1. Motor task-to-task transfer learning for motor imagery brain-computer interfaces.
- Author
-
Gwon D and Ahn M
- Subjects
- Humans, Male, Female, Adult, Young Adult, Transfer, Psychology physiology, Psychomotor Performance physiology, Motor Activity physiology, Movement physiology, Brain-Computer Interfaces, Imagination physiology, Electroencephalography methods
- Abstract
Motor imagery (MI) is one of the popular control paradigms in the non-invasive brain-computer interface (BCI) field. MI-BCI generally requires users to conduct the imagination of movement (e.g., left or right hand) to collect training data for generating a classification model during the calibration phase. However, this calibration phase is generally time-consuming and tedious, as users conduct the imagination of hand movement several times without being given feedback for an extended period. This obstacle makes MI-BCI non user-friendly and hinders its use. On the other hand, motor execution (ME) and motor observation (MO) are relatively easier tasks, yield lower fatigue than MI, and share similar neural mechanisms to MI. However, few studies have integrated these three tasks into BCIs. In this study, we propose a new task-to-task transfer learning approach of 3-motor tasks (ME, MO, and MI) for building a better user-friendly MI-BCI. For this study, 28 subjects participated in 3-motor tasks experiment, and electroencephalography (EEG) was acquired. User opinions regarding the 3-motor tasks were also collected through questionnaire survey. The 3-motor tasks showed a power decrease in the alpha rhythm, known as event-related desynchronization, but with slight differences in the temporal patterns. In the classification analysis, the cross-validated accuracy (within-task) was 67.05 % for ME, 65.93 % for MI, and 73.16 % for MO on average. Consistently with the results, the subjects scored MI (3.16) as the most difficult task compared with MO (1.42) and ME (1.41), with p < 0.05. In the analysis of task-to-task transfer learning, where training and testing are performed using different task datasets, the ME-trained model yielded an accuracy of 65.93 % (MI test), which is statistically similar to the within-task accuracy (p > 0.05). The MO-trained model achieved an accuracy of 60.82 % (MI test). On the other hand, combining two datasets yielded interesting results. ME and 50 % of the MI-trained model (50-shot) classified MI with a 69.21 % accuracy, which outperformed the within-task accuracy (p < 0.05), and MO and 50 % of the MI-trained model showed an accuracy of 66.75 %. Of the low performers with a within-task accuracy of 70 % or less, 90 % (n = 21) of the subjects improved in training with ME, and 76.2 % (n = 16) improved in training with MO on the MI test at 50-shot. These results demonstrate that task-to-task transfer learning is possible and could be a promising approach to building a user-friendly training protocol in MI-BCI., Competing Interests: Declaration of competing interest The authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF