208 results on '"Mountcastle, Jacquelyn"'
Search Results
2. Chromosome level genome assembly of the Etruscan shrew Suncus etruscus
- Author
-
Bukhman, Yury V., Meyer, Susanne, Chu, Li-Fang, Abueg, Linelle, Antosiewicz-Bourget, Jessica, Balacco, Jennifer, Brecht, Michael, Dinatale, Erica, Fedrigo, Olivier, Formenti, Giulio, Fungtammasan, Arkarachai, Giri, Swagarika Jaharlal, Hiller, Michael, Howe, Kerstin, Kihara, Daisuke, Mamott, Daniel, Mountcastle, Jacquelyn, Pelan, Sarah, Rabbani, Keon, Sims, Ying, Tracey, Alan, Wood, Jonathan M. D., Jarvis, Erich D., Thomson, James A., Chaisson, Mark J. P., and Stewart, Ron
- Published
- 2024
- Full Text
- View/download PDF
3. A draft human pangenome reference
- Author
-
Liao, Wen-Wei, Asri, Mobin, Ebler, Jana, Doerr, Daniel, Haukness, Marina, Hickey, Glenn, Lu, Shuangjia, Lucas, Julian K, Monlong, Jean, Abel, Haley J, Buonaiuto, Silvia, Chang, Xian H, Cheng, Haoyu, Chu, Justin, Colonna, Vincenza, Eizenga, Jordan M, Feng, Xiaowen, Fischer, Christian, Fulton, Robert S, Garg, Shilpa, Groza, Cristian, Guarracino, Andrea, Harvey, William T, Heumos, Simon, Howe, Kerstin, Jain, Miten, Lu, Tsung-Yu, Markello, Charles, Martin, Fergal J, Mitchell, Matthew W, Munson, Katherine M, Mwaniki, Moses Njagi, Novak, Adam M, Olsen, Hugh E, Pesout, Trevor, Porubsky, David, Prins, Pjotr, Sibbesen, Jonas A, Sirén, Jouni, Tomlinson, Chad, Villani, Flavia, Vollger, Mitchell R, Antonacci-Fulton, Lucinda L, Baid, Gunjan, Baker, Carl A, Belyaeva, Anastasiya, Billis, Konstantinos, Carroll, Andrew, Chang, Pi-Chuan, Cody, Sarah, Cook, Daniel E, Cook-Deegan, Robert M, Cornejo, Omar E, Diekhans, Mark, Ebert, Peter, Fairley, Susan, Fedrigo, Olivier, Felsenfeld, Adam L, Formenti, Giulio, Frankish, Adam, Gao, Yan, Garrison, Nanibaa’ A, Giron, Carlos Garcia, Green, Richard E, Haggerty, Leanne, Hoekzema, Kendra, Hourlier, Thibaut, Ji, Hanlee P, Kenny, Eimear E, Koenig, Barbara A, Kolesnikov, Alexey, Korbel, Jan O, Kordosky, Jennifer, Koren, Sergey, Lee, HoJoon, Lewis, Alexandra P, Magalhães, Hugo, Marco-Sola, Santiago, Marijon, Pierre, McCartney, Ann, McDaniel, Jennifer, Mountcastle, Jacquelyn, Nattestad, Maria, Nurk, Sergey, Olson, Nathan D, Popejoy, Alice B, Puiu, Daniela, Rautiainen, Mikko, Regier, Allison A, Rhie, Arang, Sacco, Samuel, Sanders, Ashley D, Schneider, Valerie A, Schultz, Baergen I, Shafin, Kishwar, Smith, Michael W, Sofia, Heidi J, Abou Tayoun, Ahmad N, Thibaud-Nissen, Françoise, and Tricomi, Francesca Floriana
- Subjects
Biological Sciences ,Genetics ,2.1 Biological and endogenous factors ,1.5 Resources and infrastructure (underpinning) ,Generic health relevance ,Humans ,Diploidy ,Genome ,Human ,Haplotypes ,Sequence Analysis ,DNA ,Genomics ,Reference Standards ,Cohort Studies ,Alleles ,Genetic Variation ,General Science & Technology - Abstract
Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.
- Published
- 2023
4. Gaps and complex structurally variant loci in phased genome assemblies
- Author
-
Porubsky, David, Vollger, Mitchell R, Harvey, William T, Rozanski, Allison N, Ebert, Peter, Hickey, Glenn, Hasenfeld, Patrick, Sanders, Ashley D, Stober, Catherine, Consortium, Human Pangenome Reference, Korbel, Jan O, Paten, Benedict, Marschall, Tobias, Eichler, Evan E, Abel, Haley J, Antonacci-Fulton, Lucinda L, Asri, Mobin, Baid, Gunjan, Baker, Carl A, Belyaeva, Anastasiya, Billis, Konstantinos, Bourque, Guillaume, Buonaiuto, Silvia, Carroll, Andrew, Chaisson, Mark JP, Chang, Pi-Chuan, Chang, Xian H, Cheng, Haoyu, Chu, Justin, Cody, Sarah, Colonna, Vincenza, Cook, Daniel E, Cook-Deegan, Robert M, Cornejo, Omar E, Diekhans, Mark, Doerr, Daniel, Ebler, Jana, Eizenga, Jordan M, Fairley, Susan, Fedrigo, Olivier, Felsenfeld, Adam L, Feng, Xiaowen, Fischer, Christian, Flicek, Paul, Formenti, Giulio, Frankish, Adam, Fulton, Robert S, Gao, Yan, Garg, Shilpa, Garrison, Erik, Garrison, Nanibaa’ A, Giron, Carlos Garcia, Green, Richard E, Groza, Cristian, Guarracino, Andrea, Haggerty, Leanne, Hall, Ira M, Haukness, Marina, Haussler, David, Heumos, Simon, Hoekzema, Kendra, Hourlier, Thibaut, Howe, Kerstin, Jain, Miten, Jarvis, Erich D, Ji, Hanlee P, Kenny, Eimear E, Koenig, Barbara A, Kolesnikov, Alexey, Kordosky, Jennifer, Koren, Sergey, Lee, HoJoon, Lewis, Alexandra P, Li, Heng, Liao, Wen-Wei, Lu, Shuangjia, Lu, Tsung-Yu, Lucas, Julian K, Magalhães, Hugo, Marco-Sola, Santiago, Marijon, Pierre, Markello, Charles, Martin, Fergal J, McCartney, Ann, McDaniel, Jennifer, Miga, Karen H, Mitchell, Matthew W, Monlong, Jean, Mountcastle, Jacquelyn, Munson, Katherine M, Mwaniki, Moses Njagi, Nattestad, Maria, Novak, Adam M, and Nurk, Sergey
- Subjects
Biological Sciences ,Bioinformatics and Computational Biology ,Genetics ,Human Genome ,Humans ,DNA ,Satellite ,Polymorphism ,Genetic ,Haplotypes ,Segmental Duplications ,Genomic ,Sequence Analysis ,DNA ,Human Pangenome Reference Consortium ,Medical and Health Sciences ,Bioinformatics - Abstract
There has been tremendous progress in phased genome assembly production by combining long-read data with parental information or linked-read data. Nevertheless, a typical phased genome assembly generated by trio-hifiasm still generates more than 140 gaps. We perform a detailed analysis of gaps, assembly breaks, and misorientations from 182 haploid assemblies obtained from a diversity panel of 77 unique human samples. Although trio-based approaches using HiFi are the current gold standard, chromosome-wide phasing accuracy is comparable when using Strand-seq instead of parental data. Importantly, the majority of assembly gaps cluster near the largest and most identical repeats (including segmental duplications [35.4%], satellite DNA [22.3%], or regions enriched in GA/AT-rich DNA [27.4%]). Consequently, 1513 protein-coding genes overlap assembly gaps in at least one haplotype, and 231 are recurrently disrupted or missing from five or more haplotypes. Furthermore, we estimate that 6-7 Mbp of DNA are misorientated per haplotype irrespective of whether trio-free or trio-based approaches are used. Of these misorientations, 81% correspond to bona fide large inversion polymorphisms in the human species, most of which are flanked by large segmental duplications. We also identify large-scale alignment discontinuities consistent with 11.9 Mbp of deletions and 161.4 Mbp of insertions per haploid genome. Although 99% of this variation corresponds to satellite DNA, we identify 230 regions of euchromatic DNA with frequent expansions and contractions, nearly half of which overlap with 197 protein-coding genes. Such variable and incompletely assembled regions are important targets for future algorithmic development and pangenome representation.
- Published
- 2023
5. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes.
- Author
-
Toh, Huishi, Yang, Chentao, Formenti, Giulio, Raja, Kalpana, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Zhang, Guojie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Jarvis, Erich, Thomson, James, Stewart, Ron, Chaisson, Mark, Bukhman, Yury, and Clegg, Dennis
- Subjects
Arvicanthis niloticus ,Diabetes ,Diurnal ,Genome ,Germline mutation rate ,Heterozygosity ,Long-read genome assembly ,Orthology ,Positive selection ,Retrogenes ,Segmental duplications ,Humans ,Animals ,Haplotypes ,Diabetes Mellitus ,Type 2 ,Murinae ,Genome ,Genomics - Abstract
BACKGROUND: The Nile rat (Avicanthis niloticus) is an important animal model because of its robust diurnal rhythm, a cone-rich retina, and a propensity to develop diet-induced diabetes without chemical or genetic modifications. A closer similarity to humans in these aspects, compared to the widely used Mus musculus and Rattus norvegicus models, holds the promise of better translation of research findings to the clinic. RESULTS: We report a 2.5 Gb, chromosome-level reference genome assembly with fully resolved parental haplotypes, generated with the Vertebrate Genomes Project (VGP). The assembly is highly contiguous, with contig N50 of 11.1 Mb, scaffold N50 of 83 Mb, and 95.2% of the sequence assigned to chromosomes. We used a novel workflow to identify 3613 segmental duplications and quantify duplicated genes. Comparative analyses revealed unique genomic features of the Nile rat, including some that affect genes associated with type 2 diabetes and metabolic dysfunctions. We discuss 14 genes that are heterozygous in the Nile rat or highly diverged from the house mouse. CONCLUSIONS: Our findings reflect the exceptional level of genomic resolution present in this assembly, which will greatly expand the potential of the Nile rat as a model organism.
- Published
- 2022
6. Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks
- Author
-
Sendell-Price, Ashley T., Tulenko, Frank J., Pettersson, Mats, Kang, Du, Montandon, Margo, Winkler, Sylke, Kulb, Kathleen, Naylor, Gavin P., Phillippy, Adam, Fedrigo, Olivier, Mountcastle, Jacquelyn, Balacco, Jennifer R., Dutra, Amalia, Dale, Rebecca E., Haase, Bettina, Jarvis, Erich D., Myers, Gene, Burgess, Shawn M., Currie, Peter D., Andersson, Leif, and Schartl, Manfred
- Published
- 2023
- Full Text
- View/download PDF
7. The admixed brushtail possum genome reveals invasion history in New Zealand and novel imprinted genes
- Author
-
Bond, Donna M., Ortega-Recalde, Oscar, Laird, Melanie K., Hayakawa, Takashi, Richardson, Kyle S., Reese, Finlay.C. B., Kyle, Bruce, McIsaac-Williams, Brooke E., Robertson, Bruce C., van Heezik, Yolanda, Adams, Amy L., Chang, Wei-Shan, Haase, Bettina, Mountcastle, Jacquelyn, Driller, Maximilian, Collins, Joanna, Howe, Kerstin, Go, Yasuhiro, Thibaud-Nissen, Francoise, Lister, Nicholas C., Waters, Paul D., Fedrigo, Olivier, Jarvis, Erich D., Gemmell, Neil J., Alexander, Alana, and Hore, Timothy A.
- Published
- 2023
- Full Text
- View/download PDF
8. The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Published
- 2023
- Full Text
- View/download PDF
9. Reference genome and demographic history of the most endangered marine mammal, the vaquita
- Author
-
Morin, Phillip A, Archer, Frederick I, Avila, Catherine D, Balacco, Jennifer R, Bukhman, Yury V, Chow, William, Fedrigo, Olivier, Formenti, Giulio, Fronczek, Julie A, Fungtammasan, Arkarachai, Gulland, Frances MD, Haase, Bettina, Heide‐Jorgensen, Mads Peter, Houck, Marlys L, Howe, Kerstin, Misuraca, Ann C, Mountcastle, Jacquelyn, Musser, Whitney, Paez, Sadye, Pelan, Sarah, Phillippy, Adam, Rhie, Arang, Robinson, Jacqueline, Rojas‐Bracho, Lorenzo, Rowles, Teri K, Ryder, Oliver A, Smith, Cynthia R, Stevenson, Sacha, Taylor, Barbara L, Teilmann, Jonas, Torrance, James, Wells, Randall S, Westgate, Andrew J, and Jarvis, Erich D
- Subjects
Genetics ,Human Genome ,2.1 Biological and endogenous factors ,Aetiology ,Generic health relevance ,Life on Land ,Animals ,Chromosomes ,Endangered Species ,Female ,Genetics ,Population ,Genome ,Phocoena ,Conservation genomics ,genome diversity ,historical demography ,Phocoena sinus ,porpoise ,Vertebrate Genomes Project ,Biological Sciences ,Evolutionary Biology - Abstract
The vaquita is the most critically endangered marine mammal, with fewer than 19 remaining in the wild. First described in 1958, the vaquita has been in rapid decline for more than 20 years resulting from inadvertent deaths due to the increasing use of large-mesh gillnets. To understand the evolutionary and demographic history of the vaquita, we used combined long-read sequencing and long-range scaffolding methods with long- and short-read RNA sequencing to generate a near error-free annotated reference genome assembly from cell lines derived from a female individual. The genome assembly consists of 99.92% of the assembled sequence contained in 21 nearly gapless chromosome-length autosome scaffolds and the X-chromosome scaffold, with a scaffold N50 of 115 Mb. Genome-wide heterozygosity is the lowest (0.01%) of any mammalian species analysed to date, but heterozygosity is evenly distributed across the chromosomes, consistent with long-term small population size at genetic equilibrium, rather than low diversity resulting from a recent population bottleneck or inbreeding. Historical demography of the vaquita indicates long-term population stability at less than 5,000 (Ne) for over 200,000 years. Together, these analyses indicate that the vaquita genome has had ample opportunity to purge highly deleterious alleles and potentially maintain diversity necessary for population health.
- Published
- 2021
10. Platypus and echidna genomes reveal mammalian biology and evolution
- Author
-
Zhou, Yang, Shearwin-Whyatt, Linda, Li, Jing, Song, Zhenzhen, Hayakawa, Takashi, Stevens, David, Fenelon, Jane C, Peel, Emma, Cheng, Yuanyuan, Pajpach, Filip, Bradley, Natasha, Suzuki, Hikoyu, Nikaido, Masato, Damas, Joana, Daish, Tasman, Perry, Tahlia, Zhu, Zexian, Geng, Yuncong, Rhie, Arang, Sims, Ying, Wood, Jonathan, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Li, Qiye, Yang, Huanming, Wang, Jian, Johnston, Stephen D, Phillippy, Adam M, Howe, Kerstin, Jarvis, Erich D, Ryder, Oliver A, Kaessmann, Henrik, Donnelly, Peter, Korlach, Jonas, Lewin, Harris A, Graves, Jennifer, Belov, Katherine, Renfree, Marilyn B, Grutzner, Frank, Zhou, Qi, and Zhang, Guojie
- Subjects
Genetics ,Human Genome ,Biotechnology ,1.1 Normal biological development and functioning ,Underpinning research ,Generic health relevance ,Animals ,Biological Evolution ,Female ,Genome ,Male ,Mammals ,Phylogeny ,Platypus ,Sex Chromosomes ,Tachyglossidae ,Base Pairing ,Base Sequence ,Cattle ,Chromosome Mapping ,Chromosomes ,Mammalian ,DNA ,Evolution ,Molecular ,Molecular Sequence Data ,Mutation ,Recombination ,Genetic ,X Chromosome ,Y Chromosome ,General Science & Technology - Abstract
Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.
- Published
- 2021
11. Towards complete and error-free genome assemblies of all vertebrate species
- Author
-
Rhie, Arang, McCarthy, Shane A, Fedrigo, Olivier, Damas, Joana, Formenti, Giulio, Koren, Sergey, Uliano-Silva, Marcela, Chow, William, Fungtammasan, Arkarachai, Kim, Juwan, Lee, Chul, Ko, Byung June, Chaisson, Mark, Gedman, Gregory L, Cantin, Lindsey J, Thibaud-Nissen, Francoise, Haggerty, Leanne, Bista, Iliana, Smith, Michelle, Haase, Bettina, Mountcastle, Jacquelyn, Winkler, Sylke, Paez, Sadye, Howard, Jason, Vernes, Sonja C, Lama, Tanya M, Grutzner, Frank, Warren, Wesley C, Balakrishnan, Christopher N, Burt, Dave, George, Julia M, Biegler, Matthew T, Iorns, David, Digby, Andrew, Eason, Daryl, Robertson, Bruce, Edwards, Taylor, Wilkinson, Mark, Turner, George, Meyer, Axel, Kautt, Andreas F, Franchini, Paolo, Detrich, H William, Svardal, Hannes, Wagner, Maximilian, Naylor, Gavin JP, Pippel, Martin, Malinsky, Milan, Mooney, Mark, Simbirsky, Maria, Hannigan, Brett T, Pesout, Trevor, Houck, Marlys, Misuraca, Ann, Kingan, Sarah B, Hall, Richard, Kronenberg, Zev, Sović, Ivan, Dunn, Christopher, Ning, Zemin, Hastie, Alex, Lee, Joyce, Selvaraj, Siddarth, Green, Richard E, Putnam, Nicholas H, Gut, Ivo, Ghurye, Jay, Garrison, Erik, Sims, Ying, Collins, Joanna, Pelan, Sarah, Torrance, James, Tracey, Alan, Wood, Jonathan, Dagnew, Robel E, Guan, Dengfeng, London, Sarah E, Clayton, David F, Mello, Claudio V, Friedrich, Samantha R, Lovell, Peter V, Osipova, Ekaterina, Al-Ajli, Farooq O, Secomandi, Simona, Kim, Heebal, Theofanopoulou, Constantina, Hiller, Michael, Zhou, Yang, Harris, Robert S, Makova, Kateryna D, Medvedev, Paul, Hoffman, Jinna, Masterson, Patrick, Clark, Karen, Martin, Fergal, Howe, Kevin, Flicek, Paul, Walenz, Brian P, Kwak, Woori, and Clawson, Hiram
- Subjects
Biological Sciences ,Bioinformatics and Computational Biology ,Genetics ,Human Genome ,Biotechnology ,Generic health relevance ,Animals ,Birds ,Gene Library ,Genome ,Genome Size ,Genome ,Mitochondrial ,Genomics ,Haplotypes ,High-Throughput Nucleotide Sequencing ,Molecular Sequence Annotation ,Sequence Alignment ,Sequence Analysis ,DNA ,Sex Chromosomes ,Vertebrates ,General Science & Technology - Abstract
High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
- Published
- 2021
12. Reference genome and demographic history of the most endangered marine mammal, the vaquita
- Author
-
Morin, Phillip A, Archer, Frederick I, Avila, Catherine D, Balacco, Jennifer R, Bukhman, Yury V, Chow, William, Fedrigo, Olivier, Formenti, Giulio, Fronczek, Julie A, Fungtammasan, Arkarachai, Gulland, Frances MD, Haase, Bettina, Heide-Jorgensen, Mads Peter, Houck, Marlys L, Howe, Kerstin, Misuraca, Ann C, Mountcastle, Jacquelyn, Musser, Whitney, Paez, Sadye, Pelan, Sarah, Phillippy, Adam, Rhie, Arang, Robinson, Jacqueline, Rojas-Bracho, Lorenzo, Rowles, Teri K, Ryder, Oliver A, Smith, Cynthia R, Stevenson, Sacha, Taylor, Barbara L, Teilmann, Jonas, Torrance, James, Wells, Randall S, Westgate, Andrew, and Jarvis, Erich D
- Subjects
Human Genome ,Genetics ,Generic health relevance ,Life on Land - Abstract
AbstractThe vaquita is the most critically endangered marine mammal, with fewer than 19 remaining in the wild. First described in 1958, the vaquita has been in rapid decline resulting from inadvertent deaths due to the increasing use of large-mesh gillnets for more than 20 years. To understand the evolutionary and demographic history of the vaquita, we used combined long-read sequencing and long-range scaffolding methods with long- and short-read RNA sequencing to generate a near error-free annotated reference genome assembly from cell lines derived from a female individual. The genome assembly consists of 99.92% of the assembled sequence contained in 21 nearly gapless chromosome-length autosome scaffolds and the X-chromosome scaffold, with a scaffold N50 of 115 Mb. Genome-wide heterozygosity is the lowest (0.01%) of any mammalian species analyzed to date, but heterozygosity is evenly distributed across the chromosomes, consistent with long-term small population size at genetic equilibrium, rather than low diversity resulting from a recent population bottleneck or inbreeding. Historical demography of the vaquita indicates long-term population stability at less than 5000 (Ne) for over 200,000 years. Together, these analyses indicate that the vaquita genome has had ample opportunity to purge highly deleterious alleles and potentially maintain diversity necessary for population health.
- Published
- 2020
13. Pan-conserved segment tags identify ultra-conserved sequences across assemblies in the human pangenome
- Author
-
Liao, Wen-Wei, Asri, Mobin, Ebler, Jana, Doerr, Daniel, Haukness, Marina, Hickey, Glenn, Lu, Shuangjia, Lucas, Julian K., Monlong, Jean, Abel, Haley J., Buonaiuto, Silvia, Chang, Xian H., Cheng, Haoyu, Chu, Justin, Colonna, Vincenza, Eizenga, Jordan M., Feng, Xiaowen, Fischer, Christian, Fulton, Robert S., Garg, Shilpa, Groza, Cristian, Guarracino, Andrea, Harvey, William T., Heumos, Simon, Howe, Kerstin, Jain, Miten, Lu, Tsung-Yu, Markello, Charles, Martin, Fergal J., Mitchell, Matthew W., Munson, Katherine M., Mwaniki, Moses Njagi, Novak, Adam M., Olsen, Hugh E., Pesout, Trevor, Porubsky, David, Prins, Pjotr, Sibbesen, Jonas A., Tomlinson, Chad, Villani, Flavia, Vollger, Mitchell R., Antonacci-Fulton, Lucinda L., Baid, Gunjan, Baker, Carl A., Belyaeva, Anastasiya, Billis, Konstantinos, Carroll, Andrew, Chang, Pi-Chuan, Cody, Sarah, Cook, Daniel E., Cornejo, Omar E., Diekhans, Mark, Ebert, Peter, Fairley, Susan, Fedrigo, Olivier, Felsenfeld, Adam L., Formenti, Giulio, Frankish, Adam, Gao, Yan, Giron, Carlos Garcia, Green, Richard E., Haggerty, Leanne, Hoekzema, Kendra, Hourlier, Thibaut, Ji, Hanlee P., Kolesnikov, Alexey, Korbel, Jan O., Kordosky, Jennifer, Lee, HoJoon, Lewis, Alexandra P., Magalhães, Hugo, Marco-Sola, Santiago, Marijon, Pierre, McDaniel, Jennifer, Mountcastle, Jacquelyn, Nattestad, Maria, Olson, Nathan D., Puiu, Daniela, Regier, Allison A., Rhie, Arang, Sacco, Samuel, Sanders, Ashley D., Schneider, Valerie A., Schultz, Baergen I., Shafin, Kishwar, Sirén, Jouni, Smith, Michael W., Sofia, Heidi J., Abou Tayoun, Ahmad N., Thibaud-Nissen, Françoise, Tricomi, Francesca Floriana, Wagner, Justin, Wood, Jonathan M.D., Zimin, Aleksey V., Popejoy, Alice B., Bourque, Guillaume, Chaisson, Mark J.P., Flicek, Paul, Phillippy, Adam M., Zook, Justin M., Eichler, Evan E., Haussler, David, Jarvis, Erich D., Miga, Karen H., Wang, Ting, Garrison, Erik, Marschall, Tobias, Hall, Ira, Li, Heng, Paten, Benedict, Greer, Stephanie U., Pavlichin, Dmitri S., Zhou, Bo, Urban, Alexander E., and Weissman, Tsachy
- Published
- 2023
- Full Text
- View/download PDF
14. An improved germline genome assembly for the sea lamprey Petromyzon marinus illuminates the evolution of germline-specific chromosomes
- Author
-
Timoshevskaya, Nataliya, Eşkut, Kaan İ., Timoshevskiy, Vladimir A., Robb, Sofia M.C., Holt, Carson, Hess, Jon E., Parker, Hugo J., Baker, Cindy F., Miller, Allison K., Saraceno, Cody, Yandell, Mark, Krumlauf, Robb, Narum, Shawn R., Lampman, Ralph T., Gemmell, Neil J., Mountcastle, Jacquelyn, Haase, Bettina, Balacco, Jennifer R., Formenti, Giulio, Pelan, Sarah, Sims, Ying, Howe, Kerstin, Fedrigo, Olivier, Jarvis, Erich D., and Smith, Jeramiah J.
- Published
- 2023
- Full Text
- View/download PDF
15. A chromosome-level reference genome and pangenome for barn swallow population genomics
- Author
-
Secomandi, Simona, Gallo, Guido R., Sozzoni, Marcella, Iannucci, Alessio, Galati, Elena, Abueg, Linelle, Balacco, Jennifer, Caprioli, Manuela, Chow, William, Ciofi, Claudio, Collins, Joanna, Fedrigo, Olivier, Ferretti, Luca, Fungtammasan, Arkarachai, Haase, Bettina, Howe, Kerstin, Kwak, Woori, Lombardo, Gianluca, Masterson, Patrick, Messina, Graziella, Møller, Anders P., Mountcastle, Jacquelyn, Mousseau, Timothy A., Ferrer Obiol, Joan, Olivieri, Anna, Rhie, Arang, Rubolini, Diego, Saclier, Marielle, Stanyon, Roscoe, Stucki, David, Thibaud-Nissen, Françoise, Torrance, James, Torroni, Antonio, Weber, Kristina, Ambrosini, Roberto, Bonisoli-Alquati, Andrea, Jarvis, Erich D., Gianfranceschi, Luca, and Formenti, Giulio
- Published
- 2023
- Full Text
- View/download PDF
16. A Complete Assembly and Annotation of the American Shad Genome Yields Insights into the Origins of Diadromy.
- Author
-
Velotta, Jonathan P, Iqbal, Azwad R, Glenn, Emma S, Franckowiak, Ryan P, Formenti, Giulio, Mountcastle, Jacquelyn, Balacco, Jennifer, Tracey, Alan, Sims, Ying, Howe, Kerstin, Fedrigo, Olivier, Jarvis, Erich D, and Therkildsen, Nina O
- Subjects
LIFE history theory ,NATURAL selection ,MARINE biology ,WHOLE genome sequencing ,COMPARATIVE genomics - Abstract
Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissim a), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance. Among the Clupeiformes, there is a large amount of variation in salinity habitat and many independent instances of salinity boundary crossing, making this taxon well-suited for studies of mechanisms underlying ecological transitions. Our initial analysis of the American shad genome reveals several unique insights for future study including: (i) that genomic repeat content is among the highest of any fish studied to date; (ii) that genome-wide heterozygosity is low and may be associated with range-wide population collapses since the 19th century; and (iii) that natural selection has acted on the branch leading to the diadromous genus Alosa. Our analysis suggests that functional targets of natural selection may include diet, particularly lipid metabolism, as well as cytoskeletal remodeling and sensing of salinity changes. Natural selection on these functions is expected in the transition from a marine to diadromous life history, particularly in the tolerance of nutrient- and ion-devoid freshwater. We anticipate that our assembly of the American shad genome will be used to test future hypotheses on adaptation to novel environments, the origins of diadromy, and adaptive variation in life history strategies, among others. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF
17. Distinct patterns of genetic variation at low-recombining genomic regions represent haplotype structure.
- Author
-
Ishigohoka, Jun, Bascón-Cardozo, Karen, Bours, Andrea, Fuß, Janina, Rhie, Arang, Mountcastle, Jacquelyn, Haase, Bettina, Chow, William, Collins, Joanna, Howe, Kerstin, Uliano-Silva, Marcela, Fedrigo, Olivier, Jarvis, Erich D, Pérez-Tris, Javier, Illera, Juan Carlos, and Liedvogel, Miriam
- Subjects
GENETIC variation ,HAPLOTYPES ,GENOMICS ,GENOMES ,DATA mapping - Abstract
Genomic regions sometimes show patterns of genetic variation distinct from the genome-wide population structure. Such deviations have often been interpreted to represent effects of selection. However, systematic investigation of whether and how non-selective factors, such as recombination rates, can affect distinct patterns has been limited. Here, we associate distinct patterns of genetic variation with reduced recombination rates in a songbird, the Eurasian blackcap (Sylvia atricapilla), using a new reference genome assembly, whole-genome resequencing data and recombination maps. We find that distinct patterns of genetic variation reflect haplotype structure at genomic regions with different prevalence of reduced recombination rate across populations. At low-recombining regions shared in most populations, distinct patterns reflect conspicuous haplotypes segregating in multiple populations. At low-recombining regions found only in a few populations, distinct patterns represent variance among cryptic haplotypes within the low-recombining populations. With simulations, we confirm that these distinct patterns evolve neutrally by reduced recombination rate, on which the effects of selection can be overlaid. Our results highlight that distinct patterns of genetic variation can emerge through evolutionary reduction of local recombination rate. The recombination landscape as an evolvable trait therefore plays an important role determining the heterogeneous distribution of genetic variation along the genome. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
18. Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9
- Author
-
Biegler, Matthew T., Fedrigo, Olivier, Collier, Paul, Mountcastle, Jacquelyn, Haase, Bettina, Tilgner, Hagen U., and Jarvis, Erich D.
- Published
- 2022
- Full Text
- View/download PDF
19. Evolutionary and biomedical insights from a marmoset diploid genome assembly
- Author
-
Yang, Chentao, Zhou, Yang, Marcus, Stephanie, Formenti, Giulio, Bergeron, Lucie A., Song, Zhenzhen, Bi, Xupeng, Bergman, Juraj, Rousselle, Marjolaine Marie C., Zhou, Chengran, Zhou, Long, Deng, Yuan, Fang, Miaoquan, Xie, Duo, Zhu, Yuanzhen, Tan, Shangjin, Mountcastle, Jacquelyn, Haase, Bettina, Balacco, Jennifer, Wood, Jonathan, Chow, William, Rhie, Arang, Pippel, Martin, Fabiszak, Margaret M., Koren, Sergey, Fedrigo, Olivier, Freiwald, Winrich A., Howe, Kerstin, Yang, Huanming, Phillippy, Adam M., Schierup, Mikkel Heide, Jarvis, Erich D., and Zhang, Guojie
- Published
- 2021
- Full Text
- View/download PDF
20. Pan-conserved segment tags identify ultra-conserved sequences across assemblies in the human pangenome
- Author
-
Lee, HoJoon, primary, Greer, Stephanie U., additional, Pavlichin, Dmitri S., additional, Zhou, Bo, additional, Urban, Alexander E., additional, Weissman, Tsachy, additional, Ji, Hanlee P., additional, Liao, Wen-Wei, additional, Asri, Mobin, additional, Ebler, Jana, additional, Doerr, Daniel, additional, Haukness, Marina, additional, Hickey, Glenn, additional, Lu, Shuangjia, additional, Lucas, Julian K., additional, Monlong, Jean, additional, Abel, Haley J., additional, Buonaiuto, Silvia, additional, Chang, Xian H., additional, Cheng, Haoyu, additional, Chu, Justin, additional, Colonna, Vincenza, additional, Eizenga, Jordan M., additional, Feng, Xiaowen, additional, Fischer, Christian, additional, Fulton, Robert S., additional, Garg, Shilpa, additional, Groza, Cristian, additional, Guarracino, Andrea, additional, Harvey, William T., additional, Heumos, Simon, additional, Howe, Kerstin, additional, Jain, Miten, additional, Lu, Tsung-Yu, additional, Markello, Charles, additional, Martin, Fergal J., additional, Mitchell, Matthew W., additional, Munson, Katherine M., additional, Mwaniki, Moses Njagi, additional, Novak, Adam M., additional, Olsen, Hugh E., additional, Pesout, Trevor, additional, Porubsky, David, additional, Prins, Pjotr, additional, Sibbesen, Jonas A., additional, Tomlinson, Chad, additional, Villani, Flavia, additional, Vollger, Mitchell R., additional, Antonacci-Fulton, Lucinda L., additional, Baid, Gunjan, additional, Baker, Carl A., additional, Belyaeva, Anastasiya, additional, Billis, Konstantinos, additional, Carroll, Andrew, additional, Chang, Pi-Chuan, additional, Cody, Sarah, additional, Cook, Daniel E., additional, Cornejo, Omar E., additional, Diekhans, Mark, additional, Ebert, Peter, additional, Fairley, Susan, additional, Fedrigo, Olivier, additional, Felsenfeld, Adam L., additional, Formenti, Giulio, additional, Frankish, Adam, additional, Gao, Yan, additional, Giron, Carlos Garcia, additional, Green, Richard E., additional, Haggerty, Leanne, additional, Hoekzema, Kendra, additional, Hourlier, Thibaut, additional, Kolesnikov, Alexey, additional, Korbel, Jan O., additional, Kordosky, Jennifer, additional, Lee, HoJoon, additional, Lewis, Alexandra P., additional, Magalhães, Hugo, additional, Marco-Sola, Santiago, additional, Marijon, Pierre, additional, McDaniel, Jennifer, additional, Mountcastle, Jacquelyn, additional, Nattestad, Maria, additional, Olson, Nathan D., additional, Puiu, Daniela, additional, Regier, Allison A., additional, Rhie, Arang, additional, Sacco, Samuel, additional, Sanders, Ashley D., additional, Schneider, Valerie A., additional, Schultz, Baergen I., additional, Shafin, Kishwar, additional, Sirén, Jouni, additional, Smith, Michael W., additional, Sofia, Heidi J., additional, Abou Tayoun, Ahmad N., additional, Thibaud-Nissen, Françoise, additional, Tricomi, Francesca Floriana, additional, Wagner, Justin, additional, Wood, Jonathan M.D., additional, Zimin, Aleksey V., additional, Popejoy, Alice B., additional, Bourque, Guillaume, additional, Chaisson, Mark J.P., additional, Flicek, Paul, additional, Phillippy, Adam M., additional, Zook, Justin M., additional, Eichler, Evan E., additional, Haussler, David, additional, Jarvis, Erich D., additional, Miga, Karen H., additional, Wang, Ting, additional, Garrison, Erik, additional, Marschall, Tobias, additional, Hall, Ira, additional, Li, Heng, additional, and Paten, Benedict, additional
- Published
- 2023
- Full Text
- View/download PDF
21. A role for vocal rhythm in avian speciation
- Author
-
Kirschel, Alexander, primary, Sebastianelli, Matteo, additional, Lukhele, Sifiso, additional, Secomandi, Simona, additional, de Souza, Stacey, additional, Haase, Bettina, additional, Moysi, Michaella, additional, Nikiforou, Christos, additional, Hutfluss, Alexander, additional, Mountcastle, Jacquelyn, additional, Balacco, Jennifer, additional, Pelan, Sarah, additional, Chow, William, additional, Fedrigo, Olivier, additional, Downs, Colleen, additional, Monadjem, Ara, additional, Dingemanse, Niels, additional, Jarvis, Erich, additional, Brelsford, Alan, additional, and vonHoldt, Bridgett, additional
- Published
- 2023
- Full Text
- View/download PDF
22. Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories
- Author
-
Bentley, Blair P., Carrasco-Valenzuela, Tomas, Ramos, Elisa K. S., Pawar, Harvinder, Arantes, Larissa Souza, Alexander, Alana, Banerjee, Shreya M., Masterson, Patrick, Kuhlwilm, Martin, Pippel, Martin, Mountcastle, Jacquelyn, Haase, Bettina, Uliano-Silva, Marcela, Formenti, Giulio, Howe, Kerstin, Chow, William, Tracey, Alan, Sims, Ying, Pelan, Sarah, Wood, Jonathan, Yetsko, Kelsey, Perrault, Justin R., Stewart, Kelly, Benson, Scott R., Levy, Yaniv, V. Todd, Erica, Shaffer, H. Bradley, Scott, Peter, Henen, Brian T., Murphy, Robert W., Mohr, David W., Scott, Alan F., Duffy, David J., Gemmell, Neil J., Suh, Alexander, Winkler, Sylke, Thibaud-Nissen, Francoise, Nery, Mariana F., Marques-Bonet, Tomas, Antunes, Agostinho, Tikochinski, Yaron, Dutton, Peter H., Fedrigo, Olivier, Myers, Eugene W., Jarvis, Erich D., Mazzoni, Camila J., Komoroske, Lisa M., Bentley, Blair P., Carrasco-Valenzuela, Tomas, Ramos, Elisa K. S., Pawar, Harvinder, Arantes, Larissa Souza, Alexander, Alana, Banerjee, Shreya M., Masterson, Patrick, Kuhlwilm, Martin, Pippel, Martin, Mountcastle, Jacquelyn, Haase, Bettina, Uliano-Silva, Marcela, Formenti, Giulio, Howe, Kerstin, Chow, William, Tracey, Alan, Sims, Ying, Pelan, Sarah, Wood, Jonathan, Yetsko, Kelsey, Perrault, Justin R., Stewart, Kelly, Benson, Scott R., Levy, Yaniv, V. Todd, Erica, Shaffer, H. Bradley, Scott, Peter, Henen, Brian T., Murphy, Robert W., Mohr, David W., Scott, Alan F., Duffy, David J., Gemmell, Neil J., Suh, Alexander, Winkler, Sylke, Thibaud-Nissen, Francoise, Nery, Mariana F., Marques-Bonet, Tomas, Antunes, Agostinho, Tikochinski, Yaron, Dutton, Peter H., Fedrigo, Olivier, Myers, Eugene W., Jarvis, Erich D., Mazzoni, Camila J., and Komoroske, Lisa M.
- Abstract
Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.
- Published
- 2023
- Full Text
- View/download PDF
23. A draft human pangenome reference
- Author
-
Liao, Wen Wei, Asri, Mobin, Ebler, Jana, Doerr, Daniel, Haukness, Marina, Hickey, Glenn, Lu, Shuangjia, Lucas, Julian K., Monlong, Jean, Abel, Haley J., Buonaiuto, Silvia, Chang, Xian H., Cheng, Haoyu, Chu, Justin, Colonna, Vincenza, Eizenga, Jordan M., Feng, Xiaowen, Fischer, Christian, Fulton, Robert S., Garg, Shilpa, Groza, Cristian, Guarracino, Andrea, Harvey, William T., Heumos, Simon, Howe, Kerstin, Jain, Miten, Lu, Tsung Yu, Markello, Charles, Martin, Fergal J., Mitchell, Matthew W., Munson, Katherine M., Mwaniki, Moses Njagi, Novak, Adam M., Olsen, Hugh E., Pesout, Trevor, Porubsky, David, Prins, Pjotr, Sibbesen, Jonas A., Sirén, Jouni, Tomlinson, Chad, Villani, Flavia, Vollger, Mitchell R., Antonacci-Fulton, Lucinda L., Baid, Gunjan, Baker, Carl A., Belyaeva, Anastasiya, Billis, Konstantinos, Carroll, Andrew, Chang, Pi Chuan, Cody, Sarah, Cook, Daniel E., Cook-Deegan, Robert M., Cornejo, Omar E., Diekhans, Mark, Ebert, Peter, Fairley, Susan, Fedrigo, Olivier, Felsenfeld, Adam L., Formenti, Giulio, Frankish, Adam, Gao, Yan, Garrison, Nanibaa’ A., Giron, Carlos Garcia, Green, Richard E., Haggerty, Leanne, Hoekzema, Kendra, Hourlier, Thibaut, Ji, Hanlee P., Kenny, Eimear E., Koenig, Barbara A., Kolesnikov, Alexey, Korbel, Jan O., Kordosky, Jennifer, Koren, Sergey, Lee, Ho Joon, Lewis, Alexandra P., Magalhães, Hugo, Marco-Sola, Santiago, Marijon, Pierre, McCartney, Ann, McDaniel, Jennifer, Mountcastle, Jacquelyn, Nattestad, Maria, Nurk, Sergey, Olson, Nathan D., Popejoy, Alice B., Puiu, Daniela, Rautiainen, Mikko, Regier, Allison A., Rhie, Arang, Sacco, Samuel, Sanders, Ashley D., Schneider, Valerie A., Schultz, Baergen I., Shafin, Kishwar, Smith, Michael W., Sofia, Heidi J., Abou Tayoun, Ahmad N., Thibaud-Nissen, Françoise, Tricomi, Francesca Floriana, Wagner, Justin, Walenz, Brian, Wood, Jonathan M.D., Zimin, Aleksey V., Bourque, Guillaume, Chaisson, Mark J.P., Flicek, Paul, Phillippy, Adam M., Zook, Justin M., Eichler, Evan E., Haussler, David, Wang, Ting, Jarvis, Erich D., Miga, Karen H., Garrison, Erik, Marschall, Tobias, Hall, Ira M., Li, Heng, Paten, Benedict, Liao, Wen Wei, Asri, Mobin, Ebler, Jana, Doerr, Daniel, Haukness, Marina, Hickey, Glenn, Lu, Shuangjia, Lucas, Julian K., Monlong, Jean, Abel, Haley J., Buonaiuto, Silvia, Chang, Xian H., Cheng, Haoyu, Chu, Justin, Colonna, Vincenza, Eizenga, Jordan M., Feng, Xiaowen, Fischer, Christian, Fulton, Robert S., Garg, Shilpa, Groza, Cristian, Guarracino, Andrea, Harvey, William T., Heumos, Simon, Howe, Kerstin, Jain, Miten, Lu, Tsung Yu, Markello, Charles, Martin, Fergal J., Mitchell, Matthew W., Munson, Katherine M., Mwaniki, Moses Njagi, Novak, Adam M., Olsen, Hugh E., Pesout, Trevor, Porubsky, David, Prins, Pjotr, Sibbesen, Jonas A., Sirén, Jouni, Tomlinson, Chad, Villani, Flavia, Vollger, Mitchell R., Antonacci-Fulton, Lucinda L., Baid, Gunjan, Baker, Carl A., Belyaeva, Anastasiya, Billis, Konstantinos, Carroll, Andrew, Chang, Pi Chuan, Cody, Sarah, Cook, Daniel E., Cook-Deegan, Robert M., Cornejo, Omar E., Diekhans, Mark, Ebert, Peter, Fairley, Susan, Fedrigo, Olivier, Felsenfeld, Adam L., Formenti, Giulio, Frankish, Adam, Gao, Yan, Garrison, Nanibaa’ A., Giron, Carlos Garcia, Green, Richard E., Haggerty, Leanne, Hoekzema, Kendra, Hourlier, Thibaut, Ji, Hanlee P., Kenny, Eimear E., Koenig, Barbara A., Kolesnikov, Alexey, Korbel, Jan O., Kordosky, Jennifer, Koren, Sergey, Lee, Ho Joon, Lewis, Alexandra P., Magalhães, Hugo, Marco-Sola, Santiago, Marijon, Pierre, McCartney, Ann, McDaniel, Jennifer, Mountcastle, Jacquelyn, Nattestad, Maria, Nurk, Sergey, Olson, Nathan D., Popejoy, Alice B., Puiu, Daniela, Rautiainen, Mikko, Regier, Allison A., Rhie, Arang, Sacco, Samuel, Sanders, Ashley D., Schneider, Valerie A., Schultz, Baergen I., Shafin, Kishwar, Smith, Michael W., Sofia, Heidi J., Abou Tayoun, Ahmad N., Thibaud-Nissen, Françoise, Tricomi, Francesca Floriana, Wagner, Justin, Walenz, Brian, Wood, Jonathan M.D., Zimin, Aleksey V., Bourque, Guillaume, Chaisson, Mark J.P., Flicek, Paul, Phillippy, Adam M., Zook, Justin M., Eichler, Evan E., Haussler, David, Wang, Ting, Jarvis, Erich D., Miga, Karen H., Garrison, Erik, Marschall, Tobias, Hall, Ira M., Li, Heng, and Paten, Benedict
- Abstract
Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals 1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.
- Published
- 2023
24. Fourth Report on Chicken Genes and Chromosomes 2022
- Author
-
Smith, Jacqueline, Alfieri, James M., Anthony, Nick, Arensburger, Peter, Athrey, Giridhar N., Balacco, Jennifer, Balic, Adam, Bardou, Philippe, Barela, Paul, Bigot, Yves, Blackmon, Heath, Borodin, Pavel M., Carroll, Rachel, Casono, Meya C., Charles, Mathieu, Cheng, Hans, Chiodi, Maddie, Cigan, Lacey, Coghill, Lyndon M., Crooijmans, Richard, Das, Neelabja, Davey, Sean, Davidian, Asya, Degalez, Fabien, Dekkers, Jack M., Derks, Martijn, Diack, Abigail B., Djikeng, Appolinaire, Drechsler, Yvonne, Dyomin, Alexander, Fedrigo, Olivier, Fiddaman, Steven R., Formenti, Giulio, Frantz, Laurent A.F., Fulton, Janet E., Gaginskaya, Elena, Galkina, Svetlana, Gallardo, Rodrigo A., Geibel, Johannes, Gheyas, Almas A., Godinez, Cyrill John P., Goodell, Ashton, Graves, Jennifer A.M., Griffin, Darren K., Haase, Bettina, Han, Jian Lin, Hanotte, Olivier, Henderson, Lindsay J., Hou, Zhuo Cheng, Howe, Kerstin, Huynh, Lan, Ilatsia, Evans, Jarvis, Erich D., Johnson, Sarah M., Kaufman, Jim, Kelly, Terra, Kemp, Steve, Kern, Colin, Keroack, Jacob H., Klopp, Christophe, Lagarrigue, Sandrine, Lamont, Susan J., Lange, Margaret, Lanke, Anika, Larkin, Denis M., Larson, Greger, Layos, John King N., Lebrasseur, Ophélie, Malinovskaya, Lyubov P., Martin, Rebecca J., Cerezo, Maria Luisa Martin, Mason, Andrew S., McCarthy, Fiona M., McGrew, Michael J., Mountcastle, Jacquelyn, Muhonja, Christine Kamidi, Muir, William, Muret, Kévin, Murphy, Terence D., Ng'ang'a, Ismael, Nishibori, Masahide, O'Connor, Rebecca E., Ogugo, Moses, Okimoto, Ron, Ouko, Ochieng, Patel, Hardip R., Perini, Francesco, Pigozzi, María Ines, Potter, Krista C., Price, Peter D., Reimer, Christian, Rice, Edward S., Rocos, Nicolas, Rogers, Thea F., Saelao, Perot, Schauer, Jens, Schnabel, Robert D., Schneider, Valerie A., Simianer, Henner, Smith, Adrian, Stevens, Mark P., Stiers, Kyle, Tiambo, Christian Keambou, Tixier-Boichard, Michele, Torgasheva, Anna A., Tracey, Alan, Tregaskes, Clive A., Vervelde, Lonneke, Wang, Ying, Warren, Wesley C., Waters, Paul D., Webb, David, Weigend, Steffen, Wolc, Anna, Wright, Alison E., Wright, Dominic, Wu, Zhou, Yamagata, Masahito, Yang, Chentao, Yin, Zhong Tao, Young, Michelle C., Zhang, Guojie, Zhao, Bingru, Zhou, Huaijun, Smith, Jacqueline, Alfieri, James M., Anthony, Nick, Arensburger, Peter, Athrey, Giridhar N., Balacco, Jennifer, Balic, Adam, Bardou, Philippe, Barela, Paul, Bigot, Yves, Blackmon, Heath, Borodin, Pavel M., Carroll, Rachel, Casono, Meya C., Charles, Mathieu, Cheng, Hans, Chiodi, Maddie, Cigan, Lacey, Coghill, Lyndon M., Crooijmans, Richard, Das, Neelabja, Davey, Sean, Davidian, Asya, Degalez, Fabien, Dekkers, Jack M., Derks, Martijn, Diack, Abigail B., Djikeng, Appolinaire, Drechsler, Yvonne, Dyomin, Alexander, Fedrigo, Olivier, Fiddaman, Steven R., Formenti, Giulio, Frantz, Laurent A.F., Fulton, Janet E., Gaginskaya, Elena, Galkina, Svetlana, Gallardo, Rodrigo A., Geibel, Johannes, Gheyas, Almas A., Godinez, Cyrill John P., Goodell, Ashton, Graves, Jennifer A.M., Griffin, Darren K., Haase, Bettina, Han, Jian Lin, Hanotte, Olivier, Henderson, Lindsay J., Hou, Zhuo Cheng, Howe, Kerstin, Huynh, Lan, Ilatsia, Evans, Jarvis, Erich D., Johnson, Sarah M., Kaufman, Jim, Kelly, Terra, Kemp, Steve, Kern, Colin, Keroack, Jacob H., Klopp, Christophe, Lagarrigue, Sandrine, Lamont, Susan J., Lange, Margaret, Lanke, Anika, Larkin, Denis M., Larson, Greger, Layos, John King N., Lebrasseur, Ophélie, Malinovskaya, Lyubov P., Martin, Rebecca J., Cerezo, Maria Luisa Martin, Mason, Andrew S., McCarthy, Fiona M., McGrew, Michael J., Mountcastle, Jacquelyn, Muhonja, Christine Kamidi, Muir, William, Muret, Kévin, Murphy, Terence D., Ng'ang'a, Ismael, Nishibori, Masahide, O'Connor, Rebecca E., Ogugo, Moses, Okimoto, Ron, Ouko, Ochieng, Patel, Hardip R., Perini, Francesco, Pigozzi, María Ines, Potter, Krista C., Price, Peter D., Reimer, Christian, Rice, Edward S., Rocos, Nicolas, Rogers, Thea F., Saelao, Perot, Schauer, Jens, Schnabel, Robert D., Schneider, Valerie A., Simianer, Henner, Smith, Adrian, Stevens, Mark P., Stiers, Kyle, Tiambo, Christian Keambou, Tixier-Boichard, Michele, Torgasheva, Anna A., Tracey, Alan, Tregaskes, Clive A., Vervelde, Lonneke, Wang, Ying, Warren, Wesley C., Waters, Paul D., Webb, David, Weigend, Steffen, Wolc, Anna, Wright, Alison E., Wright, Dominic, Wu, Zhou, Yamagata, Masahito, Yang, Chentao, Yin, Zhong Tao, Young, Michelle C., Zhang, Guojie, Zhao, Bingru, and Zhou, Huaijun
- Abstract
Chicken Genomic Diversity consortium: large-scale genomics to unravel the origins and adaptations of chickens
- Published
- 2023
25. Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories
- Author
-
University of Massachusetts, National Marine Fisheries Service (US), National Science Foundation (US), National Research Council of Canada, Rockefeller University, Howard Hughes Medical Institute, Wellcome Sanger Institute, Max Planck Society, Agencia Nacional de Investigación y Desarrollo (Chile), Fundação de Amparo à Pesquisa do Estado de São Paulo, Federal Ministry of Education and Research (Germany), National Library of Medicine (US), Generalitat de Catalunya, Fundación la Caixa, Vienna Science and Technology Fund, Welsh Government, European Commission, Sea Turtle Conservancy (US), Kuhlwilm, Martin [0000-0002-0115-1797], Marqués-Bonet, Tomàs [0000-0002-5597-3075], Bentley, Blair P., Carrasco-Valenzuela, Tomás, Ramos, Elisa K. S., Pawar, Harvinder, Souza Arantes, Larissa, Alexander, Alana, Banerjee, Shreya M., Masterson, Patrick, Kuhlwilm, Martin, Pippel, Martin, Mountcastle, Jacquelyn, Haase, Bettina, Uliano-Silva, Marcela, Formenti, Giulio, Howe, Kerstin, Chow, William, Tracey, Alan, Sims, Ying, Pelan, Sarah, Wood, Jonathan, Yetsko, Kelsey, Perrault, Justin R., Stewart, Kelly, Benson, Scott R., Levy, Yaniv, Todd, Erica V., Shaffer, H. Bradley, Scott, Peter, Henen, Brian T., Murphy, Robert W., Mohr, David W., Scott, Alan F., Duffy, David J., Gemmell, Neil J., Suh, Alexander, Winkler, Sylke, Thibaud-Nissen, Françoise, Nery, Mariana F., Marqués-Bonet, Tomàs, Antunes, Agostinho, Tikochinski, Yaron, Dutton, Peter H., Fedrigo, Olivier, Myers, Eugene W., Jarvis, Erich D., Mazzoni, Camila J., Komoroske, Lisa M., University of Massachusetts, National Marine Fisheries Service (US), National Science Foundation (US), National Research Council of Canada, Rockefeller University, Howard Hughes Medical Institute, Wellcome Sanger Institute, Max Planck Society, Agencia Nacional de Investigación y Desarrollo (Chile), Fundação de Amparo à Pesquisa do Estado de São Paulo, Federal Ministry of Education and Research (Germany), National Library of Medicine (US), Generalitat de Catalunya, Fundación la Caixa, Vienna Science and Technology Fund, Welsh Government, European Commission, Sea Turtle Conservancy (US), Kuhlwilm, Martin [0000-0002-0115-1797], Marqués-Bonet, Tomàs [0000-0002-5597-3075], Bentley, Blair P., Carrasco-Valenzuela, Tomás, Ramos, Elisa K. S., Pawar, Harvinder, Souza Arantes, Larissa, Alexander, Alana, Banerjee, Shreya M., Masterson, Patrick, Kuhlwilm, Martin, Pippel, Martin, Mountcastle, Jacquelyn, Haase, Bettina, Uliano-Silva, Marcela, Formenti, Giulio, Howe, Kerstin, Chow, William, Tracey, Alan, Sims, Ying, Pelan, Sarah, Wood, Jonathan, Yetsko, Kelsey, Perrault, Justin R., Stewart, Kelly, Benson, Scott R., Levy, Yaniv, Todd, Erica V., Shaffer, H. Bradley, Scott, Peter, Henen, Brian T., Murphy, Robert W., Mohr, David W., Scott, Alan F., Duffy, David J., Gemmell, Neil J., Suh, Alexander, Winkler, Sylke, Thibaud-Nissen, Françoise, Nery, Mariana F., Marqués-Bonet, Tomàs, Antunes, Agostinho, Tikochinski, Yaron, Dutton, Peter H., Fedrigo, Olivier, Myers, Eugene W., Jarvis, Erich D., Mazzoni, Camila J., and Komoroske, Lisa M.
- Abstract
[Significance] Sea turtle populations have undergone recent global declines. We analyzed de novo assembled genomes for both extant sea turtle families through the Vertebrate Genomes Project to inform their conservation and evolutionary biology. These highly conserved genomes were differentiated by localized gene-rich regions of divergence, particularly within microchromosomes, suggesting that these genomic elements play key functional roles in the evolution of sea turtles and possibly other vertebrates. We further demonstrate that dissimilar evolutionary histories impact standing genomic diversity and genetic load, and are critical to consider when using these metrics to assess adaptive potential and extinction risk. Our results also demonstrate how reference genome quality impacts inferences of comparative and conservation genomics analyses that need to be considered in their application., [Abstract] Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.
- Published
- 2023
26. Multiple chicken (Gallus gallus) genome references to advance genetic variation studies.:Single haplotype chicken genome assemblies
- Author
-
Warren, Wesley, Fedrigo, Olivier, Tracey, Alan, Mason, Andrew S, Formenti, Giulio, Francesco, Perini, Wu, Zhou, Murphy, Terence, Schneider, Valerie, Stiers, Kyle, Rice, Edward S., Coghill, Lyndon M., Anthony, Nick, Okimoto, Ron, Carroll, Rachel, Mountcastle, Jacquelyn, Balacco, Jennifer, Haase, Bettina, Yang, Chentao, Zhang, Guojie, Smith, Jacqueline, Drechsler, Yvonne, Cheng, Hans H, Howe, Kerstin, and Jarvis, Erich D
- Subjects
Genome assembly ,chicken ,variant detection - Published
- 2023
- Full Text
- View/download PDF
27. Additional file 13 of The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Abstract
Additional file 13: Supplementary Table S11. Differentially expressed cytokine or cytokine related genes in infected avian endothelial cells.
- Published
- 2023
- Full Text
- View/download PDF
28. Additional file 4 of The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Abstract
Additional file 4: Supplementary Table S2. BUSCO analysis of the final genomes.
- Published
- 2023
- Full Text
- View/download PDF
29. Additional file 5 of The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Abstract
Additional file 5: Supplementary Table S3. CEGMA analysis of the final genomes.
- Published
- 2023
- Full Text
- View/download PDF
30. Additional file 7 of The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Abstract
Additional file 7: Supplementary Table S5. List of genes known to affect plumage colour in birds.
- Published
- 2023
- Full Text
- View/download PDF
31. Additional file 2 of The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Abstract
Additional file 2: Supplementary Table S1. Heterozygosity, QV and completeness values for swan genomes.
- Published
- 2023
- Full Text
- View/download PDF
32. Additional file 6 of The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Abstract
Additional file 6: Supplementary Table S4. GO biological process annotation of inverted genes in the Mallard duck (relative to the black swan).
- Published
- 2023
- Full Text
- View/download PDF
33. Additional file 3 of The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Abstract
Additional file 3: Online Methods.
- Published
- 2023
- Full Text
- View/download PDF
34. Additional file 8 of The swan genome and transcriptome, it is not all black and white
- Author
-
Karawita, Anjana C., Cheng, Yuanyuan, Chew, Keng Yih, Challagulla, Arjun, Kraus, Robert, Mueller, Ralf C., Tong, Marcus Z. W., Hulme, Katina D., Bielefeldt-Ohmann, Helle, Steele, Lauren E., Wu, Melanie, Sng, Julian, Noye, Ellesandra, Bruxner, Timothy J., Au, Gough G., Lowther, Suzanne, Blommaert, Julie, Suh, Alexander, McCauley, Alexander J., Kaur, Parwinder, Dudchenko, Olga, Aiden, Erez, Fedrigo, Olivier, Formenti, Giulio, Mountcastle, Jacquelyn, Chow, William, Martin, Fergal J., Ogeh, Denye N., Thiaud-Nissen, Françoise, Howe, Kerstin, Tracey, Alan, Smith, Jacqueline, Kuo, Richard I., Renfree, Marilyn B., Kimura, Takashi, Sakoda, Yoshihiro, McDougall, Mathew, Spencer, Hamish G., Pyne, Michael, Tolf, Conny, Waldenström, Jonas, Jarvis, Erich D., Baker, Michelle L., Burt, David W., and Short, Kirsty R.
- Abstract
Additional file 8: Supplementary Table S6. Immune gene families are contractive in black swans compared to mute swans. The number of genes in each immune gene sub-family identified is given in each column for the corresponding species.
- Published
- 2023
- Full Text
- View/download PDF
35. Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories
- Author
-
Bentley, Blair P., primary, Carrasco-Valenzuela, Tomás, additional, Ramos, Elisa K. S., additional, Pawar, Harvinder, additional, Souza Arantes, Larissa, additional, Alexander, Alana, additional, Banerjee, Shreya M., additional, Masterson, Patrick, additional, Kuhlwilm, Martin, additional, Pippel, Martin, additional, Mountcastle, Jacquelyn, additional, Haase, Bettina, additional, Uliano-Silva, Marcela, additional, Formenti, Giulio, additional, Howe, Kerstin, additional, Chow, William, additional, Tracey, Alan, additional, Sims, Ying, additional, Pelan, Sarah, additional, Wood, Jonathan, additional, Yetsko, Kelsey, additional, Perrault, Justin R., additional, Stewart, Kelly, additional, Benson, Scott R., additional, Levy, Yaniv, additional, Todd, Erica V., additional, Shaffer, H. Bradley, additional, Scott, Peter, additional, Henen, Brian T., additional, Murphy, Robert W., additional, Mohr, David W., additional, Scott, Alan F., additional, Duffy, David J., additional, Gemmell, Neil J., additional, Suh, Alexander, additional, Winkler, Sylke, additional, Thibaud-Nissen, Françoise, additional, Nery, Mariana F., additional, Marques-Bonet, Tomas, additional, Antunes, Agostinho, additional, Tikochinski, Yaron, additional, Dutton, Peter H., additional, Fedrigo, Olivier, additional, Myers, Eugene W., additional, Jarvis, Erich D., additional, Mazzoni, Camila J., additional, and Komoroske, Lisa M., additional
- Published
- 2023
- Full Text
- View/download PDF
36. Sex-specific changes in autosomal methylation rate in ageing common terns
- Author
-
Meyer, Britta S., primary, Moiron, Maria, additional, Caswara, Calvinna, additional, Chow, William, additional, Fedrigo, Olivier, additional, Formenti, Giulio, additional, Haase, Bettina, additional, Howe, Kerstin, additional, Mountcastle, Jacquelyn, additional, Uliano-Silva, Marcela, additional, Wood, Jonathan, additional, Jarvis, Erich D., additional, Liedvogel, Miriam, additional, and Bouwhuis, Sandra, additional
- Published
- 2023
- Full Text
- View/download PDF
37. Fourth Report on Chicken Genes and Chromosomes 2022
- Author
-
Smith, Jacqueline, primary, Alfieri, James M., additional, Anthony, Nick, additional, Arensburger, Peter, additional, Athrey, Giridhar N., additional, Balacco, Jennifer, additional, Balic, Adam, additional, Bardou, Philippe, additional, Barela, Paul, additional, Bigot, Yves, additional, Blackmon, Heath, additional, Borodin, Pavel M., additional, Carroll, Rachel, additional, Casono, Meya C., additional, Charles, Mathieu, additional, Cheng, Hans, additional, Chiodi, Maddie, additional, Cigan, Lacey, additional, Coghill, Lyndon M., additional, Crooijmans, Richard, additional, Das, Neelabja, additional, Davey, Sean, additional, Davidian, Asya, additional, Degalez, Fabien, additional, Dekkers, Jack M., additional, Derks, Martijn, additional, Diack, Abigail B., additional, Djikeng, Appolinaire, additional, Drechsler, Yvonne, additional, Dyomin, Alexander, additional, Fedrigo, Olivier, additional, Fiddaman, Steven R., additional, Formenti, Giulio, additional, Frantz, Laurent A.F., additional, Fulton, Janet E., additional, Gaginskaya, Elena, additional, Galkina, Svetlana, additional, Gallardo, Rodrigo A., additional, Geibel, Johannes, additional, Gheyas, Almas, additional, Godinez, Cyrill John P., additional, Goodell, Ashton, additional, Graves, Jennifer A. M., additional, Griffin, Daren K., additional, Haase, Bettina, additional, Han, Jian-Lin, additional, Hanotte, Olivier, additional, Henderson, Lindsay J., additional, Hou, Zhuo-Cheng, additional, Howe, Kerstin, additional, Huynh, Lan, additional, Ilatsia, Evans, additional, Jarvis, Erich, additional, Johnson, Sarah M., additional, Kaufman, Jim, additional, Kelly, Terra, additional, Kemp, Steve, additional, Kern, Colin, additional, Keroack, Jacob H., additional, Klopp, Christophe, additional, Lagarrigue, Sandrine, additional, Lamont, Susan J., additional, Lange, Margaret, additional, Lanke, Anika, additional, Larkin, Denis M., additional, Larson, Greger, additional, Layos, John King N., additional, Lebrasseur, Ophélie, additional, Malinovskaya, Lyubov P., additional, Martin, Rebecca J., additional, Martin Cerezo, Maria Luisa, additional, Mason, Andrew S., additional, McCarthy, Fiona M., additional, McGrew, Michael J., additional, Mountcastle, Jacquelyn, additional, Muhonja, Christine Kamidi, additional, Muir, William, additional, Muret, Kévin, additional, Murphy, Terence, additional, Ng’ang’a, Ismael, additional, Nishibori, Masahide, additional, O’Connor, Rebecca E., additional, Ogugo, Moses, additional, Okimoto, Ron, additional, Ouko, Ochieng, additional, Patel, Hardip R., additional, Perini, Francesco, additional, Pigozzi, María Ines, additional, Potter, Krista C., additional, Price, Peter D., additional, Reimer, Christian, additional, Rice, Edward S., additional, Rocos, Nicolas, additional, Rogers, Thea F., additional, Saelao, Perot, additional, Schauer, Jens, additional, Schnabel, Robert, additional, Schneider, Valerie, additional, Simianer, Henner, additional, Smith, Adrian, additional, Stevens, Mark P., additional, Stiers, Kyle, additional, Tiambo, Christian Keambou, additional, Tixier-Boichard, Michele, additional, Torgasheva, Anna A., additional, Tracey, Alan, additional, Tregaskes, Clive A., additional, Vervelde, Lonneke, additional, Wang, Ying, additional, Warren, Wesley C., additional, Waters, Paul D., additional, Webb, David, additional, Weigend, Steffen, additional, Wolc, Anna, additional, Wright, Alison E., additional, Wright, Dominic, additional, Wu, Zhou, additional, Yamagata, Masahito, additional, Yang, Chentao, additional, Yin, Zhong-Tao, additional, Young, Michelle C., additional, Zhang, Guojie, additional, Zhao, Bingru, additional, and Zhou, Huaijun, additional
- Published
- 2023
- Full Text
- View/download PDF
38. Segmental duplications
- Author
-
Chaisson, Mark, Toh, Huishi, Stewart, Ron, Bukhman, Yury, Formenti, Giulio, Raja, Kalpana, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Zhang, Guojie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, and Thomson, James
- Published
- 2022
- Full Text
- View/download PDF
39. Heterozygosity spectrum
- Author
-
Yang, Chentao, Zhang, Guojie, Formenti, Giulio, Raja, Kalpana, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, and Thomson, James
- Abstract
Chentao Yang's heterozygosity spectrum analysis
- Published
- 2022
- Full Text
- View/download PDF
40. Comparison of house mouse gene complement to Nile rat using TOGA
- Author
-
Bukhman, Yury, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Toh, Huishi, Chaisson, Mark, Stewart, Ron, Yang, Chentao, Formenti, Giulio, Raja, Kalpana, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Zhang, Guojie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, and Thomson, James
- Published
- 2022
- Full Text
- View/download PDF
41. Gene lists
- Author
-
Bukhman, Yury, Toh, Huishi, Chaisson, Mark, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Raja, Kalpana, Yang, Chentao, Zhang, Guojie, Stewart, Ron, Formenti, Giulio, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, and Thomson, James
- Published
- 2022
- Full Text
- View/download PDF
42. Assembly quality
- Author
-
Bukhman, Yury, Formenti, Giulio, Chaisson, Mark, Toh, Huishi, Yang, Chentao, Raja, Kalpana, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Zhang, Guojie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, Thomson, James, and Stewart, Ron
- Abstract
Nile rat assembly quality metrics compared to other representative genomes of the Murinae
- Published
- 2022
- Full Text
- View/download PDF
43. Diversification selection
- Author
-
Yang, Chentao, Formenti, Giulio, Raja, Kalpana, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Zhang, Guojie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, and Thomson, James
- Abstract
Chentao Yang's dN/dS analysis of Nile rat vs. house mouse, Norway rat, and human
- Published
- 2022
- Full Text
- View/download PDF
44. GO term predictions
- Author
-
Jain, Aashish, Kihara, Daisuke, Yang, Chentao, Formenti, Giulio, Raja, Kalpana, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Zhang, Guojie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, Thomson, James, and Chaisson, Mark
- Published
- 2022
- Full Text
- View/download PDF
45. Interesting genes
- Author
-
Toh, Huishi, Yang, Chentao, Raja, Kalpana, Formenti, Giulio, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Zhang, Guojie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, Thomson, James, Stewart, Ron, Chaisson, Mark, and Bukhman, Yury
- Published
- 2022
- Full Text
- View/download PDF
46. A haplotype-resolved genome assembly of the Nile rat facilitates exploration of the genetic basis of diabetes
- Author
-
Toh, Huishi, primary, Yang, Chentao, additional, Formenti, Giulio, additional, Raja, Kalpana, additional, Yan, Lily, additional, Tracey, Alan, additional, Chow, William, additional, Howe, Kerstin, additional, Bergeron, Lucie A., additional, Zhang, Guojie, additional, Haase, Bettina, additional, Mountcastle, Jacquelyn, additional, Fedrigo, Olivier, additional, Fogg, John, additional, Kirilenko, Bogdan, additional, Munegowda, Chetan, additional, Hiller, Michael, additional, Jain, Aashish, additional, Kihara, Daisuke, additional, Rhie, Arang, additional, Phillippy, Adam M., additional, Swanson, Scott A., additional, Jiang, Peng, additional, Clegg, Dennis O., additional, Jarvis, Erich D., additional, Thomson, James A., additional, Stewart, Ron, additional, Chaisson, Mark J. P., additional, and Bukhman, Yury V., additional
- Published
- 2022
- Full Text
- View/download PDF
47. Nile rat genome paper supplementary materials
- Author
-
Toh, Huishi, Yang, Chentao, Formenti, Giulio, Raja, Kalpana, Yan, Lily, Tracey, Alan, Chow, William, Howe, Kerstin, Bergeron, Lucie, Zhang, Guojie, Haase, Bettina, Mountcastle, Jacquelyn, Fedrigo, Olivier, Fogg, John, Kirilenko, Bogdan, Munegowda, Chetan, Hiller, Michael, Jain, Aashish, Kihara, Daisuke, Rhie, Arang, Phillippy, Adam, Swanson, Scott, Jiang, Peng, Clegg, Dennis, Jarvis, Erich, Thomson, James, Stewart, Ron, Chaisson, Mark, and Bukhman, Yury
- Subjects
viruses ,virus diseases ,nervous system diseases - Abstract
Nile rat genome paper supplementary materials
- Published
- 2022
- Full Text
- View/download PDF
48. Benchmarking ultra-high molecular weight DNA preservation methods for long-read and long-range sequencing
- Author
-
Dahn, Hollis A, Mountcastle, Jacquelyn, Balacco, Jennifer, Winkler, Sylke, Bista, Iliana, Schmitt, Anthony D, Pettersson, Olga Vinnere, Formenti, Giulio, Oliver, Karen, Smith, Michelle, Tan, Wenhua, Kraus, Anne, Mac, Stephen, Komoroske, Lisa M, Lama, Tanya, Crawford, Andrew J, Murphy, Robert W, Brown, Samara, Scott, Alan F, Morin, Phillip A, Jarvis, Erich D, Fedrigo, Olivier, Dahn, Hollis A [0000-0001-9777-2303], Mountcastle, Jacquelyn [0000-0003-1078-4905], Balacco, Jennifer [0000-0001-7102-1632], Winkler, Sylke [0000-0002-0915-3316], Bista, Iliana [0000-0002-6155-3093], Pettersson, Olga Vinnere [0000-0002-5597-1870], Formenti, Giulio [0000-0002-7554-5991], Smith, Michelle [0000-0001-5288-0001], Tan, Wenhua [0000-0002-5208-8126], Komoroske, Lisa M [0000-0003-0676-7053], Lama, Tanya [0000-0002-7372-8081], Crawford, Andrew J [0000-0003-3153-6898], Murphy, Robert W [0000-0001-8555-2338], Brown, Samara [0000-0003-0391-2016], Scott, Alan F [0000-0002-9706-7839], Morin, Phillip A [0000-0002-3279-1519], Jarvis, Erich D [0000-0001-8931-5049], Fedrigo, Olivier [0000-0002-6450-7551], and Apollo - University of Cambridge Repository
- Subjects
High-Throughput Nucleotide Sequencing ,Health Informatics ,DNA ,Sequence Analysis, DNA ,HMW DNA extraction ,Computer Science Applications ,Molecular Weight ,Benchmarking ,long-read sequencing ,Genetics ,genome assembly ,Animals ,Dimethyl Sulfoxide ,Genetik ,tissue preservation ,Edetic Acid - Abstract
Background Studies in vertebrate genomics require sampling from a broad range of tissue types, taxa, and localities. Recent advancements in long-read and long-range genome sequencing have made it possible to produce high-quality chromosome-level genome assemblies for almost any organism. However, adequate tissue preservation for the requisite ultra-high molecular weight DNA (uHMW DNA) remains a major challenge. Here we present a comparative study of preservation methods for field and laboratory tissue sampling, across vertebrate classes and different tissue types. Results We find that storage temperature was the strongest predictor of uHMW fragment lengths. While immediate flash-freezing remains the sample preservation gold standard, samples preserved in 95% EtOH or 20–25% DMSO-EDTA showed little fragment length degradation when stored at 4°C for 6 hours. Samples in 95% EtOH or 20–25% DMSO-EDTA kept at 4°C for 1 week after dissection still yielded adequate amounts of uHMW DNA for most applications. Tissue type was a significant predictor of total DNA yield but not fragment length. Preservation solution had a smaller but significant influence on both fragment length and DNA yield. Conclusion We provide sample preservation guidelines that ensure sufficient DNA integrity and amount required for use with long-read and long-range sequencing technologies across vertebrates. Our best practices generated the uHMW DNA needed for the high-quality reference genomes for phase 1 of the Vertebrate Genomes Project, whose ultimate mission is to generate chromosome-level reference genome assemblies of all ∼70,000 extant vertebrate species.
- Published
- 2021
49. RNA-seq raw reads of chicken hypothalamus and breast muscle
- Author
-
Smith, Jacqueline, Alfieri, James M., Anthony, Nick, Arensburger, Peter, Athrey, Giridhar N., Balacco, Jennifer, Balic, Adam, Bardou, Philippe, Barela, Paul, Bigot, Yves, Blackmon, Heath, Borodin, Pavel M., Carroll, Rachel, Casono, Meya C., Charles, Mathieu, Cheng, Hans, Chiodi, Maddie, Cigan, Lacey, Coghill, Lyndon M., Crooijmans, Richard, Das, Neelabja, Davey, Sean, Davidian, Asya, Degalez, Fabien, Dekkers, Jack M., Derks, Martijn, Diack, Abigail B., Djikeng, Appolinaire, Drechsler, Yvonne, Dyomin, Alexander, Fedrigo, Olivier, Fiddaman, Steven R., Formenti, Giulio, Frantz, Laurent A.F., Fulton, Janet E., Gaginskaya, Elena, Galkina, Svetlana, Gallardo, Rodrigo A., Geibel, Johannes, Gheyas, Almas A., Godinez, Cyrill John P., Goodell, Ashton, Graves, Jennifer A.M., Griffin, Darren K., Haase, Bettina, Han, Jian Lin, Hanotte, Olivier, Henderson, Lindsay J., Hou, Zhuo Cheng, Howe, Kerstin, Huynh, Lan, Ilatsia, Evans, Jarvis, Erich D., Johnson, Sarah M., Kaufman, Jim, Kelly, Terra, Kemp, Steve, Kern, Colin, Keroack, Jacob H., Klopp, Christophe, Lagarrigue, Sandrine, Lamont, Susan J., Lange, Margaret, Lanke, Anika, Larkin, Denis M., Larson, Greger, Layos, John King N., Lebrasseur, Ophélie, Malinovskaya, Lyubov P., Martin, Rebecca J., Cerezo, Maria Luisa Martin, Mason, Andrew S., McCarthy, Fiona M., McGrew, Michael J., Mountcastle, Jacquelyn, Muhonja, Christine Kamidi, Muir, William, Muret, Kévin, Murphy, Terence D., Ng'ang'a, Ismael, Nishibori, Masahide, O'Connor, Rebecca E., Ogugo, Moses, Okimoto, Ron, Ouko, Ochieng, Patel, Hardip R., Perini, Francesco, Pigozzi, María Ines, Potter, Krista C., Price, Peter D., Reimer, Christian, Rice, Edward S., Rocos, Nicolas, Rogers, Thea F., Saelao, Perot, Schauer, Jens, Schnabel, Robert D., Schneider, Valerie A., Simianer, Henner, Smith, Adrian, Stevens, Mark P., Stiers, Kyle, Tiambo, Christian Keambou, Tixier-Boichard, Michele, Torgasheva, Anna A., Tracey, Alan, Tregaskes, Clive A., Vervelde, Lonneke, Wang, Ying, Warren, Wesley C., Waters, Paul D., Webb, David, Weigend, Steffen, Wolc, Anna, Wright, Alison E., Wright, Dominic, Wu, Zhou, Yamagata, Masahito, Yang, Chentao, Yin, Zhong Tao, Young, Michelle C., Zhang, Guojie, Zhao, Bingru, Zhou, Huaijun, Smith, Jacqueline, Alfieri, James M., Anthony, Nick, Arensburger, Peter, Athrey, Giridhar N., Balacco, Jennifer, Balic, Adam, Bardou, Philippe, Barela, Paul, Bigot, Yves, Blackmon, Heath, Borodin, Pavel M., Carroll, Rachel, Casono, Meya C., Charles, Mathieu, Cheng, Hans, Chiodi, Maddie, Cigan, Lacey, Coghill, Lyndon M., Crooijmans, Richard, Das, Neelabja, Davey, Sean, Davidian, Asya, Degalez, Fabien, Dekkers, Jack M., Derks, Martijn, Diack, Abigail B., Djikeng, Appolinaire, Drechsler, Yvonne, Dyomin, Alexander, Fedrigo, Olivier, Fiddaman, Steven R., Formenti, Giulio, Frantz, Laurent A.F., Fulton, Janet E., Gaginskaya, Elena, Galkina, Svetlana, Gallardo, Rodrigo A., Geibel, Johannes, Gheyas, Almas A., Godinez, Cyrill John P., Goodell, Ashton, Graves, Jennifer A.M., Griffin, Darren K., Haase, Bettina, Han, Jian Lin, Hanotte, Olivier, Henderson, Lindsay J., Hou, Zhuo Cheng, Howe, Kerstin, Huynh, Lan, Ilatsia, Evans, Jarvis, Erich D., Johnson, Sarah M., Kaufman, Jim, Kelly, Terra, Kemp, Steve, Kern, Colin, Keroack, Jacob H., Klopp, Christophe, Lagarrigue, Sandrine, Lamont, Susan J., Lange, Margaret, Lanke, Anika, Larkin, Denis M., Larson, Greger, Layos, John King N., Lebrasseur, Ophélie, Malinovskaya, Lyubov P., Martin, Rebecca J., Cerezo, Maria Luisa Martin, Mason, Andrew S., McCarthy, Fiona M., McGrew, Michael J., Mountcastle, Jacquelyn, Muhonja, Christine Kamidi, Muir, William, Muret, Kévin, Murphy, Terence D., Ng'ang'a, Ismael, Nishibori, Masahide, O'Connor, Rebecca E., Ogugo, Moses, Okimoto, Ron, Ouko, Ochieng, Patel, Hardip R., Perini, Francesco, Pigozzi, María Ines, Potter, Krista C., Price, Peter D., Reimer, Christian, Rice, Edward S., Rocos, Nicolas, Rogers, Thea F., Saelao, Perot, Schauer, Jens, Schnabel, Robert D., Schneider, Valerie A., Simianer, Henner, Smith, Adrian, Stevens, Mark P., Stiers, Kyle, Tiambo, Christian Keambou, Tixier-Boichard, Michele, Torgasheva, Anna A., Tracey, Alan, Tregaskes, Clive A., Vervelde, Lonneke, Wang, Ying, Warren, Wesley C., Waters, Paul D., Webb, David, Weigend, Steffen, Wolc, Anna, Wright, Alison E., Wright, Dominic, Wu, Zhou, Yamagata, Masahito, Yang, Chentao, Yin, Zhong Tao, Young, Michelle C., Zhang, Guojie, Zhao, Bingru, and Zhou, Huaijun
- Abstract
The objective of the study was to identify genes, gene networks, and signaling pathways associated with heat stress under Newcastle disease virus (NDV infection in the hypothalamus and the breast muscle of chickens by transcriptome profiling, using two highly genetically distinct inbred chicken lines (Leghorn and Fayoumi).
- Published
- 2022
50. A high-quality, long-read genome assembly of the endangered ring-tailed lemur (Lemur catta)
- Author
-
Palmada-Flores, Marc, Orkin, Joseph, Haase, Bettina, Mountcastle, Jacquelyn, Bertelsen, Mads, Fedrigo, Olivier, Kuderna, Lukas, Jarvis, Erich D., Marques-Bonet, Tomas, Palmada-Flores, Marc, Orkin, Joseph, Haase, Bettina, Mountcastle, Jacquelyn, Bertelsen, Mads, Fedrigo, Olivier, Kuderna, Lukas, Jarvis, Erich D., and Marques-Bonet, Tomas
- Abstract
Altres ajuts: "la Caixa" Foundation (ID 100010434), Background: The ring-tailed lemur (Lemur catta) is a charismatic strepsirrhine primate endemic to Madagascar. These lemurs are of particular interest, given their status as a flagship species and widespread publicity in the popular media. Unfortunately, a recent population decline has resulted in the census population decreasing to <2,500 individuals in the wild, and the species's classification as an endangered species by the IUCN. As is the case for most strepsirrhine primates, only a limited amount of genomic research has been conducted on L. catta, in part owing to the lack of genomic resources. Results: We generated a new high-quality reference genome assembly for L. catta (mLemCat1) that conforms to the standards of the Vertebrate Genomes Project. This new long-read assembly is composed of Pacific Biosciences continuous long reads (CLR data), Optical Mapping Bionano reads, Arima HiC data, and 10X linked reads. The contiguity and completeness of the assembly are extremely high, with scaffold and contig N50 values of 90.982 and 10.570 Mb, respectively. Additionally, when compared to other high-quality primate assemblies, L. catta has the lowest reported number of Alu elements, which results predominantly from a lack of AluS and AluY elements. Conclusions: mLemCat1 is an excellent genomic resource not only for the ring-tailed lemur community, but also for other members of the Lemuridae family, and is the first very long read assembly for a strepsirrhine.
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.