms of virus proportions partly influenced by type of ingested meals (blood, nectar, plant sap, environment substrates). The dominant vertebrate virus family in the Kwale virome was Papillomaviridae (57%) while in Hubei it was Herpesviridae (30%) and the Yunnan virome was dominated by an unclassified viruses group (27%). Given that insect-specific viruses occur naturally in their hosts, they should be the basis for defining the viromes. Hence, the dominant insect-specific viruses in Kwale, Hubei, and Yunnan were Baculoviridae, Nimaviridae and Iflaviridae, respectively. Our study is preliminary but contributes to growing and much needed knowledge, as mosquito viromes could be manipulated to prevent and control pathogenic arboviruses. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
10. Genome sequence of Asaia bogorensis strain SC1 isolated from an Aedes aegypti mosquito crop.
- Author
-
Chakraborty S, Benoit JB, Rowe AR, and Sackett JD
- Abstract
Understanding microbe-host interactions is key to combating disease transmission by mosquitoes. Here, we report the genome sequence of Asaia bogorensis strain SC1 isolated from a human-blood-fed Aedes aegypti mosquito crop. Metabolic pathway characteristics of aerobic respiration were present in the genome, along with multiple putative antibiotic resistance mechanisms., Competing Interests: The authors declare no conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
11. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota
- Author
-
Nsa Dada, Ezekiel Mugendi Njeru, Audrey Lenhart, Mathew Kipsum, Mili Sheth, Eric Ochomo, Edward Esalimba, Samson Otieno, and Diana Omoke
- Subjects
0301 basic medicine ,Insecticides ,Entomology ,Mosquito Control ,Insecticide resistance ,lcsh:Arctic medicine. Tropical medicine ,lcsh:RC955-962 ,Anopheles gambiae ,030106 microbiology ,Zoology ,Mosquito Vectors ,Biology ,pyrethroid resistance ,lcsh:Infectious and parasitic diseases ,03 medical and health sciences ,Anopheles ,parasitic diseases ,medicine ,Animals ,Bioassay ,lcsh:RC109-216 ,16S rRNA gene amplicon sequencing ,Permethrin ,Microbiota ,Research ,Mosquito microbiota ,16S ribosomal RNA ,biology.organism_classification ,medicine.disease ,Kenya ,030104 developmental biology ,Infectious Diseases ,Parasitology ,Anopheles gambiae s.s ,Metabarcoding ,Female ,Rubrobacter ,Mosquito microbiome ,Malaria ,medicine.drug - Abstract
Background Insecticide resistance poses a growing challenge to malaria vector control in Kenya and around the world. Following evidence of associations between the mosquito microbiota and insecticide resistance, the microbiota of Anopheles gambiae sensu stricto (s.s.) from Tulukuyi village, Bungoma, Kenya, with differing permethrin resistance profiles were comparatively characterized. Methods Using the CDC bottle bioassay, 133 2–3 day-old, virgin, non-blood fed female F1 progeny of field-caught An. gambiae s.s. were exposed to five times (107.5 µg/ml) the discriminating dose of permethrin. Post bioassay, 50 resistant and 50 susceptible mosquitoes were subsequently screened for kdr East and West mutations, and individually processed for microbial analysis using high throughput sequencing targeting the universal bacterial and archaeal 16S rRNA gene. Results 47 % of the samples tested (n = 133) were resistant, and of the 100 selected for further processing, 99 % were positive for kdr East and 1 % for kdr West. Overall, 84 bacterial taxa were detected across all mosquito samples, with 36 of these shared between resistant and susceptible mosquitoes. A total of 20 bacterial taxa were unique to the resistant mosquitoes and 28 were unique to the susceptible mosquitoes. There were significant differences in bacterial composition between resistant and susceptible individuals (PERMANOVA, pseudo-F = 2.33, P = 0.001), with presence of Sphingobacterium, Lysinibacillus and Streptococcus (all known pyrethroid-degrading taxa), and the radiotolerant Rubrobacter, being significantly associated with resistant mosquitoes. On the other hand, the presence of Myxococcus, was significantly associated with susceptible mosquitoes. Conclusions This is the first report of distinct microbiota in An. gambiae s.s. associated with intense pyrethroid resistance. The findings highlight differentially abundant bacterial taxa between resistant and susceptible mosquitoes, and further suggest a microbe-mediated mechanism of insecticide resistance in mosquitoes. These results also indicate fixation of the kdr East mutation in this mosquito population, precluding further analysis of its associations with the mosquito microbiota, but presenting the hypothesis that any microbe-mediated mechanism of insecticide resistance would be likely of a metabolic nature. Overall, this study lays initial groundwork for understanding microbe-mediated mechanisms of insecticide resistance in African mosquito vectors of malaria, and potentially identifying novel microbial markers of insecticide resistance that could supplement existing vector surveillance tools.
- Published
- 2021
12. Coculturing of Mosquito-Microbiome Bacteria Promotes Heme Degradation in Elizabethkingia anophelis.
- Author
-
Ganley JG, D'Ambrosio HK, Shieh M, and Derbyshire ER
- Subjects
- Animals, Coculture Techniques, Flavobacteriaceae growth & development, Genome, Bacterial, Phylogeny, Sequence Analysis, DNA, Anopheles microbiology, Bacterial Proteins metabolism, Flavobacteriaceae metabolism, Heme metabolism, Microbiota, Virulence
- Abstract
Anopheles mosquito microbiomes are intriguing ecological niches. Within the gut, microbes adapt to oxidative stress due to heme and iron after blood meals. Although metagenomic sequencing has illuminated spatial and temporal fluxes of microbiome populations, limited data exist on microbial growth dynamics. Here, we analyze growth interactions between a dominant microbiome species, Elizabethkingia anophelis, and other Anopheles-associated bacteria. We find E. anophelis inhibits a Pseudomonas sp. via an antimicrobial-independent mechanism and observe biliverdins, heme degradation products, upregulated in cocultures. Purification and characterization of E. anophelis HemS demonstrates heme degradation, and we observe hemS expression is upregulated when cocultured with Pseudomonas sp. This study reveals a competitive microbial interaction between mosquito-associated bacteria and characterizes the stimulation of heme degradation in E. anophelis when grown with Pseudomonas sp., (© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.