1. Multiple datasets to explore the tumor microenvironment of cutaneous squamous cell carcinoma
- Author
-
Jiahua Xing, Muzi Chen, and Yan Han
- Subjects
cutaneous squamous carcinoma ,tumor microenvironment ,tumor infiltrating immunocyte ,bioinformatics ,immune infiltration analysis ,Biotechnology ,TP248.13-248.65 ,Mathematics ,QA1-939 - Abstract
Background: Cutaneous squamous cell carcinoma (cSCC) is one of the most frequent types of cutaneous cancer. The composition and heterogeneity of the tumor microenvironment significantly impact patient prognosis and the ability to practice precision therapy. However, no research has been conducted to examine the design of the tumor microenvironment and its interactions with cSCC. Material and Methods: We retrieved the datasets GSE42677 and GSE45164 from the GEO public database, integrated them, and analyzed them using the SVA method. We then screened the core genes using the WGCNA network and LASSO regression and checked the model's stability using the ROC curve. Finally, we performed enrichment and correlation analyses on the core genes. Results: We identified four genes as core cSCC genes: DTYMK, CDCA8, PTTG1 and MAD2L1, and discovered that RORA, RORB and RORC were the primary regulators in the gene set. The GO semantic similarity analysis results indicated that CDCA8 and PTTG1 were the two most essential genes among the four core genes. The results of correlation analysis demonstrated that PTTG1 and HLA-DMA, CDCA8 and HLA-DQB2 were significantly correlated. Conclusions: Examining the expression levels of four primary genes in cSCC aids in our understanding of the disease's pathophysiology. Additionally, the core genes were found to be highly related with immune regulatory genes, suggesting novel avenues for cSCC prevention and treatment.
- Published
- 2022
- Full Text
- View/download PDF