31 results on '"Munger, J.W."'
Search Results
2. A single-point modeling approach for the intercomparison and evaluation of ozone dry deposition across chemical transport models (Activity 2 of AQMEII4)
- Author
-
Clifton, Olivia E., Schwede, Donna, Hogrefe, Christian, Bash, Jesse O., Bland, Sam, Cheung, Philip, Coyle, Mhairi, Emberson, Lisa, Flemming, Johannes, Fredj, Erick, Galmarini, Stefano, Ganzeveld, Laurens, Gazetas, Orestis, Goded, Ignacio, Holmes, Christopher D., Horváth, László, Huijnen, Vincent, Li, Qian, Makar, Paul A., Mammarella, Ivan, Manca, Giovanni, Munger, J.W., Pérez-Camanyo, Juan L., Pleim, Jonathan, Ran, Limei, San Jose, Roberto, Silva, Sam J., Staebler, Ralf, Sun, Shihan, Tai, Amos P.K., Tas, Eran, Vesala, Timo, Weidinger, Tamás, Wu, Zhiyong, Zhang, Leiming, Clifton, Olivia E., Schwede, Donna, Hogrefe, Christian, Bash, Jesse O., Bland, Sam, Cheung, Philip, Coyle, Mhairi, Emberson, Lisa, Flemming, Johannes, Fredj, Erick, Galmarini, Stefano, Ganzeveld, Laurens, Gazetas, Orestis, Goded, Ignacio, Holmes, Christopher D., Horváth, László, Huijnen, Vincent, Li, Qian, Makar, Paul A., Mammarella, Ivan, Manca, Giovanni, Munger, J.W., Pérez-Camanyo, Juan L., Pleim, Jonathan, Ran, Limei, San Jose, Roberto, Silva, Sam J., Staebler, Ralf, Sun, Shihan, Tai, Amos P.K., Tas, Eran, Vesala, Timo, Weidinger, Tamás, Wu, Zhiyong, and Zhang, Leiming
- Abstract
A primary sink of air pollutants and their precursors is dry deposition. Dry deposition estimates differ across chemical transport models, yet an understanding of the model spread is incomplete. Here, we introduce Activity 2 of the Air Quality Model Evaluation International Initiative Phase 4 (AQMEII4). We examine 18 dry deposition schemes from regional and global chemical transport models as well as standalone models used for impact assessments or process understanding. We configure the schemes as single-point models at eight Northern Hemisphere locations with observed ozone fluxes. Single-point models are driven by a common set of site-specific meteorological and environmental conditions. Five of eight sites have at least 3 years and up to 12 years of ozone fluxes. The interquartile range across models in multiyear mean ozone deposition velocities ranges from a factor of 1.2 to 1.9 annually across sites and tends to be highest during winter compared with summer. No model is within 50% of observed multiyear averages across all sites and seasons, but some models perform well for some sites and seasons. For the first time, we demonstrate how contributions from depositional pathways vary across models. Models can disagree with respect to relative contributions from the pathways, even when they predict similar deposition velocities, or agree with respect to the relative contributions but predict different deposition velocities. Both stomatal and nonstomatal uptake contribute to the large model spread across sites. Our findings are the beginning of results from AQMEII4 Activity 2, which brings scientists who model air quality and dry deposition together with scientists who measure ozone fluxes to evaluate and improve dry deposition schemes in the chemical transport models used for research, planning, and regulatory purposes.
- Published
- 2023
3. Sensitivity of Boreal Forest Carbon Balance to Soil Thaw
- Author
-
Goulden, M. L., Wofsy, S.C., Harden, J.W., Trumbore, S.E., Crill, P.M., Gower, S.T., Fries, T., Daube, B.C., Bazzaz, A., and Munger, J.W.
- Abstract
We used eddy covariance; gas-exchange chambers; radiocarbon analysis; wood, moss, and soil inventories; and laboratory incubations to measure the carbon balance of a 120-year-old black spruce forest in Manitoba, Canada. The site lost 0.3 ± 0.5 metric ton of carbon per hectare per year (ton C ha−1 year−1) from 1994 to 1997, with a gain of 0.6 ± 0.2 ton C ha−1year−1 in moss and wood offset by a loss of 0.8 ± 0.5 ton C ha−1 year−1 from the soil. The soil remained frozen most of the year, and the decomposition of organic matter in the soil increased 10-fold upon thawing. The stability of the soil carbon pool (∼150 tons C ha−1) appears sensitive to the depth and duration of thaw, and climatic changes that promote thaw are likely to cause a net efflux of carbon dioxide from the site.
- Published
- 1998
4. Seasonality of temperate forest photosynthesis and daytime respiration
- Author
-
Wehr, R., Munger, J.W., McManus, J.B., Nelson, D.D., Zahniser, M.S., Davidson, E.A., Wofsy, S.C., and Saleska, S.R.
- Subjects
Plants -- Photorespiration ,Photosynthesis -- Research ,Forestry research ,Deciduous forests -- Research ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (C[O.sub.2]) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration (1). Understanding what controls these two biological fluxes is therefore crucial to predicting climate change (2). Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere C[O.sub.2] exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important C[O.sub.2] sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines (3), presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction (4,5) and of remote sensing indices of global biosphere productivity (5,6). Here, we use new isotopic instrumentation (7) to determine ecosystem photosynthesis and daytime respiration (8) in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night--the first robust evidence of the inhibition of leaf respiration by light (9-11) at the ecosystem scale. Because they do not capture this effect, standard approaches (12,13) overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems., Much of what has been inferred about the behaviour of ecosystem photosynthesis, or 'gross ecosystem production' (GEP, defined as ecosystem-scale photosynthesis minus photorespiration), and 'daytime ecosystem respiration' (DER) in forests [...]
- Published
- 2016
5. Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest
- Author
-
Wehr, R., Munger, J.W., Nelson, D.D., McManus, J.B., Zahniser, M.S., Wofsy, S.C., and Saleska, S.R.
- Published
- 2013
- Full Text
- View/download PDF
6. Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies
- Author
-
Barr, A.G., Richardson, A.D., Hollinger, D.Y., Papale, D., Arain, M.A., Black, T.A., Bohrer, G., Dragoni, D., Fischer, M.L., Gu, L., Law, B.E., Margolis, H.A., McCaughey, J.H., Munger, J.W., Oechel, W., and Schaeffer, K.
- Published
- 2013
- Full Text
- View/download PDF
7. Effective line strengths of trans-nitrous acid near 1275 cm−1 and cis-nitrous acid at 1660 cm−1
- Author
-
Lee, B.H., Wood, E.C., Wormhoudt, J., Shorter, J.H., Herndon, S.C., Zahniser, M.S., and Munger, J.W.
- Published
- 2012
- Full Text
- View/download PDF
8. Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: II Model implementation and validation
- Author
-
Hilker, Thomas, Hall, Forrest G., Tucker, Compton J., Coops, Nicholas C., Black, T. Andrew, Nichol, Caroline J., Sellers, Piers J., Barr, Alan, Hollinger, David Y., and Munger, J.W.
- Published
- 2012
- Full Text
- View/download PDF
9. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
- Author
-
Pastorello, Gilberto, Trotta, Carlo, Canfora, Eleonora, Chu, Housen, Christianson, Danielle, Cheah, You Wei, Poindexter, Cristina, Chen, Jiquan, Elbashandy, Abdelrahman, Humphrey, Marty, Isaac, Peter, Polidori, Diego, Reichstein, Markus, Ribeca, Alessio, van Ingen, Catharine, Vuichard, Nicolas, Zhang, Leiming, Amiro, Brian, Ammann, Christof, Arain, M.A., Ardö, Jonas, Arkebauer, Timothy, Arndt, Stefan K., Arriga, Nicola, Aubinet, Marc, Aurela, Mika, Baldocchi, Dennis, Barr, Alan, Beamesderfer, Eric, Marchesini, Luca Belelli, Bergeron, Onil, Beringer, Jason, Bernhofer, Christian, Berveiller, Daniel, Billesbach, Dave, Black, Thomas Andrew, Blanken, Peter D., Bohrer, Gil, Boike, Julia, Bolstad, Paul V., Bonal, Damien, Bonnefond, Jean Marc, Bowling, David R., Bracho, Rosvel, Brodeur, Jason, Brümmer, Christian, Buchmann, Nina, Burban, Benoit, Burns, Sean P., Buysse, Pauline, Cale, Peter, Cavagna, Mauro, Cellier, Pierre, Chen, Shiping, Chini, Isaac, Christensen, Torben R., Cleverly, James, Collalti, Alessio, Consalvo, Claudia, Cook, Bruce D., Cook, David, Coursolle, Carole, Cremonese, Edoardo, Curtis, Peter S., D’Andrea, Ettore, da Rocha, Humberto, Dai, Xiaoqin, Davis, Kenneth J., De Cinti, Bruno, de Grandcourt, Agnes, De Ligne, Anne, De Oliveira, Raimundo C., Delpierre, Nicolas, Desai, Ankur R., Di Bella, Carlos Marcelo, di Tommasi, Paul, Dolman, Han, Domingo, Francisco, Dong, Gang, Dore, Sabina, Duce, Pierpaolo, Dufrêne, Eric, Dunn, Allison, Dušek, Jiří, Eamus, Derek, Eichelmann, Uwe, ElKhidir, Hatim Abdalla M., Eugster, Werner, Ewenz, Cacilia M., Ewers, Brent, Famulari, Daniela, Fares, Silvano, Feigenwinter, Iris, Feitz, Andrew, Fensholt, Rasmus, Filippa, Gianluca, Fischer, Marc, Frank, John, Galvagno, Marta, Gharun, Mana, Gianelle, Damiano, Gielen, Bert, Gioli, Beniamino, Gitelson, Anatoly, Goded, Ignacio, Goeckede, Mathias, Goldstein, Allen H., Gough, Christopher M., Goulden, Michael L., Graf, Alexander, Griebel, Anne, Gruening, Carsten, Grünwald, Thomas, Hammerle, Albin, Han, Shijie, Han, Xingguo, Hansen, Birger Ulf, Hanson, Chad, Hatakka, Juha, He, Yongtao, Hehn, Markus, Heinesch, Bernard, Hinko-Najera, Nina, Hörtnagl, Lukas, Hutley, Lindsay, Ibrom, Andreas, Ikawa, Hiroki, Jackowicz-Korczynski, Marcin, Janouš, Dalibor, Jans, Wilma, Jassal, Rachhpal, Jiang, Shicheng, Kato, Tomomichi, Khomik, Myroslava, Klatt, Janina, Knohl, Alexander, Knox, Sara, Kobayashi, Hideki, Koerber, Georgia, Kolle, Olaf, Kosugi, Yoshiko, Kotani, Ayumi, Kowalski, Andrew, Kruijt, Bart, Kurbatova, Julia, Kutsch, Werner L., Kwon, Hyojung, Launiainen, Samuli, Laurila, Tuomas, Law, Bev, Leuning, Ray, Li, Yingnian, Liddell, Michael, Limousin, Jean Marc, Lion, Marryanna, Liska, Adam J., Lohila, Annalea, López-Ballesteros, Ana, López-Blanco, Efrén, Loubet, Benjamin, Loustau, Denis, Lucas-Moffat, Antje, Lüers, Johannes, Ma, Siyan, Macfarlane, Craig, Magliulo, Vincenzo, Maier, Regine, Mammarella, Ivan, Manca, Giovanni, Marcolla, Barbara, Margolis, Hank A., Marras, Serena, Massman, William, Mastepanov, Mikhail, Matamala, Roser, Matthes, Jaclyn Hatala, Mazzenga, Francesco, McCaughey, Harry, McHugh, Ian, McMillan, Andrew M.S., Merbold, Lutz, Meyer, Wayne, Meyers, Tilden, Miller, Scott D., Minerbi, Stefano, Moderow, Uta, Monson, Russell K., Montagnani, Leonardo, Moore, Caitlin E., Moors, Eddy, Moreaux, Virginie, Moureaux, Christine, Munger, J.W., Nakai, Taro, Neirynck, Johan, Nesic, Zoran, Nicolini, Giacomo, Noormets, Asko, Northwood, Matthew, Nosetto, Marcelo, Nouvellon, Yann, Novick, Kimberly, Oechel, Walter, Olesen, Jørgen Eivind, Ourcival, Jean Marc, Papuga, Shirley A., Parmentier, Frans Jan, Paul-Limoges, Eugenie, Pavelka, Marian, Peichl, Matthias, Pendall, Elise, Phillips, Richard P., Pilegaard, Kim, Pirk, Norbert, Posse, Gabriela, Powell, Thomas, Prasse, Heiko, Prober, Suzanne M., Rambal, Serge, Rannik, Üllar, Raz-Yaseef, Naama, Rebmann, Corinna, Reed, David, de Dios, Victor Resco, Restrepo-Coupe, Natalia, Reverter, Borja R., Roland, Marilyn, Sabbatini, Simone, Sachs, Torsten, Saleska, Scott R., Sánchez-Cañete, Enrique P., Sanchez-Mejia, Zulia M., Schmid, Hans Peter, Schmidt, Marius, Schneider, Karl, Schrader, Frederik, Schroder, Ivan, Scott, Russell L., Sedlák, Pavel, Serrano-Ortíz, Penélope, Shao, Changliang, Shi, Peili, Shironya, Ivan, Siebicke, Lukas, Šigut, Ladislav, Silberstein, Richard, Sirca, Costantino, Spano, Donatella, Steinbrecher, Rainer, Stevens, Robert M., Sturtevant, Cove, Suyker, Andy, Tagesson, Torbern, Takanashi, Satoru, Tang, Yanhong, Tapper, Nigel, Thom, Jonathan, Tomassucci, Michele, Tuovinen, Juha Pekka, Urbanski, Shawn, Valentini, Riccardo, van der Molen, Michiel, van Gorsel, Eva, van Huissteden, Ko, Varlagin, Andrej, Verfaillie, Joseph, Vesala, Timo, Vincke, Caroline, Vitale, Domenico, Vygodskaya, Natalia, Walker, Jeffrey P., Walter-Shea, Elizabeth, Wang, Huimin, Weber, Robin, Westermann, Sebastian, Wille, Christian, Wofsy, Steven, Wohlfahrt, Georg, Wolf, Sebastian, Woodgate, William, Li, Yuelin, Zampedri, Roberto, Zhang, Junhui, Zhou, Guoyi, Zona, Donatella, Agarwal, Deb, Biraud, Sebastien, Torn, Margaret, Papale, Dario, Pastorello, Gilberto, Trotta, Carlo, Canfora, Eleonora, Chu, Housen, Christianson, Danielle, Cheah, You Wei, Poindexter, Cristina, Chen, Jiquan, Elbashandy, Abdelrahman, Humphrey, Marty, Isaac, Peter, Polidori, Diego, Reichstein, Markus, Ribeca, Alessio, van Ingen, Catharine, Vuichard, Nicolas, Zhang, Leiming, Amiro, Brian, Ammann, Christof, Arain, M.A., Ardö, Jonas, Arkebauer, Timothy, Arndt, Stefan K., Arriga, Nicola, Aubinet, Marc, Aurela, Mika, Baldocchi, Dennis, Barr, Alan, Beamesderfer, Eric, Marchesini, Luca Belelli, Bergeron, Onil, Beringer, Jason, Bernhofer, Christian, Berveiller, Daniel, Billesbach, Dave, Black, Thomas Andrew, Blanken, Peter D., Bohrer, Gil, Boike, Julia, Bolstad, Paul V., Bonal, Damien, Bonnefond, Jean Marc, Bowling, David R., Bracho, Rosvel, Brodeur, Jason, Brümmer, Christian, Buchmann, Nina, Burban, Benoit, Burns, Sean P., Buysse, Pauline, Cale, Peter, Cavagna, Mauro, Cellier, Pierre, Chen, Shiping, Chini, Isaac, Christensen, Torben R., Cleverly, James, Collalti, Alessio, Consalvo, Claudia, Cook, Bruce D., Cook, David, Coursolle, Carole, Cremonese, Edoardo, Curtis, Peter S., D’Andrea, Ettore, da Rocha, Humberto, Dai, Xiaoqin, Davis, Kenneth J., De Cinti, Bruno, de Grandcourt, Agnes, De Ligne, Anne, De Oliveira, Raimundo C., Delpierre, Nicolas, Desai, Ankur R., Di Bella, Carlos Marcelo, di Tommasi, Paul, Dolman, Han, Domingo, Francisco, Dong, Gang, Dore, Sabina, Duce, Pierpaolo, Dufrêne, Eric, Dunn, Allison, Dušek, Jiří, Eamus, Derek, Eichelmann, Uwe, ElKhidir, Hatim Abdalla M., Eugster, Werner, Ewenz, Cacilia M., Ewers, Brent, Famulari, Daniela, Fares, Silvano, Feigenwinter, Iris, Feitz, Andrew, Fensholt, Rasmus, Filippa, Gianluca, Fischer, Marc, Frank, John, Galvagno, Marta, Gharun, Mana, Gianelle, Damiano, Gielen, Bert, Gioli, Beniamino, Gitelson, Anatoly, Goded, Ignacio, Goeckede, Mathias, Goldstein, Allen H., Gough, Christopher M., Goulden, Michael L., Graf, Alexander, Griebel, Anne, Gruening, Carsten, Grünwald, Thomas, Hammerle, Albin, Han, Shijie, Han, Xingguo, Hansen, Birger Ulf, Hanson, Chad, Hatakka, Juha, He, Yongtao, Hehn, Markus, Heinesch, Bernard, Hinko-Najera, Nina, Hörtnagl, Lukas, Hutley, Lindsay, Ibrom, Andreas, Ikawa, Hiroki, Jackowicz-Korczynski, Marcin, Janouš, Dalibor, Jans, Wilma, Jassal, Rachhpal, Jiang, Shicheng, Kato, Tomomichi, Khomik, Myroslava, Klatt, Janina, Knohl, Alexander, Knox, Sara, Kobayashi, Hideki, Koerber, Georgia, Kolle, Olaf, Kosugi, Yoshiko, Kotani, Ayumi, Kowalski, Andrew, Kruijt, Bart, Kurbatova, Julia, Kutsch, Werner L., Kwon, Hyojung, Launiainen, Samuli, Laurila, Tuomas, Law, Bev, Leuning, Ray, Li, Yingnian, Liddell, Michael, Limousin, Jean Marc, Lion, Marryanna, Liska, Adam J., Lohila, Annalea, López-Ballesteros, Ana, López-Blanco, Efrén, Loubet, Benjamin, Loustau, Denis, Lucas-Moffat, Antje, Lüers, Johannes, Ma, Siyan, Macfarlane, Craig, Magliulo, Vincenzo, Maier, Regine, Mammarella, Ivan, Manca, Giovanni, Marcolla, Barbara, Margolis, Hank A., Marras, Serena, Massman, William, Mastepanov, Mikhail, Matamala, Roser, Matthes, Jaclyn Hatala, Mazzenga, Francesco, McCaughey, Harry, McHugh, Ian, McMillan, Andrew M.S., Merbold, Lutz, Meyer, Wayne, Meyers, Tilden, Miller, Scott D., Minerbi, Stefano, Moderow, Uta, Monson, Russell K., Montagnani, Leonardo, Moore, Caitlin E., Moors, Eddy, Moreaux, Virginie, Moureaux, Christine, Munger, J.W., Nakai, Taro, Neirynck, Johan, Nesic, Zoran, Nicolini, Giacomo, Noormets, Asko, Northwood, Matthew, Nosetto, Marcelo, Nouvellon, Yann, Novick, Kimberly, Oechel, Walter, Olesen, Jørgen Eivind, Ourcival, Jean Marc, Papuga, Shirley A., Parmentier, Frans Jan, Paul-Limoges, Eugenie, Pavelka, Marian, Peichl, Matthias, Pendall, Elise, Phillips, Richard P., Pilegaard, Kim, Pirk, Norbert, Posse, Gabriela, Powell, Thomas, Prasse, Heiko, Prober, Suzanne M., Rambal, Serge, Rannik, Üllar, Raz-Yaseef, Naama, Rebmann, Corinna, Reed, David, de Dios, Victor Resco, Restrepo-Coupe, Natalia, Reverter, Borja R., Roland, Marilyn, Sabbatini, Simone, Sachs, Torsten, Saleska, Scott R., Sánchez-Cañete, Enrique P., Sanchez-Mejia, Zulia M., Schmid, Hans Peter, Schmidt, Marius, Schneider, Karl, Schrader, Frederik, Schroder, Ivan, Scott, Russell L., Sedlák, Pavel, Serrano-Ortíz, Penélope, Shao, Changliang, Shi, Peili, Shironya, Ivan, Siebicke, Lukas, Šigut, Ladislav, Silberstein, Richard, Sirca, Costantino, Spano, Donatella, Steinbrecher, Rainer, Stevens, Robert M., Sturtevant, Cove, Suyker, Andy, Tagesson, Torbern, Takanashi, Satoru, Tang, Yanhong, Tapper, Nigel, Thom, Jonathan, Tomassucci, Michele, Tuovinen, Juha Pekka, Urbanski, Shawn, Valentini, Riccardo, van der Molen, Michiel, van Gorsel, Eva, van Huissteden, Ko, Varlagin, Andrej, Verfaillie, Joseph, Vesala, Timo, Vincke, Caroline, Vitale, Domenico, Vygodskaya, Natalia, Walker, Jeffrey P., Walter-Shea, Elizabeth, Wang, Huimin, Weber, Robin, Westermann, Sebastian, Wille, Christian, Wofsy, Steven, Wohlfahrt, Georg, Wolf, Sebastian, Woodgate, William, Li, Yuelin, Zampedri, Roberto, Zhang, Junhui, Zhou, Guoyi, Zona, Donatella, Agarwal, Deb, Biraud, Sebastien, Torn, Margaret, and Papale, Dario
- Abstract
The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions.
- Published
- 2021
10. Modeling the carbon balance of Amazonian rain forests; resolving ecological controls on net ecosystem productivity
- Author
-
Grant, R.F., Hutyra, L.R., De Oliveira, R.C., Munger, J.W., Saleska, S.R., and Wofsy, S.C.
- Subjects
Rain and rainfall -- Analysis ,Rain and rainfall -- Models ,Rain and rainfall -- Chemical properties ,Old growth forests -- Analysis ,Old growth forests -- Models ,Old growth forests -- Chemical properties ,Ecology -- Analysis ,Ecology -- Models ,Ecology -- Chemical properties ,Southern oscillation -- Analysis ,Southern oscillation -- Models ,Southern oscillation -- Chemical properties ,Ecosystems -- Analysis ,Ecosystems -- Models ,Ecosystems -- Chemical properties ,Rain forests -- Analysis ,Rain forests -- Models ,Rain forests -- Chemical properties ,Biological sciences ,Environmental issues - Abstract
There is still much uncertainty about ecological controls on the rate and direction of net C[O.sub.2] exchange by tropical rain forests, in spite of their importance to global C cycling. These controls are thought to arise from hydrologic and nutrient constraints to C[O.sub.2] fixation caused by seasonality of precipitation and adverse chemical properties of some major tropical soil types. Using the ecosystem model ecosys, we show that water uptake to a depth of 8 m avoids constraints to C[O.sub.2] and energy exchange from soil drying during five-month dry seasons typical for eastern Amazonian forests. This avoidance in the model was tested with eddy covariance (EC) measurements of C[O.sub.2] and energy fluxes during 2003 and 2004 over an old-growth forest on an acidic, nutrient-poor oxisol in the Tapajds National Forest (TNF) in Para, Brazil. Modeled C[O.sub.2] fixation was strongly constrained by slow phosphorus (P) uptake caused by low soil pH. Daytime C[O.sub.2] influxes in the model were in close agreement with EC measurements ([R.sup.2] > 0.8) during both wet and dry seasons. Both modeled and measured fluxes indicated that seasonality of precipitation affected C[O.sub.2] and energy exchange more through its effect on radiation and air temperature than on soil water content. When aggregated to a yearly scale, modeled and gap-filled EC C[O.sub.2] fluxes indicated that old-growth forest stands in the TNF remained within 100 g C*[m.sup.-2]*[yr.sup.-1] of C neutrality in the absence of major disturbance. Annual C transformations in ecosys were further corroborated by extensive biometric measurements taken in the TNF and elsewhere in the Amazon basin, which also indicated that old-growth forests were either small C sources or small C sinks. Long-term model runs suggested that rain forests could be substantial C sinks for several decades while regenerating after stand-replacing disturbances, but would gradually decline toward C neutrality thereafter. The time course of net ecosystem productivity (NEP) in the model depended upon annual rates of herbivory and tree mortality, which were based on site observations as affected by weather (e.g., El Nino Southern Oscillation [ENSO] events). This dependence suggests that rain forest NEP is strongly controlled by disturbance as well as by weather. Key words: Brazil; C[O.sub.2] exchange; disturbance; ecosys; ecosystem modeling; Her ecosystem productivity; rain forest.
- Published
- 2009
11. Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks
- Author
-
Ollinger, S.V., Richardson, A.D., Martin, M.E., Hollinger, D.Y., Frolking, S.E., Reich, P.B., Plourde, L.C., Katul, G.G., Munger, J.W., Oren, R., Smith, M.-L., U., K.T. Paw, Bolstad, P.V., Cook, B.D., Day, M.C., Martin, T.A., Monson, R.K., and Schmid, H.P.
- Subjects
Climatic changes -- Research ,Nitrogen cycle -- Research ,Carbon cycle (Biogeochemistry) -- Research ,Broadband transmission -- Usage ,Broadband Internet ,Science and technology - Abstract
The availability of nitrogen represents a key constraint on carbon cycling in terrestrial ecosystems, and it is largely in this capacity that the role of N in the Earth's climate system has been considered. Despite this, few studies have included continuous variation in plant N status as a driver of broad-scale carbon cycle analyses. This is partly because of uncertainties in how leaf-level physiological relationships scale to whole ecosystems and because methods for regional to continental detection of plant N concentrations have yet to be developed. Here, we show that ecosystem C[O.sub.2] uptake capacity in temperate and boreal forests scales directly with whole-canopy N concentrations, mirroring a leaf-level trend that has been observed for woody plants worldwide. We further show that both C[O.sub.2] uptake capacity and canopy N concentration are strongly and positively correlated with shortwave surface albedo. These results suggest that N plays an additional, and overlooked, role in the climate system via its influence on vegetation reflectivity and shortwave surface energy exchange. We also demonstrate that much of the spatial variation in canopy N can be detected by using broad-band satellite sensors, offering a means through which these findings can be applied toward improved application of coupled carbon cycle--climate models. nitrogen cycle | climate change | foliar nitrogen | ecosystem-climate feedback | remote sensing
- Published
- 2008
12. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
- Author
-
Pastorello, Gilberto, Trotta, Carlo, Canfora, Eleonora, Chu, Housen, Christianson, Danielle, Cheah, You Wei, Poindexter, Cristina, Chen, Jiquan, Elbashandy, Abdelrahman, Humphrey, Marty, Isaac, Peter, Polidori, Diego, Ribeca, Alessio, van Ingen, Catharine, Zhang, Leiming, Amiro, Brian, Ammann, Christof, Arain, M.A., Ardö, Jonas, Arkebauer, Timothy, Arndt, Stefan K., Arriga, Nicola, Aubinet, Marc, Aurela, Mika, Baldocchi, Dennis, Barr, Alan, Beamesderfer, Eric, Marchesini, Luca Belelli, Bergeron, Onil, Beringer, Jason, Bernhofer, Christian, Berveiller, Daniel, Billesbach, Dave, Black, Thomas Andrew, Blanken, Peter D., Bohrer, Gil, Boike, Julia, Bolstad, Paul V., Bonal, Damien, Bonnefond, Jean Marc, Bowling, David R., Bracho, Rosvel, Brodeur, Jason, Brümmer, Christian, Buchmann, Nina, Burban, Benoit, Burns, Sean P., Buysse, Pauline, Cale, Peter, Cavagna, Mauro, Cellier, Pierre, Chen, Shiping, Chini, Isaac, Christensen, Torben R., Cleverly, James, Collalti, Alessio, Consalvo, Claudia, Cook, Bruce D., Cook, David, Coursolle, Carole, Cremonese, Edoardo, Curtis, Peter S., D'Andrea, Ettore, da Rocha, Humberto, Dai, Xiaoqin, Davis, Kenneth J., De Cinti, Bruno, de Grandcourt, Agnes, De Ligne, Anne, De Oliveira, Raimundo C., Delpierre, Nicolas, Desai, Ankur R., Di Bella, Carlos Marcelo, di Tommasi, Paul, Dolman, Han, Domingo, Francisco, Dong, Gang, Dore, Sabina, Duce, Pierpaolo, Dufrêne, Eric, Dunn, Allison, Dušek, Jiří, Eamus, Derek, Eichelmann, Uwe, ElKhidir, Hatim Abdalla M., Eugster, Werner, Ewenz, Cacilia M., Ewers, Brent, Famulari, Daniela, Fares, Silvano, Feigenwinter, Iris, Feitz, Andrew, Fensholt, Rasmus, Filippa, Gianluca, Fischer, Marc, Frank, John, Galvagno, Marta, Gharun, Mana, Gianelle, Damiano, Gielen, Bert, Gioli, Beniamino, Gitelson, Anatoly, Goded, Ignacio, Goeckede, Mathias, Goldstein, Allen H., Gough, Christopher M., Goulden, Michael L., Graf, Alexander, Griebel, Anne, Gruening, Carsten, Grünwald, Thomas, Hammerle, Albin, Han, Shijie, Han, Xingguo, Hansen, Birger Ulf, Hanson, Chad, Hatakka, Juha, He, Yongtao, Hehn, Markus, Heinesch, Bernard, Hinko-Najera, Nina, Hörtnagl, Lukas, Hutley, Lindsay, Ibrom, Andreas, Ikawa, Hiroki, Jackowicz-Korczynski, Marcin, Janouš, Dalibor, Jans, Wilma, Jassal, Rachhpal, Jiang, Shicheng, Kato, Tomomichi, Khomik, Myroslava, Klatt, Janina, Knohl, Alexander, Knox, Sara, Kobayashi, Hideki, Koerber, Georgia, Kolle, Olaf, Kosugi, Yoshiko, Kotani, Ayumi, Kowalski, Andrew, Kruijt, Bart, Kurbatova, Julia, Kutsch, Werner L., Kwon, Hyojung, Launiainen, Samuli, Laurila, Tuomas, Law, Bev, Leuning, Ray, Li, Yingnian, Liddell, Michael, Limousin, Jean Marc, Lion, Marryanna, Liska, Adam J., Lohila, Annalea, López-Ballesteros, Ana, López-Blanco, Efrén, Loubet, Benjamin, Loustau, Denis, Lucas-Moffat, Antje, Lüers, Johannes, Ma, Siyan, Macfarlane, Craig, Magliulo, Vincenzo, Maier, Regine, Mammarella, Ivan, Manca, Giovanni, Marcolla, Barbara, Margolis, Hank A., Marras, Serena, Massman, William, Mastepanov, Mikhail, Matamala, Roser, Matthes, Jaclyn Hatala, Mazzenga, Francesco, McCaughey, Harry, McHugh, Ian, McMillan, Andrew M.S., Merbold, Lutz, Meyer, Wayne, Meyers, Tilden, Miller, Scott D., Minerbi, Stefano, Moderow, Uta, Monson, Russell K., Montagnani, Leonardo, Moore, Caitlin E., Moors, Eddy, Moreaux, Virginie, Moureaux, Christine, Munger, J.W., Nakai, Taro, Neirynck, Johan, Nesic, Zoran, Nicolini, Giacomo, Noormets, Asko, Northwood, Matthew, Nosetto, Marcelo, Nouvellon, Yann, Novick, Kimberly, Oechel, Walter, Olesen, Jørgen Eivind, Ourcival, Jean Marc, Papuga, Shirley A., Parmentier, Frans Jan, Paul-Limoges, Eugenie, Pavelka, Marian, Peichl, Matthias, Pendall, Elise, Phillips, Richard P., Pilegaard, Kim, Pirk, Norbert, Posse, Gabriela, Powell, Thomas, Prasse, Heiko, Prober, Suzanne M., Rambal, Serge, Rannik, Üllar, Raz-Yaseef, Naama, Reed, David, de Dios, Victor Resco, Restrepo-Coupe, Natalia, Reverter, Borja R., Roland, Marilyn, Sabbatini, Simone, Sachs, Torsten, Saleska, Scott R., Sánchez-Cañete, Enrique P., Sanchez-Mejia, Zulia M., Schmid, Hans Peter, Schmidt, Marius, Schneider, Karl, Schrader, Frederik, Schroder, Ivan, Scott, Russell L., Sedlák, Pavel, Serrano-Ortíz, Penélope, Shao, Changliang, Shi, Peili, Shironya, Ivan, Siebicke, Lukas, Šigut, Ladislav, Silberstein, Richard, Sirca, Costantino, Spano, Donatella, Steinbrecher, Rainer, Stevens, Robert M., Sturtevant, Cove, Suyker, Andy, Tagesson, Torbern, Takanashi, Satoru, Tang, Yanhong, Tapper, Nigel, Thom, Jonathan, Tiedemann, Frank, Tomassucci, Michele, Tuovinen, Juha Pekka, Urbanski, Shawn, Valentini, Riccardo, van der Molen, Michiel, van Gorsel, Eva, van Huissteden, Ko, Varlagin, Andrej, Verfaillie, Joseph, Vesala, Timo, Vincke, Caroline, Vitale, Domenico, Vygodskaya, Natalia, Walker, Jeffrey P., Walter-Shea, Elizabeth, Wang, Huimin, Weber, Robin, Westermann, Sebastian, Wille, Christian, Wofsy, Steven, Wohlfahrt, Georg, Wolf, Sebastian, Woodgate, William, Li, Yuelin, Zampedri, Roberto, Zhang, Junhui, Zhou, Guoyi, Zona, Donatella, Agarwal, Deb, Biraud, Sebastien, Torn, Margaret, Papale, Dario, Pastorello, Gilberto, Trotta, Carlo, Canfora, Eleonora, Chu, Housen, Christianson, Danielle, Cheah, You Wei, Poindexter, Cristina, Chen, Jiquan, Elbashandy, Abdelrahman, Humphrey, Marty, Isaac, Peter, Polidori, Diego, Ribeca, Alessio, van Ingen, Catharine, Zhang, Leiming, Amiro, Brian, Ammann, Christof, Arain, M.A., Ardö, Jonas, Arkebauer, Timothy, Arndt, Stefan K., Arriga, Nicola, Aubinet, Marc, Aurela, Mika, Baldocchi, Dennis, Barr, Alan, Beamesderfer, Eric, Marchesini, Luca Belelli, Bergeron, Onil, Beringer, Jason, Bernhofer, Christian, Berveiller, Daniel, Billesbach, Dave, Black, Thomas Andrew, Blanken, Peter D., Bohrer, Gil, Boike, Julia, Bolstad, Paul V., Bonal, Damien, Bonnefond, Jean Marc, Bowling, David R., Bracho, Rosvel, Brodeur, Jason, Brümmer, Christian, Buchmann, Nina, Burban, Benoit, Burns, Sean P., Buysse, Pauline, Cale, Peter, Cavagna, Mauro, Cellier, Pierre, Chen, Shiping, Chini, Isaac, Christensen, Torben R., Cleverly, James, Collalti, Alessio, Consalvo, Claudia, Cook, Bruce D., Cook, David, Coursolle, Carole, Cremonese, Edoardo, Curtis, Peter S., D'Andrea, Ettore, da Rocha, Humberto, Dai, Xiaoqin, Davis, Kenneth J., De Cinti, Bruno, de Grandcourt, Agnes, De Ligne, Anne, De Oliveira, Raimundo C., Delpierre, Nicolas, Desai, Ankur R., Di Bella, Carlos Marcelo, di Tommasi, Paul, Dolman, Han, Domingo, Francisco, Dong, Gang, Dore, Sabina, Duce, Pierpaolo, Dufrêne, Eric, Dunn, Allison, Dušek, Jiří, Eamus, Derek, Eichelmann, Uwe, ElKhidir, Hatim Abdalla M., Eugster, Werner, Ewenz, Cacilia M., Ewers, Brent, Famulari, Daniela, Fares, Silvano, Feigenwinter, Iris, Feitz, Andrew, Fensholt, Rasmus, Filippa, Gianluca, Fischer, Marc, Frank, John, Galvagno, Marta, Gharun, Mana, Gianelle, Damiano, Gielen, Bert, Gioli, Beniamino, Gitelson, Anatoly, Goded, Ignacio, Goeckede, Mathias, Goldstein, Allen H., Gough, Christopher M., Goulden, Michael L., Graf, Alexander, Griebel, Anne, Gruening, Carsten, Grünwald, Thomas, Hammerle, Albin, Han, Shijie, Han, Xingguo, Hansen, Birger Ulf, Hanson, Chad, Hatakka, Juha, He, Yongtao, Hehn, Markus, Heinesch, Bernard, Hinko-Najera, Nina, Hörtnagl, Lukas, Hutley, Lindsay, Ibrom, Andreas, Ikawa, Hiroki, Jackowicz-Korczynski, Marcin, Janouš, Dalibor, Jans, Wilma, Jassal, Rachhpal, Jiang, Shicheng, Kato, Tomomichi, Khomik, Myroslava, Klatt, Janina, Knohl, Alexander, Knox, Sara, Kobayashi, Hideki, Koerber, Georgia, Kolle, Olaf, Kosugi, Yoshiko, Kotani, Ayumi, Kowalski, Andrew, Kruijt, Bart, Kurbatova, Julia, Kutsch, Werner L., Kwon, Hyojung, Launiainen, Samuli, Laurila, Tuomas, Law, Bev, Leuning, Ray, Li, Yingnian, Liddell, Michael, Limousin, Jean Marc, Lion, Marryanna, Liska, Adam J., Lohila, Annalea, López-Ballesteros, Ana, López-Blanco, Efrén, Loubet, Benjamin, Loustau, Denis, Lucas-Moffat, Antje, Lüers, Johannes, Ma, Siyan, Macfarlane, Craig, Magliulo, Vincenzo, Maier, Regine, Mammarella, Ivan, Manca, Giovanni, Marcolla, Barbara, Margolis, Hank A., Marras, Serena, Massman, William, Mastepanov, Mikhail, Matamala, Roser, Matthes, Jaclyn Hatala, Mazzenga, Francesco, McCaughey, Harry, McHugh, Ian, McMillan, Andrew M.S., Merbold, Lutz, Meyer, Wayne, Meyers, Tilden, Miller, Scott D., Minerbi, Stefano, Moderow, Uta, Monson, Russell K., Montagnani, Leonardo, Moore, Caitlin E., Moors, Eddy, Moreaux, Virginie, Moureaux, Christine, Munger, J.W., Nakai, Taro, Neirynck, Johan, Nesic, Zoran, Nicolini, Giacomo, Noormets, Asko, Northwood, Matthew, Nosetto, Marcelo, Nouvellon, Yann, Novick, Kimberly, Oechel, Walter, Olesen, Jørgen Eivind, Ourcival, Jean Marc, Papuga, Shirley A., Parmentier, Frans Jan, Paul-Limoges, Eugenie, Pavelka, Marian, Peichl, Matthias, Pendall, Elise, Phillips, Richard P., Pilegaard, Kim, Pirk, Norbert, Posse, Gabriela, Powell, Thomas, Prasse, Heiko, Prober, Suzanne M., Rambal, Serge, Rannik, Üllar, Raz-Yaseef, Naama, Reed, David, de Dios, Victor Resco, Restrepo-Coupe, Natalia, Reverter, Borja R., Roland, Marilyn, Sabbatini, Simone, Sachs, Torsten, Saleska, Scott R., Sánchez-Cañete, Enrique P., Sanchez-Mejia, Zulia M., Schmid, Hans Peter, Schmidt, Marius, Schneider, Karl, Schrader, Frederik, Schroder, Ivan, Scott, Russell L., Sedlák, Pavel, Serrano-Ortíz, Penélope, Shao, Changliang, Shi, Peili, Shironya, Ivan, Siebicke, Lukas, Šigut, Ladislav, Silberstein, Richard, Sirca, Costantino, Spano, Donatella, Steinbrecher, Rainer, Stevens, Robert M., Sturtevant, Cove, Suyker, Andy, Tagesson, Torbern, Takanashi, Satoru, Tang, Yanhong, Tapper, Nigel, Thom, Jonathan, Tiedemann, Frank, Tomassucci, Michele, Tuovinen, Juha Pekka, Urbanski, Shawn, Valentini, Riccardo, van der Molen, Michiel, van Gorsel, Eva, van Huissteden, Ko, Varlagin, Andrej, Verfaillie, Joseph, Vesala, Timo, Vincke, Caroline, Vitale, Domenico, Vygodskaya, Natalia, Walker, Jeffrey P., Walter-Shea, Elizabeth, Wang, Huimin, Weber, Robin, Westermann, Sebastian, Wille, Christian, Wofsy, Steven, Wohlfahrt, Georg, Wolf, Sebastian, Woodgate, William, Li, Yuelin, Zampedri, Roberto, Zhang, Junhui, Zhou, Guoyi, Zona, Donatella, Agarwal, Deb, Biraud, Sebastien, Torn, Margaret, and Papale, Dario
- Abstract
The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
- Published
- 2020
13. Net exchange of CO2 in a mid-latitude forest
- Author
-
Wofsky, S.C., Goulden, M.L., Munger, J.W., Bakwin, P.S., Daube, B.C., Bassow, S.L., and Bazzaz, F.A.
- Subjects
Atmospheric carbon dioxide -- Research -- Environmental aspects ,Forests and forestry -- Environmental aspects -- Research ,Science and technology ,Research ,Environmental aspects - Abstract
The eddy correlation method was used to measure the net ecosystem exchange of carbon dioxide continuously from April 1990 to December 1991 in a deciduous forest in central Massachusetts. The annual net uptake was 3.7 ± 0.7 metric tons of carbon per hectare per year. Ecosystem respiration, calculated from the relation between nighttime exchange and soil temperature, was 7.4 metric tons of carbon per hectare per year, implying gross ecosystem production of 11.1 metric tons of carbon per hectare per year. The observed rate of accumulation of carbon reflects recovery from agricultural development in the 1800s. Carbon uptake rates were notably larger than those assumed for temperate forests in global carbon studies. Carbon storage in temperate forests can play an important role in determining future concentrations of atmospheric carbon dioxide., Combustion of fossil fuel releases [difference] 5.5 Gt of carbon per year (1 Gt = [10.sup.9] metric tons) to the atmosphere (1), with an additional 1 to 2 Gt [year.sup.-1] [...]
- Published
- 1993
14. Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation
- Author
-
Turner, David P., Ritts, William D., Cohen, Warren B., Gower, Stith T., Zhao, Maosheng, Running, Steve W., Wofsy, Steven C., Urbanski, Shawn, Dunn, Allison L., and Munger, J.W.
- Published
- 2003
- Full Text
- View/download PDF
15. Atmospheric deposition, CO2, and change in the land carbon sink
- Author
-
Fernández-Martínez, M., Vicca, S., Janssens, I.A., Ciais, P., Obersteiner, M., Bartrons, M., Sardans, J., Verger, A., Canadell, J.G., Chevallier, F., Wang, X., Bernhofer, C., Curtis, P.S., Gianelle, D., Grünwald, T., Heinesch, B., Ibrom, A., Knohl, A., Laurila, T., Law, B.E., Limousin, J.M., Longdoz, B., Loustau, D., Mammarella, I., Matteucci, G., Monson, R.K., Montagnani, L., Moors, E.J., Munger, J.W., Papale, D., Piao, S.L., Peñuelas, J., Fernández-Martínez, M., Vicca, S., Janssens, I.A., Ciais, P., Obersteiner, M., Bartrons, M., Sardans, J., Verger, A., Canadell, J.G., Chevallier, F., Wang, X., Bernhofer, C., Curtis, P.S., Gianelle, D., Grünwald, T., Heinesch, B., Ibrom, A., Knohl, A., Laurila, T., Law, B.E., Limousin, J.M., Longdoz, B., Loustau, D., Mammarella, I., Matteucci, G., Monson, R.K., Montagnani, L., Moors, E.J., Munger, J.W., Papale, D., Piao, S.L., and Peñuelas, J.
- Abstract
Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling.
- Published
- 2017
16. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis
- Author
-
Anderson, R., Poulter, B., Matamala, R., Lokipitiya, E., Chen, J.M., Verbeeck, H., Davis, K.J., Weng, E., Curtis, P.S., Tonitto, C., Munger, J.W., Ricciuto, D., Chen, J., Gu, L., Humphreys, E., Desai, A.R., Price, D.T., Raczka, B.M., Zhou, X., Peng, C., Torn, M., Hollinger, D.Y., Riley, W.J., Roulet, N., Black, A., Bolstad, P., Baker, I., Thornton, P., Monson, R., Jain, A., Law, B., Gough, C., Margolis, H.A., Dimitrov, D., Grant, R.F., Liu, S., McCaughey, J.H., Hilton, T.W., Sahoo, A., Dietze, M., Schaefer, K., Williams, C., Dragoni, D., Tian, H., Vargas, R., Schwalm, C.R., Richardson, A.D., Oechel, W., Kucharik, C., Barr, A., and Altaf Arain, M.
- Published
- 2012
- Full Text
- View/download PDF
17. Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis
- Author
-
Black, T.A., Izaurralde, R.C., Lokupitiya, E., Munger, J.W., Schaefer, K., Weng, E., Richardson, A.D., Altaf Arain, M., Luo, Y., Ciais, P., Ricciuto, D.M., Stoy, P.C., Dietze, M.C., Poulter, B., Barr, A.G., Liu, S., Hollinger, D., Tian, H., Suyker, A.E., Verbeeck, H., Price, D.T., Grant, R.F., Peng, C., Baker, I.T., Vargas, R., Anderson, R.S., Tonitto, C., Sahoo, A.K., Chen, J.M., Flanagan, L.B., Riley, W.J., Wang, W., Lafleur, P., Gough, C.M., Verma, S.B., and Kucharik, C.J.
- Published
- 2011
- Full Text
- View/download PDF
18. Toward a consistency cross-check of eddy covariance flux-based and biometric estimates of ecosystem carbon balance
- Author
-
Luyssaert, S., Reichstein, M., Schulze, E.D., Janssens, I.A., Law, B.E., Papale, D., Dragoni, D., Goulden, M.L., Granier, A., Kutch, W.L., Linder, S., Matteucci, G., Moors, E.J., Munger, J.W., Pilegaard, K., Saunders, M., Falge, E.M., Systems Ecology, and Earth and Climate
- Subjects
schattingen ,european forests ,biometry ,biometrie ,netto ecosysteem koolstofbalans ,soil co2 efflux ,water-vapor exchange ,mixed hardwood forest ,CHAMBER MEASUREMENTS ,eddy covariance ,NET PRIMARY PRODUCTION ,Physical Sciences and Mathematics ,net ecosystem carbon balance ,BEECH FOREST ,meetsystemen ,Biology ,beech forest ,EUROPEAN FORESTS ,WIMEK ,eddy-covariantie ,estimates ,net primary production ,GROSS PRIMARY PRODUCTION ,net ecosystem production ,Leerstoelgroep Bodemnatuurkunde, ecohydrologie en grondwaterbeheer ,gross primary production ,ponderosa pine forests ,Chemistry ,heterotrophic respiration ,Soil Physics, Ecohydrology and Groundwater Management ,measurement systems ,spatial variability ,primaire productie ,autotrophic respiration ,chamber measurements ,primary production - Abstract
Quantification of an ecosystem's carbon balance and its components is pivotal for understanding both ecosystem functioning and global cycling. Several methods are being applied in parallel to estimate the different components of the CO2 balance. However, different methods are subject to different sources of error. Therefore, it is necessary that site level component estimates are cross-checked against each other before being reported. Here we present a two-step approach for testing the accuracy and consistency of eddy covariance-based gross primary production (GPP) and ecosystem respiration (Re) estimates with biometric measurements of net primary production (NPP), autotrophic (Ra) and heterotrophic (Rh) respiration. The test starts with closing the CO2 balance to account for reasonable errors in each of the component fluxes. Failure to do so within the constraints will classify the flux estimates on the site level as inconsistent. If the CO2 balance can be closed, the test continues by comparing the closed site level Ra/GPP with the Rh/GPP ratio. The consistency of these ratios is then judged against expert knowledge. Flux estimates of sites that pass both steps are considered consistent. An inconsistent ratio is not necessarily incorrect but provides a signal for careful data screening that may require further analysis to identify the possible biological reasons of the unexpected ratios. We reviewed the literature and found 16 sites, out of a total of 529 research forest sites, that met the data requirements for the consistency test. Thirteen of these sites passed both steps of the consistency cross-check. Subsequently, flux ratios (NPP/GPP, Rh/NPP, Rh/Re, and Re/GPP) were calculated for the consistent sites. Similar ratios were observed at sites which lacked information to check consistency, indicating that the flux data that are currently used for validating models and testing ecological hypotheses are largely consistent across a wide range of site productivities. Confidence in the output of flux networks could be further enhanced if the required fluxes are independently estimated at all sites for multiple years and harmonized methods are used. [References: 99]
- Published
- 2009
- Full Text
- View/download PDF
19. CO2 balance of boreal, temperate, and tropical forests
- Author
-
Luyssaert, S., Inglima, I., Jungs, M., Richardson, A., Reichsteins, M., Papale, D., Piao, S.L., Schulzes, E.D., Wingate, L., Matteucci, G., Aragaoss, L., Aubinet, M., van Beers, C., Bernhofer, C., Black, K.G., Bonal, D., Bonnefonds, J.M., Chambers, J., Ciais, P., Cook, B., Davis, K.J., Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grunwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R., Kolari, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B.E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrief, J., Moors, E.J., Munger, J.W., Nikinmaa, E., Ollinger, S.V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith, M., Tang, J., Valentini, R., Vesala, T., and Janssens, I.A.
- Subjects
carbon-dioxide exchange ,net primary production ,black spruce forests ,gross primary production ,ponderosa pine forests ,amazonian rain-forest ,water-vapor exchange ,broad-leaved forest ,Alterra - Centre for Water and Climate ,Wageningen Environmental Research ,eddy-covariance measurements ,Alterra - Centrum Water en Klimaat ,total soil respiration - Abstract
Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.
- Published
- 2007
20. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements
- Author
-
Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, Paul, Bernhofer, C., Burba, G., Clement, R., Davis, K.J., Elbers, J.A., Goldstein, A.H., Grelle, A., Granier, A., Guomundsson, J., Hollinger, D., Kowalski, A.S., Katul, G., Law, B.E., Malhi, Y., Meyers, T., Monson, R.K., Munger, J.W., Oechel, W., Tha Paw, K., Unité de bioclimatologie, Institut National de la Recherche Agronomique (INRA), Unité d'écophysiologie forestière, and ProdInra, Migration
- Subjects
[SDV.SA.SF]Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry ,[SDV.SA.SF] Life Sciences [q-bio]/Agricultural sciences/Silviculture, forestry ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2002
21. Influence of spring and autumn phenological transitions on forest ecosystem productivity
- Author
-
Richardson, A.D., Black, T.A., Ciais, P., Delbart, N., Friedl, M.A., Gobron, N., Hollinger, D.Y., Kutsch, W.L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., Munger, J.W., Moors, E., Piao, S., Rebmann, Corinna, Reichstein, M., Saigusa, N., Tomelleri, E., Vargas, R., Varlagin, A., Richardson, A.D., Black, T.A., Ciais, P., Delbart, N., Friedl, M.A., Gobron, N., Hollinger, D.Y., Kutsch, W.L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., Munger, J.W., Moors, E., Piao, S., Rebmann, Corinna, Reichstein, M., Saigusa, N., Tomelleri, E., Vargas, R., and Varlagin, A.
- Abstract
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.
- Published
- 2010
22. Climate control of terrestrial carbon exchange across biomes and continents
- Author
-
Yi, C., Ricciuto, D., Li, R., Wolbeck, J., Xu, X., Nilsson, M., Aires, L., Albertson, J.D., Ammann, C., Arain, M.A., de Araujo, A.C., Aubinet, M., Aurela, M., Barcza, Z., Barr, A., Berbigier, P., Beringer, J., Bernhofer, C., Black, A.T., Bolstad, P.V., Bosveld, F.C., Broadmeadow, M.S.J., Buchmann, N., Burns, S.P., Cellier, P., Chen, J., Ciais, P., Clement, R., Cook, B.D., Curtis, P.S., Dail, D.B., Massman, W.J., Matamala, R., Matteucci, G., McCoughey, H., Merbold, L., Meyers, T., Migliavacca, M., Miglietta, F., Misson, L., Mölder, M., Moncrieff, J., Monson, R.K., Montagnani, L., Montes-Helu, M., Moors, E., Moureaux, C., Mukelabai, M.M., Munger, J.W., Myklebust, M., Nagy, Z., Noormets, A., Oechel, W., Oren, R., Pallardy, S.G., Paw U, K.T., Pereira, J.S., Pilegaard, K., Pinter, K., Pio, C., Pita, G., Powell, T.L., Rambal, S., Randerson, J.T., von Randow, C., Rebmann, Corinna, Rinne, J., Rossi, F., Roulet, N., Ryel, R.J., Sagerfors, J., Saigusa, N., Sanz, M.J., Mugnozza, G.-S., Schmid, H.P., Seufert, G., Siqueira, M., Soussana, J.-F., Starr, G., Sutton, M.A., Tenhunen, J., Tuba, Z., Tuovinen, J.-P., Valentini, R., Vogel, C.S., Wang, J., Wang, S., Wang, W., Welp, L.R., Wen, X., Wharton, S., Wilkinson, M., Williams, C.A., Wohlfahrt, G., Yamamoto, S., Yu, G., Zampedri, R., Zhao, B., Zhao, X., Yi, C., Ricciuto, D., Li, R., Wolbeck, J., Xu, X., Nilsson, M., Aires, L., Albertson, J.D., Ammann, C., Arain, M.A., de Araujo, A.C., Aubinet, M., Aurela, M., Barcza, Z., Barr, A., Berbigier, P., Beringer, J., Bernhofer, C., Black, A.T., Bolstad, P.V., Bosveld, F.C., Broadmeadow, M.S.J., Buchmann, N., Burns, S.P., Cellier, P., Chen, J., Ciais, P., Clement, R., Cook, B.D., Curtis, P.S., Dail, D.B., Massman, W.J., Matamala, R., Matteucci, G., McCoughey, H., Merbold, L., Meyers, T., Migliavacca, M., Miglietta, F., Misson, L., Mölder, M., Moncrieff, J., Monson, R.K., Montagnani, L., Montes-Helu, M., Moors, E., Moureaux, C., Mukelabai, M.M., Munger, J.W., Myklebust, M., Nagy, Z., Noormets, A., Oechel, W., Oren, R., Pallardy, S.G., Paw U, K.T., Pereira, J.S., Pilegaard, K., Pinter, K., Pio, C., Pita, G., Powell, T.L., Rambal, S., Randerson, J.T., von Randow, C., Rebmann, Corinna, Rinne, J., Rossi, F., Roulet, N., Ryel, R.J., Sagerfors, J., Saigusa, N., Sanz, M.J., Mugnozza, G.-S., Schmid, H.P., Seufert, G., Siqueira, M., Soussana, J.-F., Starr, G., Sutton, M.A., Tenhunen, J., Tuba, Z., Tuovinen, J.-P., Valentini, R., Vogel, C.S., Wang, J., Wang, S., Wang, W., Welp, L.R., Wen, X., Wharton, S., Wilkinson, M., Williams, C.A., Wohlfahrt, G., Yamamoto, S., Yu, G., Zampedri, R., Zhao, B., and Zhao, X.
- Abstract
Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45°N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 °C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
- Published
- 2010
23. Atmospheric science - Ultraviolet light and leaf emission of NOx
- Author
-
Hari, P., Raivonen, M., Vesala, T., Munger, J.W., Pilegaard, K., Kulmala, M., Hari, P., Raivonen, M., Vesala, T., Munger, J.W., Pilegaard, K., and Kulmala, M.
- Published
- 2003
24. AmeriFlux Radiological and Meteorological Data for Harvard Forest Site
- Author
-
Munger,, J.W., primary, Wofsy,, S., primary, Davidson,, E., primary, Fitzjarrald,, D., primary, and Varner,, R., primary
- Published
- 2009
- Full Text
- View/download PDF
25. Ameriflux Biological Data Template for Harvard Forest Site
- Author
-
Munger,, J.W., primary, Wofsy,, S., primary, Davidson,, E., primary, Werden,, L., primary, and Pyle,, E.H., primary
- Published
- 2008
- Full Text
- View/download PDF
26. Climatologies of NOxx and NOy: A comparison of data and models
- Author
-
Emmons, L.K., primary, Carroll, M.A., additional, Hauglustaine, D.A., additional, Brasseur, G.P., additional, Atherton, C., additional, Penner, J., additional, Sillman, S., additional, Levy, H., additional, Rohrer, F., additional, Wauben, W.M.F., additional, Van Velthoven, P.F.J., additional, Wang, Y., additional, Jacob, D., additional, Bakwin, P., additional, Dickerson, R., additional, Doddridge, B., additional, Gerbig, C., additional, Honrath, R., additional, Hübler, G., additional, Jaffe, D., additional, Kondo, Y., additional, Munger, J.W., additional, Torres, A., additional, and Volz-Thomas, A., additional
- Published
- 1997
- Full Text
- View/download PDF
27. Modelling temporal variability in the carbon balance of a spruce/moss boreal forest
- Author
-
FROLKING, S., primary, GOULDEN, M.L., additional, WOFSY, S.C., additional, FAN, S-M., additional, SUTTON, D.J., additional, MUNGER, J.W., additional, BAZZAZ, A. M., additional, DAUBE, B.C., additional, CRILL, P. M., additional, ABER, J. D., additional, BAND, L.E., additional, WANG, X., additional, SAVAGE, K., additional, MOORE, T., additional, and HARRISS, R.C., additional
- Published
- 1996
- Full Text
- View/download PDF
28. Long-term eddy covariance measurements of the isotopic composition of the ecosystem–atmosphere exchange of CO2 in a temperate forest.
- Author
-
Wehr, R., Munger, J.W., Nelson, D.D., McManus, J.B., Zahniser, M.S., Wofsy, S.C., and Saleska, S.R.
- Subjects
- *
EDDY flux , *MASS spectrometry , *PHOTOSYNTHESIS , *CARBON dioxide , *LASER spectroscopy , *SOIL respiration - Abstract
Highlights: [•] We directly measure the isotopic composition of NEE in a forest by eddy covariance. [•] Precision is limited both by instrument noise and by horizontal heterogeneity. [•] Precision is sufficient to partition NEE into photosynthesis and respiration. [•] The ‘EC/flask’ indirect flux measurement method can be biased by 2‰. [•] Laser spectrometer accuracy is on par with isotope ratio mass spectrometry. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
29. An ecosystem-scale perspective of the net land methanol flux: Synthesis of micrometeorological flux measurements
- Author
-
Wohlfahrt, G., Amelynck, C., Ammann, C., Arneth, A., Bamberger, I., Goldstein, A.H., Gu, L., Guenther, A., Hansel, A., Heinesch, B., Holst, T., Hörtnagl, L., Karl, T., Laffineur, Q., Neftel, A., McKinney, K., Munger, J.W., Pallardy, S.G., Schade, G.W., Seco, R., and Schoon, N.
- Subjects
13. Climate action ,15. Life on land
30. Climatologies of NO xx and NO y: A comparison of data and models
- Author
-
Emmons, L.K., Carroll, M.A., Hauglustaine, D.A., Brasseur, G.P., Atherton, C., Penner, J., Sillman, S., Levy, H., II, Rohrer, F., Wauben, W.M.F., Van Velthoven, P.F.J., Wang, Y., Jacob, D., Bakwin, P., Dickerson, R., Doddridge, B., Gerbig, C., Honrath, R., Hübler, G., Jaffe, D., Kondo, Y., Munger, J.W., Torres, A., and Volz-Thomas, A.
- Published
- 1997
- Full Text
- View/download PDF
31. Effective line strengths of trans-nitrous acid near 1275cm−1 and cis-nitrous acid at 1660cm−1
- Author
-
Lee, B.H., Wood, E.C., Wormhoudt, J., Shorter, J.H., Herndon, S.C., Zahniser, M.S., and Munger, J.W.
- Subjects
- *
STRENGTH of materials , *NITROUS acid , *SPECTRUM analysis , *INFRARED lasers , *QUANTUM cascade lasers , *NITRIC oxide - Abstract
Abstract: We determined the effective line strengths of the trans conformer of nitrous acid (HONO) near 1275cm−1 (R-branch of ν 3 mode, NOH bend) and of the cis conformer at 1660cm−1 (R-branch of ν 2 mode, NO stretch), both at a spectral resolution of 0.001cm−1 by tunable infrared laser differential absorption spectroscopy (TILDAS) utilizing continuous-wave quantum cascade (cw-QC) lasers. Absorbance of one conformer was measured while simultaneously quantifying the mixing ratio of total HONO by catalytic conversion to nitric oxide (NO) followed by calibrated absorption spectroscopy. Line strengths obtained here are consistent with previously reported band strengths for the trans conformer but are lower by a factor of approximately 2.4 for the cis conformer. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.