121 results on '"N. Haag"'
Search Results
2. Fire promotes pollinator visitation: implications for ameliorating declines of pollination services.
- Author
-
Michael E Van Nuland, Elliot N Haag, Jessica A M Bryant, Quentin D Read, Robert N Klein, Morgan J Douglas, Courtney E Gorman, Trey D Greenwell, Mark W Busby, Jonathan Collins, Joseph T Leroy, George Schuchmann, Jennifer A Schweitzer, and Joseph K Bailey
- Subjects
Medicine ,Science - Abstract
Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue.
- Published
- 2013
- Full Text
- View/download PDF
3. Epitaxial growth of thermally stable cobalt films on Au(111)
- Author
-
N Haag, M Laux, J Stöckl, J Kollamana, J Seidel, N Großmann, R Fetzer, L L Kelly, Z Wei, B Stadtmüller, M Cinchetti, and M Aeschlimann
- Subjects
thin films ,structure formation ,spin-dependent valence band structure ,chemical composition ,ferromagnetic material ,Science ,Physics ,QC1-999 - Abstract
Ferromagnetic thin films play a fundamental role in spintronic applications as a source for spin polarized carriers and in fundamental studies as ferromagnetic substrates. However, it is challenging to produce such metallic films with high structural quality and chemical purity on single crystalline substrates since the diffusion barrier across the metal-metal interface is usually smaller than the thermal activation energy necessary for smooth surface morphologies. Here, we introduce epitaxial thin Co films grown on an Au(111) single crystal surface as a thermally stable ferromagnetic thin film. Our structural investigations reveal an identical growth of thin Co/Au(111) films compared to Co bulk single crystals with large monoatomic Co terraces with an average width of 500 Å, formed after thermal annealing at 575 K. Combining our results from photoemission and Auger electron spectroscopy, we provide evidence that no significant diffusion of Au into the near surface region of the Co film takes place for this temperature and that no Au capping layer is formed on top of Co films. Furthermore, we show that the electronic valence band is dominated by a strong spectral contribution from a Co 3d band and a Co derived surface resonance in the minority band. Both states lead to an overall negative spin polarization at the Fermi energy.
- Published
- 2016
- Full Text
- View/download PDF
4. General methods for determining projective invariants in imagery.
- Author
-
Eamon B. Barrett, Paul M. Payton, Nils N. Haag, and Michael H. Brill
- Published
- 1991
- Full Text
- View/download PDF
5. Invariants under image perspective transformations: Theory and examples.
- Author
-
Eamon B. Barrett, Paul M. Payton, Michael H. Brill, and Nils N. Haag
- Published
- 1990
- Full Text
- View/download PDF
6. Background-independent measurement of θ13 in Double Chooz
- Author
-
Z. Djurcic, A. Stahl, M. Kuze, Christian Buck, B. Rybolt, J. Spitz, J. Maricic, Amanda Porta, H. de Kerret, D. Dietrich, R. Santorelli, J. M. López-Castaño, I. M. Pepe, P. Chimenti, Muriel Fallot, P. Novella, C. Grant, Yuri Kamyshkov, T. Matsubara, Y. Sakamoto, L. B. Bezrukov, M. Franke, J. Haser, A.C. Schilithz, V. Zimmer, A. Cucoanes, Florian Kaether, P.-J. Chang, I. Bekman, J. Felde, D. Franco, R. Carr, R. Sharankova, E. Kemp, N. Vassilopoulos, C. Mariani, J. C. dos Anjos, A.V. Etenko, J.V. Dawson, A. Minotti, Yoshio Abe, Josef Jochum, V. Sibille, J. M. LoSecco, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, A. Stüken, F. Sato, F. von Feilitzsch, C. Palomares, I. Gil-Botella, A. Hourlier, Lydie Giot, Audrey Letourneau, E. Damon, M. Röhling, M. Vivier, D. Kryn, Sebastian Wagner, Anselmo Meregaglia, Y. Nikitenko, Daniel M. Kaplan, G. Yang, Marcos Cerrada, M. Elnimr, Manfred Lindner, H. P. Lima, Antoine Collin, J. Reichenbacher, Robert Svoboda, Eric Baussan, S. M. Fernandes, V. V. Sinev, Bayarto Lubsandorzhiev, Marcos Dracos, S. Schönert, T. Sumiyoshi, J. Busenitz, Kazuhiro Terao, Stefan Schoppmann, David Lhuillier, Lothar Oberauer, Thierry Lasserre, G. Mention, J. C. Barriere, L. Camilleri, M. Göger-Neff, M. Obolensky, S. Shimojima, Anatael Cabrera, F. Yermia, Christopher Wiebusch, G. A. Valdiviesso, I. Stancu, Michael Hofmann, Cécile Jollet, B. Reinhold, G. A. Horton-Smith, L. N. Kalousis, T.J.C. Bezerra, Matthew L Strait, H. H. Trinh Thi, M. C. Goodman, S. Roth, Yasushi Nagasaka, H. Furuta, M. H. Shaevitz, E. Conover, G. Pronost, A. Onillon, T. Kawasaki, S. Perasso, S. V. Sukhotin, A. Osborn, E. Smith, J. Maeda, J. Martino, N. Haag, Luis González, L. Goodenough, A. Tonazzo, E. Blucher, T. Miletic, Janet Conrad, R. Milincic, T. Konno, F. Suekane, L.F.F. Stokes, Tobias Lachenmaier, K. Nakajima, R. Roncin, Ying Sun, T. Hara, M. Bergevin, K. Crum, J. I. Crespo-Anadón, V. Fischer, S. Lucht, E. Chauveau, E. Caden, Masaki Ishitsuka, Lindley Winslow, P. Pfahler, C. E. Lane, and C. Veyssiere
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Oscillation ,CHOOZ ,7. Clean energy ,01 natural sciences ,Nuclear physics ,13. Climate action ,0103 physical sciences ,Modulation (music) ,Neutron ,Neutrino ,010306 general physics ,Neutrino oscillation ,Charged current ,Mixing (physics) - Abstract
The oscillation results published by the Double Chooz Collaboration in 2011 and 2012 rely on background models substantiated by reactor-on data. In this analysis, we present a background-model-independent measurement of the mixing angle θ13 by including 7.53 days of reactor-off data. A global fit of the observed antineutrino rates for different reactor power conditions is performed, yielding a measurement of both θ13 and the total background rate. The results on the mixing angle are improved significantly by including the reactor-off data in the fit, as it provides a direct measurement of the total background rate. This reactor rate modulation analysis considers antineutrino candidates with neutron captures on both Gd and H, whose combination yields sin2(2θ13)=0.102±0.028(stat.)±0.033(syst.). The results presented in this study are fully consistent with the ones already published by Double Chooz, achieving a competitive precision. They provide, for the first time, a determination of θ13 that does not depend on a background model.
- Published
- 2014
- Full Text
- View/download PDF
7. First measurement of θ13 from delayed neutron capture on hydrogen in the Double Chooz experiment
- Author
-
J. Maricic, A. Onillon, S. Roth, S. M. Fernandes, J. M. LoSecco, Anselmo Meregaglia, A. Hatzikoutelis, Masahiro Kuze, Th. A. Mueller, R. Santorelli, H. H. Trinh Thi, L. Camilleri, T. Hayakawa, J. Tm. Goon, V. V. Sinev, W. Potzel, M. Franke, I. M. Pepe, P. Chimenti, Matthew L Strait, T. Konno, I. Gil-Botella, Z. Djurcic, T. Matsubara, M. Fechner, Robert Svoboda, R. Roncin, Ying Sun, F. Suekane, L.F.F. Stokes, J. M. López-Castaño, Michael Hofmann, M. Toups, G. Keefer, Muriel Fallot, T. Classen, Steven Dazeley, H. P. Lima, A.V. Etenko, D. Kryn, J.V. Dawson, Amanda Porta, M. Röhling, T. Hara, M. Elnimr, J. Busenitz, R. Carr, Florian Kaether, M. Worcester, J. Felde, D. Franco, I. Stancu, D. Greiner, H. Furuta, B. White, H. de Kerret, Stefan Schoppmann, A. Remoto, C. Aberle, A. Cucoanes, M. Göger-Neff, G. Mention, E. Damon, S. Perasso, J. Ebert, Sebastian Wagner, Manfred Lindner, F. Hartmann, C. Mariani, Antoine Collin, E. Blucher, Josef Jochum, Yasushi Nagasaka, V. Durand, Daniel M. Kaplan, I. Ostrovskiy, P. Novella, L. Bezrukhov, F. von Feilitzsch, G. Pronost, K. Nakajima, Cécile Jollet, B. Reinhold, C. Langbrandtner, Tobias Lachenmaier, Adam Bernstein, P. Perrin, J. Maeda, L. Goodenough, Lothar Oberauer, A. Letourneau, A. Tonazzo, P. Pfahler, C. E. Lane, V. Zimmer, T. Kawasaki, S. Lucht, V. Fischer, R. Milincic, T. Sumiyoshi, E. Caden, A. J. Franke, J. Martino, M. Bergevin, Masaki Ishitsuka, Lindley Winslow, K. Crum, A. Osborn, A. Stahl, J. L. Sida, J. I. Crespo-Anadón, J. Reichenbacher, J. C. dos Anjos, A. Stüken, F. Sato, Yoshio Abe, C. Veyssiere, D. Shrestha, Yuri Kamyshkov, D. McKee, J. Spitz, P.-J. Chang, Marcos Cerrada, Yu. Efremenko, Caren Hagner, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, M. Obolensky, L. N. Kalousis, T.J.C. Bezerra, R. Gama, Bayarto Lubsandorzhiev, Thierry Lasserre, J. C. Barriere, Manuel Meyer, Marcos Dracos, S. V. Sukhotin, E. Smith, N. Haag, Anna Erickson, J. Haser, T. Miletic, S. Habib, D. Lhuillier, Y. Sakamoto, F. Yermia, Anatael Cabrera, E. Conover, C. L. Jones, M. H. Shaevitz, A. Hourlier, Lydie Giot, E. Kemp, S. Schönert, S. Shimojima, G. A. Horton-Smith, Luis González, Nathaniel Bowden, Thomas Schwetz, Janet Conrad, C. Palomares, Kazuhiro Terao, Christopher Wiebusch, G. A. Valdiviesso, M. C. Goodman, H. Miyata, Christian Buck, B. Rybolt, C. N. Maesano, and D. Dietrich
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Flux ,Photon energy ,CHOOZ ,01 natural sciences ,Nuclear physics ,Neutron capture ,Inverse beta decay ,0103 physical sciences ,010306 general physics ,Neutrino oscillation ,Delayed neutron ,Charged current - Abstract
The Double Chooz experiment has determined the value of the neutrino oscillation parameter $\theta_{13}$ from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds $\sin^2 2\theta_{13}=0.097\pm 0.034(stat.) \pm 0.034 (syst.)$, excluding the no-oscillation hypothesis at 2.0 \sigma. This result is consistent with previous measurements of $\sin^2 2\theta_{13}$.
- Published
- 2013
- Full Text
- View/download PDF
8. Careers of University of San Francisco Computer Science Graduates.
- Author
-
James N. Haag
- Published
- 1978
- Full Text
- View/download PDF
9. Muon capture on light isotopes measured with the Double Chooz detector
- Author
-
A. Hourlier, L. B. Bezrukov, Eric Baussan, T. Brugière, S. M. Fernandes, J. Reichenbacher, A.V. Etenko, D. Hellwig, I. Stancu, L. Camilleri, T. Hara, C. Veyssiere, R. Carr, H. Furuta, G. Mention, Anatael Cabrera, J. C. dos Anjos, D. Shrestha, A. Onillon, M. H. Shaevitz, M. Vivier, J. M. LoSecco, C. Alt, Yoshio Abe, Anselmo Meregaglia, J. Spitz, H. Gomez, E. Conover, V. Zimmer, Amanda Porta, Marcos Cerrada, G. A. Horton-Smith, C. Mariani, H. P. Lima, H. de Kerret, G. Yang, J. Maeda, Josef Jochum, BayarJon Paul Lubsandorzhiev, A.C. Schilithz, I. Bekman, V. Sibille, S. Appel, I. Gil-Botella, N. Vassilopoulos, R. Roncin, J.V. Dawson, S. Perasso, L. Goodenough, Luis González, F. von Feilitzsch, J. Busenitz, R. Santorelli, J. M. López-Castaño, M. Kaneda, Muriel Fallot, B. Reinhold, A. Tonazzo, F. Yermia, Audrey Letourneau, Janet Conrad, E. Damon, E. Blucher, Y. Sakamoto, T. Miletic, Zelimir Djurcic, Matthew L Strait, T. Abrahão, Y. Kamyshkov, M. Franke, R. Svoboda, Masahiro Kuze, Florian Kaether, J. Felde, J. Dhooghe, G. Pronost, F. Suekane, M. Obolensky, L.F.F. Stokes, P. Novella, T. Sumiyoshi, D. Franco, J. Martino, David Lhuillier, V. V. Sinev, N. Walsh, E. Kemp, M. Röhling, Takeo Kawasaki, A. Minotti, I. M. Pepe, P. Chimenti, Lydie Giot, A. Stahl, Lothar Oberauer, T. Matsubara, M. Göger-Neff, R. Milincic, E. Chauveau, Cécile Jollet, S. Schönert, A. Osborn, Yasushi Nagasaka, Daniel M. Kaplan, Stefan Schoppmann, H. Almazan, C. E. Lane, Masaki Ishitsuka, J. Maricic, Tobias Lachenmaier, V. Fischer, Y. Sun, Stephen Robert Wagner, Marcos Dracos, M. Bergevin, S. V. Sukhotin, E. Smith, N. Haag, K. Crum, J. I. Crespo-Anadón, S. Lucht, R. Sharankova, Diana Navas-Nicolas, C. Palomares, Michael Hofmann, Christian Buck, L. N. Kalousis, T.J.C. Bezerra, D. Dietrich, Kazuhiro Terao, A. S. Cucoanes, Christopher Wiebusch, G. A. Valdiviesso, M. C. Goodman, J. Haser, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, Thierry Lasserre, J. C. Barriere, D. Kryn, M. Soiron, H. H. Trinh Thi, Manfred Lindner, Antoine Collin, B. Rybolt, Abe, Y, Abrahao, T, Almazan, H, Alt, C, Appel, S, Barriere, J, Baussan, E, Bekman, I, Bergevin, M, Bezerra, T, Bezrukov, L, Blucher, E, Brugiere, T, Buck, C, Busenitz, J, Cabrera, A, Camilleri, L, Carr, R, Cerrada, M, Chauveau, E, Chimenti, P, Collin, A, Conover, E, Conrad, J, Crespo-Anadon, J, Crum, K, Cucoanes, A, Damon, E, Dawson, J, De Kerret, H, Dhooghe, J, Dietrich, D, Djurcic, Z, Dos Anjos, J, Dracos, M, Etenko, A, Fallot, M, Felde, J, Fernandes, S, Fischer, V, Franco, D, Franke, M, Furuta, H, Gil-Botella, I, Giot, L, Goger-Neff, M, Gomez, H, Gonzalez, L, Goodenough, L, Goodman, M, Haag, N, Hara, T, Haser, J, Hellwig, D, Hofmann, M, Horton-Smith, G, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kaether, F, Kalousis, L, Kamyshkov, Y, Kaneda, M, Kaplan, D, Kawasaki, T, Kemp, E, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Lasserre, T, Letourneau, A, Lhuillier, D, Lima, H, Lindner, M, Lopez-Castano, J, Losecco, J, Lubsandorzhiev, B, Lucht, S, Maeda, J, Mariani, C, Maricic, J, Martino, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Milincic, R, Minotti, A, Nagasaka, Y, Navas-Nicolas, D, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Osborn, A, Palomares, C, Pepe, I, Perasso, S, Porta, A, Pronost, G, Reichenbacher, J, Reinhold, B, Rohling, M, Roncin, R, Rybolt, B, Sakamoto, Y, Santorelli, R, Schilithz, A, Schonert, S, Schoppmann, S, Shaevitz, M, Sharankova, R, Shrestha, D, Sibille, V, Sinev, V, Skorokhvatov, M, Smith, E, Soiron, M, Spitz, J, Stahl, A, Stancu, I, Stokes, L, Strait, M, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Svoboda, R, Terao, K, Tonazzo, A, Trinh Thi, H, Valdiviesso, G, Vassilopoulos, N, Veyssiere, C, Vivier, M, Von Feilitzsch, F, Wagner, S, Walsh, N, Watanabe, H, Wiebusch, C, Wurm, M, Yang, G, Yermia, F, and Zimmer, V
- Subjects
Physics ,Semileptonic decay ,Particle physics ,education.field_of_study ,Muon ,010308 nuclear & particles physics ,Population ,neutrino physic ,01 natural sciences ,Muon capture ,Nuclear physics ,13. Climate action ,0103 physical sciences ,High Energy Physics::Experiment ,Neutron ,Production (computer science) ,Neutrino ,010306 general physics ,Ground state ,education - Abstract
Using the Double Chooz detector, designed to measure the neutrino mixing angle $\theta_{13}$, the products of $\mu^-$ capture on $^{12}$C, $^{13}$C, $^{14}$N and $^{16}$O have been measured. Over a period of 489.5 days, $2.3\times10^6$ stopping cosmic $\mu^-$ have been collected, of which $1.8\times10^5$ captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, $\beta$-delayed neutrons. The most precise measurement of the rate of $^{12}\mathrm C(\mu^-,\nu)^{12}\mathrm B$ to date is reported: $6.57^{+0.11}_{-0.21}\times10^{3}\,\mathrm s^{-1}$, or $(17.35^{+0.35}_{-0.59})\%$ of nuclear captures. By tagging excited states emitting gammas, the ground state transition rate to $^{12}$B has been determined to be $5.68^{+0.14}_{-0.23}\times10^3\,\mathrm s^{-1}$. The heretofore unobserved reactions $^{12}\mathrm C(\mu^-,\nu\alpha)^{8}\mathrm{Li}$, $^{13}\mathrm C(\mu^-,\nu\mathrm n\alpha)^{8}\mathrm{Li}$, and $^{13}\mathrm C(\mu^-,\nu\mathrm n)^{12}\mathrm B$ are measured. Further, a population of $\beta$n decays following stopping muons is identified with $5.5\sigma$ significance. Statistics limit our ability to identify these decays definitively. Assuming negligible production of $^{8}$He, the reaction $^{13}\mathrm C(\mu^-,\nu\alpha)^{9}\mathrm{Li}$ is found to be present at the $2.7\sigma$ level. Limits are set on a variety of other processes.
- Published
- 2016
10. TWO-D: The USF Beginner's Two-Dimensional Programming System.
- Author
-
James N. Haag, Michael A. Kelly, and Paul F. Sherman
- Published
- 1972
- Full Text
- View/download PDF
11. DESIREE electrospray ion source test bench and setup for collision induced dissociation experiments
- Author
-
Henrik Cederquist, N. de Ruette, Henning Zettergren, John D. Alexander, Henning T. Schmidt, Mark H. Stockett, N Haag, Michael Wolf, Michael Gatchell, and Linda Giacomozzi
- Subjects
Electrospray ,Test bench ,Physics - Instrumentation and Detectors ,Materials science ,Collision-induced dissociation ,010401 analytical chemistry ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Kinetic energy ,01 natural sciences ,Ion source ,Dissociation (chemistry) ,0104 chemical sciences ,Ion ,Fragmentation (mass spectrometry) ,Physics::Plasma Physics ,Atomic physics ,0210 nano-technology ,Instrumentation - Abstract
We give a detailed description of an electrospray ion source test bench and a single-pass setup for ion fragmentation studies at the DESIREE infrastructure at Stockholm University. This arrangement allows for collision induced dissociation experiments at center-of-mass energies between 10 eV and 1 keV. Charged fragment are analyzed with respect to their kinetic energies (masses) by means of an electrostatic energy analyzer with a wide angular acceptance and adjustable energy resolution., Comment: 13 pages, 15 figures. Instrumentation paper
- Published
- 2018
- Full Text
- View/download PDF
12. DESIREE as a new tool for interstellar ion chemistry
- Author
-
Henning Zettergren, Stefan Rosén, Henning T. Schmidt, Mats Larsson, H. A. B. Johansson, Henrik Cederquist, Mikael Björkhage, Richard D. Thomas, Håkan Danared, Peter Reinhed, A. Paál, L. Bagge, N Haag, Ansgar Simonsson, Leif Liljeby, Anders Källberg, K.-G. Rensfelt, P. Löfgren, Mikael Blom, and Wolf D. Geppert
- Subjects
Physics and Astronomy (miscellaneous) ,Space and Planetary Science ,Chemistry ,Section (archaeology) ,Earth and Planetary Sciences (miscellaneous) ,Atomic physics ,Ecology, Evolution, Behavior and Systematics ,Ion - Abstract
A novel cryogenic electrostatic storage device consisting of two ion-beam storage rings with a common straight section for studies of interactions between oppositely charged ions at low and well-defined relative velocities is under construction at Stockholm University. Here we consider the prospect of using this new tool to measure cross-sections and rate coefficients for mutual neutralization reactions of importance in interstellar ion chemistry in general and specifically in cosmic pre-biotic ion chemistry.
- Published
- 2008
- Full Text
- View/download PDF
13. Identification of higher order contributions in three-dimensional (e,2e) cross-sections for helium
- Author
-
N Haag, Alexander Dorn, Joachim Ullrich, Dhananjay Nandi, M. Dürr, C. Dimopoulou, and Bennaceur Najjari
- Subjects
Physics ,Radiation ,Microscope ,Scattering ,Projectile ,chemistry.chemical_element ,Electron ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,law.invention ,Recoil ,chemistry ,law ,Ionization ,Physical and Theoretical Chemistry ,Atomic physics ,Spectroscopy ,Electron ionization ,Helium - Abstract
Fully differential cross-sections for single ionization of helium by 102 eV and by 1 keV electron impact have been obtained using an advanced reaction microscope. The data cover a large range of emission angles for a low-energy (E ≤ 15 eV) electron and different scattering angles for the fast electron. Significant electron emission out of the projectile scattering plane in between the binary and the recoil lobes is observed. The experimental data are compared with theoretical predictions from a three-Coulomb wave function model.
- Published
- 2007
- Full Text
- View/download PDF
14. Fragmentation of molecules by fast ion impact
- Author
-
M. Dürr, Daniel Fischer, N Haag, Robert Moshammer, P. D. Fainstein, Christina Dimopoulou, Joachim Ullrich, and Alexander Dorn
- Subjects
History ,Chemistry ,Ionic bonding ,Electron ,Diatomic molecule ,Molecular physics ,Charged particle ,Computer Science Applications ,Education ,Ion ,Fragmentation (mass spectrometry) ,Autoionization ,Ionization ,Physics::Atomic and Molecular Clusters ,Atomic physics - Abstract
Single ionization of simple molecules, e.g. H2, CO2, by fast charged particle impact has been studied using a reaction microscope. By measuring the momenta of the emitted electron and the recoil ionic fragment in coincidence, channel-selective low-energy electron spectra have been recorded. The experimental cross sections will be presented, compared with the predictions of state-of-the-art CDW-EIS calculations and discussed in terms of molecular effects such as (i) autoionization and predissociation channels, (ii) interference patterns resulting from the two-center geometry of the diatomic molecule, in analogy to Young's double-slit experiment and (iii) dependence of the electron emission on the orientation of the molecular axis.
- Published
- 2007
- Full Text
- View/download PDF
15. The Uppsala neutron beam facility for electronics testing
- Author
-
T. Hartman, T. Bergmark, Per-Ulf Renberg, E. Hellbeck, O. Byström, Hans Calén, B. Lundström, Curt Ekström, Jan Blomgren, M. Österlund, L.-O. Andersson, D. Reistad, Alexander V. Prokofiev, Udomrat Tippawan, N. Haag, Olof Jönsson, Stephan Pomp, D. Wessman, L. Einarsson, T. Johansen, Volker Ziemann, J. Fransson, L. Pettersson, and K. Gajewski
- Subjects
Physics ,Nuclear and High Energy Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear engineering ,Cyclotron ,Neutron scattering ,Neutron radiation ,The Svedberg Laboratory ,law.invention ,Nuclear physics ,Beamline ,law ,Physics::Accelerator Physics ,Neutron source ,Neutron ,Electronics ,Nuclear Experiment ,Instrumentation - Abstract
A new facility producing intense mono-energetic neutron beams has been developed at The Svedberg Laboratory (TSL), Uppsala, Sweden. The facility utilizes the existing cyclotron and a flexible lithium target in a rebuilt beam line. The new facility can operate at unsurpassed mono-energetic neutron intensities and provides flexibility of the neutron beam properties, like energy and geometrical shape.
- Published
- 2005
- Full Text
- View/download PDF
16. Posters
- Author
-
F. Dal Bello, J. Walter, C. Hertel, W. P Hammes, G. Festag, N. Haag, Gabriele Beyer‐Sehlmeyer, M. N. Ebert, B. Marian, Eva Gietl, Annett Klinder, Stella Pistoli, R. Goralczyk, H. Bachmann, G. Riss, C‐P. Aebischer, B. Lenz, A. Kampkötter, E. Röhrdanz, K. Iwami, S. Ohler, W. Wätjen, Y. Chovolou, S. E. Kulling, R. Kahl, D. Kavvadias, P. Sand, P. Riederer, E. Richling, P. Schreier, Peter P. Hoppe, Klaus Kraemer, Henk van den Berg, Gery Steenge, Trinette van Vliet, S. Lebrun, H. Schulze, W. Föllmann, Leane Lehmann, P. Niering, I. Köhler, Q.‐H. Tran‐Thi, Erika Pfeiffer, Harald L. Esch, Simone Höhle, Aniko M. Solyom, Barbara N. Timmermann, Manfred Metzler, W. Seefelder, N. Bartke, T. Gronauer, S. Fischer, H.‐U. Humpf, S. Schäfer, H.G. Kamp, C. Müller, B. Haber, G. Eisenbrand, C. Janzowski, K. Wertz, P. Buchwald, T. Hansen, M. Niehof, M. Dangers, J. Borlak, Stefanie Klenow, Michael Glei, Bernd Haber, Beatrice L. Pool‐Zobel, Annette Baumgart, Melanie Schmidt, Hans‐Joachim Schmitz, Dieter Schrenk, Achim Bub, Bernhard Watzl, M. Roller, G. Caderni, G. Rechkemmer, Karlis Briviba, Kerstin Schnäbele, Elke Schwertle, Kerstin Rebscher, Stephan W. Barth, Silvia Roser, Heike Lang, Anette Höll, Sabine Guth, Doris Marko, Monika Kemény, Michael Habermeyer, Edda Bernardy, Susanne Meiers, and Ulrike Weyand
- Published
- 2004
- Full Text
- View/download PDF
17. Precision Muon Reconstruction in Double Chooz
- Author
-
Stefan Schoppmann, Yuri Kamyshkov, P.-J. Chang, M. Obolensky, H. de Kerret, M. Vivier, Kazuhiro Terao, L. N. Kalousis, J. Maricic, Marcos Cerrada, N. Vassilopoulos, M. Elnimr, Christopher Wiebusch, C. Grant, S. Shimojima, M. D. Skorokhvatov, Michael Wurm, Cécile Jollet, B. Reinhold, H. Watanabe, V. Zimmer, G. A. Valdiviesso, BayarJon Paul Lubsandorzhiev, S. Perasso, G. A. Horton-Smith, M. C. Goodman, J.V. Dawson, A. S. Cucoanes, E. Blucher, A. Osborn, E. Chauveau, Daniel M. Kaplan, T. Miletic, Zelimir Djurcic, R. Milincic, R. Carr, R. Roncin, G. Yang, L. Goodenough, R. Santorelli, M. Kuze, Christian Buck, Ying Sun, B. Rybolt, E. Damon, V. Sibille, J. Reichenbacher, A. Tonazzo, D. Kryn, S. Roth, A.V. Etenko, Eric Baussan, P. Novella, Luis González, G. Pronost, D. Dietrich, Thierry Lasserre, J. M. LoSecco, M. Franke, A. Hourlier, Lydie Giot, Anselmo Meregaglia, T. Hara, J. Maeda, J. C. Barriere, I. M. Pepe, J. Martino, P. Chimenti, Tobias Lachenmaier, Y. Sakamoto, T.J.C. Bezerra, J. C. dos Anjos, G. Mention, S. Lucht, T. Matsubara, David Lhuillier, Marcos Dracos, I. Stancu, A.C. Schilithz, Yoshio Abe, Janet Conrad, J. M. López-Castaño, Lothar Oberauer, S. Schönert, S. M. Fernandes, H. Furuta, Anatael Cabrera, P. Pfahler, C. E. Lane, I. Bekman, Achim Stahl, R. Sharankova, S. V. Sukhotin, E. Smith, J. Dhooghe, L. B. Bezrukov, M. Röhling, Muriel Fallot, E. Caden, J. Haser, E. Conover, M. H. Shaevitz, A. Onillon, L. Camilleri, T. Kawasaki, A. Stüken, A. Minotti, C. Palomares, V. Fischer, N. Haag, M. Göger-Neff, Florian Kaether, C. Veyssiere, Michael Hofmann, J. Felde, D. Franco, V. V. Sinev, Masaki Ishitsuka, Audrey Letourneau, Lindley Winslow, Yasushi Nagasaka, E. Kemp, D. Shrestha, M. Bergevin, F. Suekane, L.F.F. Stokes, T. Sumiyoshi, K. Crum, J. I. Crespo-Anadón, Amanda Porta, J. Spitz, Y. Nikitenko, I. Gil-Botella, C. Mariani, Josef Jochum, F. Yermia, Matthew L Strait, Robert Svoboda, F. von Feilitzsch, H. P. Lima, J. Busenitz, Sebastian Wagner, Manfred Lindner, Antoine Collin, N. Walsh, H. H. Trinh Thi, Double Chooz Collaboration, Département d'Ingénierie des Systèmes (ex SIS) (DIS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Max-Planck-Institut, Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Département de Physique des Particules (ex SPP) (DPP), Département de Physique Nucléaire (ex SPhN) (DPHN), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Double Chooz, Massachusetts Institute of Technology. Department of Physics, Massachusetts Institute of Technology. Laboratory for Nuclear Science, Conrad, Janet Marie, Spitz, Joshua B., Terao, Kazuhiro, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Double-CHOOZ, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Abe, Y, Dos Anjos, J, Barriere, J, Baussan, E, Bekman, I, Bergevin, M, Bezerra, T, Bezrukov, L, Blucher, E, Buck, C, Busenitz, J, Cabrera, A, Caden, E, Camilleri, L, Carr, R, Cerrada, M, Chang, P, Chauveau, E, Chimenti, P, Collin, A, Conover, E, Conrad, J, Crespo-Anadon, J, Crum, K, Cucoanes, A, Damon, E, Dawson, J, Dhooghe, J, Dietrich, D, Djurcic, Z, Dracos, M, Elnimr, M, Etenko, A, Fallot, M, Von Feilitzsch, F, Felde, J, Fernandes, S, Fischer, V, Franco, D, Franke, M, Furuta, H, Gil-Botella, I, Giot, L, Goger-Neff, M, Gonzalez, L, Goodenough, L, Goodman, M, Grant, C, Haag, N, Hara, T, Haser, J, Hofmann, M, Horton-Smith, G, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kaether, F, Kalousis, L, Kamyshkov, Y, Kaplan, D, Kawasaki, T, Kemp, E, De Kerret, H, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Lasserre, T, Letourneau, A, Lhuillier, D, Lima, J, Lindner, M, Lopez-Castano, J, Losecco, J, Lubsandorzhiev, B, Lucht, S, Maeda, J, Mariani, C, Maricic, J, Martino, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Milincic, R, Minotti, A, Nagasaka, Y, Nikitenko, Y, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Osborn, A, Palomares, C, Pepe, I, Perasso, S, Pfahler, P, Porta, A, Pronost, G, Reichenbacher, J, Reinhold, B, Rohling, M, Roncin, R, Roth, S, Rybolt, B, Sakamoto, Y, Santorelli, R, Schilithz, A, Schonert, S, Schoppmann, S, Shaevitz, M, Sharankova, R, Shimojima, S, Shrestha, D, Sibille, V, Sinev, V, Skorokhvatov, M, Smith, E, Spitz, J, Stahl, A, Stancu, I, Stokes, L, Strait, M, Stuken, A, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Svoboda, R, Terao, K, Tonazzo, A, Trinh Thi, H, Valdiviesso, G, Vassilopoulos, N, Veyssiere, C, Vivier, M, Wagner, S, Walsh, N, Watanabe, H, Wiebusch, C, Winslow, L, Wurm, M, Yang, G, Yermia, F, and Zimmer, V
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,STRIPS ,Double Chooz ,Muon reconstruction ,Neutrino detector ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,CHOOZ ,Scintillator ,High Energy Physics - Experiment ,law.invention ,NO ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation ,Image resolution ,Physics ,Muon ,Detector ,Reconstruction algorithm ,Instrumentation and Detectors (physics.ins-det) ,Physics::Accelerator Physics ,High Energy Physics::Experiment - Abstract
We describe a muon track reconstruction algorithm for the reactor anti-neutrino experiment Double Chooz. The Double Chooz detector consists of two optically isolated volumes of liquid scintillator viewed by PMTs, and an Outer Veto above these made of crossed scintillator strips. Muons are reconstructed by their Outer Veto hit positions along with timing information from the other two detector volumes. All muons are fit under the hypothesis that they are through-going and ultrarelativistic. If the energy depositions suggest that the muon may have stopped, the reconstruction fits also for this hypothesis and chooses between the two via the relative goodness-of-fit. In the ideal case of a through-going muon intersecting the center of the detector, the resolution is ∼40 mm in each transverse dimension. High quality muon reconstruction is an important tool for reducing the impact of the cosmogenic isotope background in Double Chooz., National Science Foundation (U.S.), United States. Department of Energy
- Published
- 2014
- Full Text
- View/download PDF
18. Ortho-positronium observation in the Double Chooz experiment
- Author
-
R. Milincic, Christian Buck, B. Rybolt, S. V. Sukhotin, A. Minotti, Ernesto Kemp, Cécile Jollet, D. Dietrich, M. Röhling, Matthew L Strait, N. Haag, G. Pronost, E. Damon, J. Martino, E. Caden, S. Lucht, A.V. Etenko, Masahiro Kuze, Eric Baussan, E. Chauveau, L. B. Bezrukov, Michael Wurm, H. Watanabe, M. Obolensky, Kazuhiro Terao, G. Mention, Christopher Wiebusch, G. A. Valdiviesso, P. Novella, R. Sharankova, Lydie Giot, L.N. Kalousis, S. Shimojima, Achim Stahl, Michael H. Shaevitz, M. Göger-Neff, Takeo Kawasaki, V. Zimmer, I. Stancu, K. Crum, Z. Djurcic, D. Lhuillier, M. Cerrada, P. Chimenti, V. Sinev, A. S. Cucoanes, G. A. Horton-Smith, M. Skorokhvatov, R. Carr, Bayarto Lubsandorzhiev, H. Furuta, A. Tonazzo, C. Mariani, Thierry Lasserre, A. Onillon, Josef Jochum, J. I. Crespo-Anadón, Y. Kamyshkov, J. Busenitz, L. Camilleri, C. Palomares, J. C. Barriere, J. Reichenbacher, Lindley Winslow, H. H. Trinh Thi, F. von Feilitzsch, Anatael Cabrera, Luis González, N. Vassilopoulos, J.V. Dawson, Yasushi Nagasaka, J. Dhooghe, E. Conover, R. Santorelli, T.J.C. Bezerra, V. Fischer, J. Haser, J. Maricic, M. Franke, M. Vivier, Stefan Schoppmann, I. M. Pepe, Eluned Smith, D. Kryn, T. Sumiyoshi, Y. Sakamoto, C. E. Lane, T. Miletic, A. Osborn, M. Ishitsuka, F. Suekane, F. Yermia, L.F.F. Stokes, Sebastian Wagner, Manfred Lindner, Antoine Collin, Y. Nikitenko, P. Pfahler, V. Sibille, T. Hara, Alain Letourneau, E. Blucher, N. Walsh, J. Maeda, L. Goodenough, S. M. Fernandes, I. Gil-Botella, L. Oberauer, C. Veyssiere, J. C. dos Anjos, Amanda Porta, Maury Goodman, Tobias Lachenmaier, Yoshio Abe, A. Hourlier, Daniel M. Kaplan, Janet Conrad, S. Perasso, Anselmo Meregaglia, H. de Kerret, R. Roncin, T. Matsubara, Ying Sun, B. Reinhold, Stefan Schönert, John M. LoSecco, M. Elnimr, Michael Hofmann, C. Grant, D. Shrestha, J. Spitz, M. Bergevin, Stefan Roth, A.C. Schilithz, I. Bekman, A. Stüken, P.-J. Chang, J. M. López-Castaño, Muriel Fallot, Florian Kaether, J. Felde, D. Franco, Robert Svoboda, H. P. Lima, M. Dracos, G. Yang, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Département de Physique Nucléaire (ex SPhN) (DPHN), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Département d'Ingénierie des Systèmes (ex SIS) (DIS), Massachusetts Institute of Technology. Department of Physics, Massachusetts Institute of Technology. Laboratory for Nuclear Science, Conrad, Janet, Spitz, Joshua B., Terao, K., Winslow, Lindley, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Center for Neutrino Physics, Abe, Y, Dos Anjos, J, Barriere, J, Baussan, E, Bekman, I, Bergevin, M, Bezerra, T, Bezrukov, L, Blucher, E, Buck, C, Busenitz, J, Cabrera, A, Caden, E, Camilleri, L, Carr, R, Cerrada, M, Chang, P, Chauveau, E, Chimenti, P, Collin, A, Conover, E, Conrad, J, Crespo-Anado, J, Crum, K, Cucoanes, A, Damon, E, Dawson, J, Dhooghe, J, Dietrich, D, Djurcic, Z, Dracos, M, Elnimr, M, Etenko, A, Fallot, M, Von Feilitzsch, F, Felde, J, Fernandes, S, Fischer, V, Franco, D, Franke, M, Furuta, H, Gil-Botella, I, Giot, L, Goger-Neff, M, Gonzalez, L, Goodenough, L, Goodman, M, Grant, C, Haag, N, Hara, T, Haser, J, Hofmann, M, Horton-Smith, G, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kaether, F, Kalousis, L, Kamyshkov, Y, Kaplan, D, Kawasaki, T, Kemp, E, De Kerret, H, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Lasserre, T, Letourneau, A, Lhuillier, D, Lima, H, Lindner, M, Lopez-Castano, J, Losecco, J, Lubsandorzhiev, B, Lucht, S, Maeda, J, Mariani, C, Maricic, J, Martino, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Milincic, R, Minotti, A, Nagasaka, Y, Nikitenko, Y, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Osborn, A, Palomares, C, Pepe, I, Perasso, S, Pfahler, P, Porta, A, Pronost, G, Reichenbacher, J, Reinhold, B, Rohling, M, Roncin, R, Roth, S, Rybolt, B, Sakamoto, Y, Santorelli, R, Schilithz, A, Schonert, S, Schoppmann, S, Shaevitz, M, Sharankova, R, Shimojima, S, Shrestha, D, Sibille, V, Sinev, V, Skorokhvatov, M, Smith, E, Spitz, J, Stahl, A, Stancu, I, Stokes, L, Strait, M, Stuken, A, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Svoboda, R, Terao, K, Tonazzo, A, Thi, H, Valdiviesso, G, Vassilopoulos, N, Veyssiere, C, Vivier, M, Wagner, S, Walsh, N, Watanabe, H, Wiebusch, C, Winslow, L, Wurm, M, Yang, G, Yermia, F, Zimmera, V, Double Chooz Collaboration, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Physics ,Neutrino Detectors and Telescopes ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Neutrino Detectors and Telescope ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Electron ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Scintillator ,CHOOZ ,Particle identification ,High Energy Physics - Experiment ,Positronium ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Positron ,Inverse beta decay ,High Energy Physics::Experiment ,Neutrino ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The Double Chooz experiment measures the neutrino mixing angle θ13 by detecting reactor ν¯e via inverse beta decay. The positron-neutron space and time coincidence allows for a sizable background rejection, nonetheless liquid scintillator detectors would profit from a positron/electron discrimination, if feasible in large detector, to suppress the remaining background. Standard particle identification, based on particle dependent time profile of photon emission in liquid scintillator, can not be used given the identical mass of the two particles. However, the positron annihilation is sometimes delayed by the ortho-positronium (o-Ps) metastable state formation, which induces a pulse shape distortion that could be used for positron identification. In this paper we report on the first observation of positronium formation in a large liquid scintillator detector based on pulse shape analysis of single events. The o-Ps formation fraction and its lifetime were measured, finding the values of 44% ± 12% (sys.) ± 5% (stat.) and 3.68ns ± 0.17ns (sys.) ± 0.15ns (stat.) respectively, in agreement with the results obtained with a dedicated positron annihilation lifetime spectroscopy setup., National Science Foundation (U.S.), United States. Dept. of Energy
- Published
- 2014
- Full Text
- View/download PDF
19. Journal of High Energy Physics
- Author
-
G. Mention, R. Svoboda, T. Kawasaki, P. Novella, J. Dhooghe, N. Vassilopoulos, Amanda Porta, D. Kryn, Zelimir Djurcic, N. Walsh, J. Reichenbacher, J. M. López-Castaño, H. de Kerret, H. H. Trinh Thi, R. Milincic, Yuri Kamyshkov, Muriel Fallot, J. Martino, A. Cucoanes, S. Shimojima, A.C. Schilithz, P.-J. Chang, A. Onillon, L. B. Bezrukov, I. Bekman, J.V. Dawson, G. A. Horton-Smith, M. Franke, Anatael Cabrera, R. Carr, A. Stüken, S. M. Fernandes, K. Crum, Florian Kaether, E. Blucher, J. I. Crespo-Anadón, Y. Nikitenko, T. Sumiyoshi, S. Perasso, A. Minotti, Alain Letourneau, J. Felde, D. Franco, Marcos Cerrada, M. Elnimr, V. V. Sinev, Eric Baussan, Marcos Dracos, David Lhuillier, Ernesto Kemp, L. Camilleri, E. Damon, R. Sharankova, V. Fischer, J. Maricic, Manfred Lindner, J. C. dos Anjos, Antoine Collin, D. Shrestha, M. Obolensky, R. Santorelli, Luis González, Cécile Jollet, B. Reinhold, E. Conover, M. Bergevin, Yoshio Abe, L. N. Kalousis, T.J.C. Bezerra, S. Lucht, S. Roth, J. M. LoSecco, Anselmo Meregaglia, J. Spitz, Lothar Oberauer, Daniel M. Kaplan, C. Palomares, A. Stahl, Y. Sakamoto, I. Gil-Botella, V. Zimmer, C. Grant, C. Veyssiere, Tobias Lachenmaier, V. Sibille, S. V. Sukhotin, E. Smith, H. P. Lima, A. Osborn, M. Kuze, N. Haag, Christian Buck, B. Rybolt, R. Roncin, J. C. Barriere, J. Busenitz, Ying Sun, C. Mariani, A. Hourlier, Lydie Giot, M. Röhling, Josef Jochum, Junpei Maeda, L. Goodenough, F. von Feilitzsch, D. Dietrich, Michael Hofmann, Stefan Wagner, Matthew L Strait, Janet Conrad, T. Hara, A. Tonazzo, M. Göger-Neff, Kazuhiro Terao, Christopher Wiebusch, Yasushi Nagasaka, G. A. Valdiviesso, S. Schönert, M. C. Goodman, T. Miletic, F. Yermia, I. M. Pepe, P. Chimenti, G. Pronost, P. Pfahler, C. E. Lane, T. Matsubara, E. Chauveau, M. H. Shaevitz, E. Caden, Masaki Ishitsuka, Lindley Winslow, Stefan Schoppmann, J. Haser, M. Vivier, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, G. Yang, Bayarto Lubsandorzhiev, Thierry Lasserre, F. Suekane, L.F.F. Stokes, A.V. Etenko, I. Stancu, H. Furuta, Double Chooz Collaboration, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Double-CHOOZ, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Abe, Y, dos Anjos, J, Barriere, J, Baussan, E, Bekman, I, Bergevin, M, Bezerra, T, Bezrukov, L, Blucher, E, Buck, C, Busenitz, J, Cabrera, A, Caden, E, Camilleri, L, Carr, R, Cerrada, M, Chang, P, Chauveau, E, Chimenti, P, Collin, A, Conover, E, Conrad, J, Crespo-Anadon, J, Crum, K, Cucoanes, A, Damon, E, Dawson, J, Dhooghe, J, Dietrich, D, Djurcic, Z, Dracos, M, Elnimr, M, Etenko, A, Fallot, M, von Feilitzsch, F, Felde, J, Fernandes, S, Fischer, V, Franco, D, Franke, M, Furuta, H, Gil-Botella, I, Giot, L, Goger-Neff, M, Gonzalez, L, Goodenough, L, Goodman, M, Grant, C, Haag, N, Hara, T, Haser, J, Hofmann, M, Horton-Smith, G, Hourlier, A, Ishitsuka, M, Jochum, J, Jollet, C, Kaether, F, Kalousis, L, Kamyshkov, Y, Kaplan, D, Kawasaki, T, Kemp, E, de Kerret, H, Kryn, D, Kuze, M, Lachenmaier, T, Lane, C, Lasserre, T, Letourneau, A, Lhuillier, D, Lima, H, Lindner, M, Lopez-Castano, J, Losecco, J, Lubsandorzhiev, B, Lucht, S, Maeda, J, Mariani, C, Maricic, J, Martino, J, Matsubara, T, Mention, G, Meregaglia, A, Miletic, T, Milincic, R, Minotti, A, Nagasaka, Y, Nikitenko, Y, Novella, P, Oberauer, L, Obolensky, M, Onillon, A, Osborn, A, Palomares, C, Pepe, I, Perasso, S, Pfahler, P, Porta, A, Pronost, G, Reichenbacher, J, Reinhold, B, Rohling, M, Roncin, R, Roth, S, Rybolt, B, Sakamoto, Y, Santorelli, R, Schilithz, A, Schonert, S, Schoppmann, S, Shaevitz, M, Sharankova, R, Shimojima, S, Shrestha, D, Sibille, V, Sinev, V, Skorokhvatov, M, Smith, E, Spitz, J, Stahl, A, Stancu, I, Stokes, L, Strait, M, Stuken, A, Suekane, F, Sukhotin, S, Sumiyoshi, T, Sun, Y, Svoboda, R, Terao, K, Tonazzo, A, Trinh Thi, H, Valdiviesso, G, Vassilopoulos, N, Veyssiere, C, Vivier, M, Wagner, S, Walsh, N, Watanabe, H, Wiebusch, C, Winslow, L, Wurm, M, Yang, G, Yermia, F, Zimmer, V, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), and Center for Neutrino Physics
- Subjects
Nuclear and High Energy Physics ,[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Physics - Instrumentation and Detectors ,Neutrino Detectors and Telescope ,FOS: Physical sciences ,CHOOZ ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Experiment ,Distortion ,0103 physical sciences ,Energy spectrum ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Mixing (physics) ,Physics ,Neutrino Detectors and Telescopes ,010308 nuclear & particles physics ,Oscillation ,[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE] ,Detector ,Function (mathematics) ,Instrumentation and Detectors (physics.ins-det) ,Neutrino ,Instrumentation and Detectors - Abstract
The Double Chooz experiment presents improved measurements of the neutrino mixing angle $\theta_{13}$ using the data collected in 467.90 live days from a detector positioned at an average distance of 1050 m from two reactor cores at the Chooz nuclear power plant. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties with respect to previous publications, whereas the efficiency of the $\bar\nu_{e}$ signal has increased. The value of $\theta_{13}$ is measured to be $\sin^{2}2\theta_{13} = 0.090 ^{+0.032}_{-0.029}$ from a fit to the observed energy spectrum. Deviations from the reactor $\bar\nu_{e}$ prediction observed above a prompt signal energy of 4 MeV and possible explanations are also reported. A consistent value of $\theta_{13}$ is obtained from a fit to the observed rate as a function of the reactor power independently of the spectrum shape and background estimation, demonstrating the robustness of the $\theta_{13}$ measurement despite the observed distortion., Comment: 44 pages, 25 figures. Figures 21 and 22 have been replaced (statistical error bars for bins above 8 MeV have become smaller). No other changes in the results of the paper; an Erratum submitted to JHEP
- Published
- 2014
- Full Text
- View/download PDF
20. Experimental Determination of the Antineutrino Spectrum of the Fission Products ofU238
- Author
-
Klaus Schreckenbach, A. Gütlein, N. Haag, Lothar Oberauer, Martin Hofmann, W. Potzel, and F. M. Wagner
- Subjects
Physics ,Fission products ,Electron energy spectrum ,Fission ,High Energy Physics::Phenomenology ,Nuclear Theory ,Spectrum (functional analysis) ,General Physics and Astronomy ,Electron spectroscopy ,Physics::Geophysics ,Nuclear physics ,Nuclear nonproliferation ,High Energy Physics::Experiment ,Neutrino ,Nuclear Experiment - Abstract
First measurement of the antineutrino spectrum from 238U fission, which has implications for neutrino physics and nuclear nonproliferation.
- Published
- 2014
- Full Text
- View/download PDF
21. Nonstatistical fragmentation of large molecules
- Author
-
Preben Hvelplund, John D. Alexander, N Haag, Kostiantyn Kulyk, Kristian Støchkel, Mark H. Stockett, Tao Chen, Patrick Rousseau, Stefan Rosén, H. A. B. Johansson, Henrik Cederquist, Henning T. Schmidt, Anders Johansson, Michael Gatchell, Lamri Adoui, U. Bērziņš, Bernd A. Huber, Henning Zettergren, Department of Physics [Stockholm], Stockholm University, Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU), Institute of Atomic Physics and Spectroscopy [Latvia], University of Latvia (LU), Department of Physics and Astronomy [Aarhus], Aarhus University [Aarhus], Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Fragmentation (mass spectrometry) ,Chemical physics ,0103 physical sciences ,[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,Molecule ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Atomic physics ,010402 general chemistry ,010306 general physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences - Abstract
International audience; We present experimental evidence for the dominance of prompt single-atom knockout in fragmenting collisions between large polycyclic aromatic hydrocarbon cations and He atoms at center-of-mass energies close to 100 eV. Such nonstatistical processes are shown to give highly reactive fragments. We argue that nonstatistical fragmentation is dominant for any sufficiently large molecular system under similar conditions.
- Published
- 2014
- Full Text
- View/download PDF
22. Experimental determination of the antineutrino spectrum of the fission products of U238
- Author
-
N, Haag, A, Gütlein, M, Hofmann, L, Oberauer, W, Potzel, K, Schreckenbach, and F M, Wagner
- Abstract
An experiment was performed at the scientific neutron source FRM II in Garching to determine the cumulative antineutrino spectrum of the fission products of U238. Target foils of natural uranium were irradiated with a thermal and a fast neutron beam and the emitted β spectra were recorded with a γ-suppressing electron telescope. The obtained β spectrum of the fission products of U235 was normalized to the data of the magnetic spectrometer BILL. This method strongly reduces systematic errors in the U238 measurement. The β spectrum of U238 was converted into the corresponding ν¯e spectrum. The final ν¯e spectrum is given in 250 keV bins in the range from 2.875 to 7.625 MeV with an energy-dependent error of 3.5% at 3 MeV, 7.6% at 6 MeV, and ≳14% at energies ≳7 MeV (68% confidence level). Furthermore, an energy-independent uncertainty of ∼3.3% due to the absolute normalization is added. Compared to the generally used summation calculations, the obtained spectrum reveals a spectral distortion of ∼10% but returns the same value for the mean cross section per fission for the inverse beta decay.
- Published
- 2014
23. Species identity influences belowground arthropod assemblages via functional traits
- Author
-
Jessica A. M. Bryant, Courtney E. Gorman, Devin N. Jones, Hannah E. Long, Michael E. Van Nuland, Jessica Nicole Welch, Joseph K. Bailey, Joseph T. Altobelli, Morgan J. Douglas, Elliot N. Haag, Quentin D. Read, Adam D. Wilburn, Jennifer A. Schweitzer, and Mark A. Genung
- Subjects
Nutrient cycle ,functional plant traits ,biology ,Community ,Ecology ,Ecology (disciplines) ,food and beverages ,Identity (social science) ,Plant Science ,species identity ,biology.organism_classification ,community similarity ,soil macroinvertebrates ,Plant species ,Arthropod ,Plant traits ,Tree species ,Belowground processes ,soils ,Research Articles - Abstract
Plants link above- and belowground subsystems, and our results suggest that their phylogenetic relationships leave a “fingerprint” on belowground communities. We found that after correcting for evolutionary history, tree species identity influenced belowground arthropod communities through plant functional traits. These data suggest that plant species structure may be an important predictor in shaping associated soil arthropod communities and further suggest the importance of better understanding the extended consequences of evolutionary history on ecological processes, as similarity in traits may not always reflect similar ecology., Plant species influence belowground communities in a variety of ways, ultimately impacting nutrient cycling. Functional plant traits provide a means whereby species identity can influence belowground community interactions, but little work has examined whether species identity influences belowground community processes when correcting for evolutionary history. Specifically, we hypothesized that closely related species would exhibit (i) more similar leaf and root functional traits than more distantly related species, and (ii) more similar associated soil arthropod communities. We found that after correcting for evolutionary history, tree species identity influenced belowground arthropod communities through plant functional traits. These data suggest that plant species structure may be an important predictor in shaping associated soil arthropod communities and further suggest the importance of better understanding the extended consequences of evolutionary history on ecological processes, as similarity in traits may not always reflect similar ecology.
- Published
- 2013
24. First test of Lorentz violation with a reactor-based antineutrino experiment
- Author
-
V. Fischer, P. Novella, T. Sumiyoshi, J. L. Sida, Achim Stahl, Michael H. Shaevitz, G. Keefer, I. Ostrovskiy, A. Bernstein, H. Furuta, T.J.C. Bezerra, E. Damon, A. Onillon, G. Mention, Matthew L Strait, Michael Wurm, H. Watanabe, D. Greiner, D. Lhuillier, K. Nakajima, V. Zimmer, M. Cerrada, A. J. Franke, Z. Djurcic, P. Pfahler, J. Maeda, M. Göger-Neff, Takeo Kawasaki, Iuri Muniz Pepe, R. Gama, M. Bergevin, V. Sinev, M. Skorokhvatov, Bayarto Lubsandorzhiev, M. Röhling, Thierry Lasserre, Th. A. Mueller, G. Pronost, Stefan Roth, J. Reichenbacher, J.V. Dawson, Caren Hagner, J. M. López-Castaño, Muriel Fallot, T. Classen, J. Martino, Anatael Cabrera, Teppei Katori, Florian Kaether, Yu. Efremenko, Y. Kamyshkov, J. Felde, D. Franco, L. Camilleri, C. Palomares, Kazuhiro Terao, A. Stüken, F. Sato, M. Toups, Christopher Wiebusch, E. Conover, G. A. Valdiviesso, Yasushi Nagasaka, J. C. dos Anjos, J. Maricic, H. Miyata, Christian Buck, B. Rybolt, E. Caden, V. Durand, Yoshio Abe, D. McKee, Frank Hartmann, Anna Erickson, C. N. Maesano, F. Suekane, L.F.F. Stokes, C. Mariani, J. Haser, Josef Jochum, D. Dietrich, L. Bezrukhov, F. von Feilitzsch, Lindley Winslow, L. Oberauer, Lydie Giot, S. Dazeley, H. P. Lima, D. Shrestha, M. Elnimr, J. Spitz, C. Aberle, Ernesto Kemp, Stefan Schoppmann, J. Busenitz, Masahiro Kuze, Cécile Jollet, P. Chimenti, T. Matsubara, A. Remoto, A. Hatzikoutelis, H. H. Trinh Thi, R. Milincic, M. Franke, C. E. Lane, M. Ishitsuka, I. Stancu, M. Fechner, M. Worcester, T. Miletic, S. Habib, F. Yermia, M. Dracos, I. Gil-Botella, S. Perasso, C. Veyssiere, P. Perrin, A. Osborn, R. Roncin, Tobias Lachenmaier, Ying Sun, Tomoyuki Konno, Daniel M. Kaplan, A. Tonazzo, Stefan Schönert, John M. LoSecco, M. V. d'Agostino, S. V. Sukhotin, E. Smith, N. Haag, B. Reinhold, S. Lucht, M. Obolensky, G. A. Horton-Smith, L. N. Kalousis, C. L. Jones, Michael Hofmann, T. Schwetz, Luis González, Nathaniel Bowden, A. S. Cucoanes, Janet Conrad, W. Potzel, Manuel Meyer, B. R. White, J. Ebert, Sebastian Wagner, Manfred Lindner, Antoine Collin, E. Blucher, Maury Goodman, P.-J. Chang, K. Crum, E. Yanovitch, R. Carr, Alain Letourneau, D. Kryn, Anselmo Meregaglia, Amanda Porta, J. I. Crespo-Anadón, H. de Kerret, T. Hayakawa, T. Hara, R. Santorelli, J. Tm. Goon, Y. Sakamoto, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Double-CHOOZ, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Double Chooz Collaboration, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,010308 nuclear & particles physics ,Lorentz transformation ,FOS: Physical sciences ,Electron ,Lorentz covariance ,CHOOZ ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,symbols.namesake ,High Energy Physics - Experiment (hep-ex) ,Sidereal time ,0103 physical sciences ,symbols ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,010306 general physics ,Neutrino oscillation ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Electron neutrino - Abstract
We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension (SME), we set the first limits on fourteen Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor., Comment: 6 pages, 2 figures; (new version after referee's comments)
- Published
- 2012
- Full Text
- View/download PDF
25. Direct Measurement of Backgrounds using Reactor-Off Data in Double Chooz
- Author
-
J. Maricic, A. Hourlier, Lydie Giot, Matthew L Strait, M. Röhling, A.V. Etenko, J. Ebert, Audrey Letourneau, R. Santorelli, Janet Conrad, I. Stancu, Sebastian Wagner, Manfred Lindner, H. Furuta, Antoine Collin, Daniel M. Kaplan, R. Roncin, E. Blucher, S. Schönert, M. Franke, Ying Sun, T. Hayakawa, S. Dazeley, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, T. Sumiyoshi, T. Konno, D. Kryn, F. Suekane, L.F.F. Stokes, S. Roth, C. Veyssiere, T. Hara, M. Elnimr, B. K. Lubsandorzhiev, A. Bernstein, I. Ostrovskiy, W. Potzel, Th. A. Mueller, T. Miletic, S. Habib, S. M. Fernandes, D. Shrestha, Amanda Porta, R. Gama, Z. Djurcic, E. Damon, S. Perasso, H. Miyata, G. Mention, A. Onillon, A. Cucoanes, K. Nakajima, M. Worcester, Yuri Kamyshkov, D. McKee, Stefan Schoppmann, Christian Buck, Thierry Lasserre, F. Yermia, L. Camilleri, B. Rybolt, A. Remoto, Michael Hofmann, B. White, J. Spitz, P. Novella, J. C. Barriere, C. N. Maesano, D. Dietrich, C. Mariani, T. Kawasaki, Josef Jochum, V. V. Sinev, M. Göger-Neff, P.-J. Chang, V. Durand, A. Hatzikoutelis, P. Perrin, L. Bezrukhov, F. von Feilitzsch, Marcos Cerrada, E. Caden, H. P. Lima, V. Zimmer, David Lhuillier, Lothar Oberauer, J. Reichenbacher, Yasushi Nagasaka, Anatael Cabrera, M. Toups, J. T. M. Goon, A. J. Franke, J. L. Sida, C. Aberle, J. Busenitz, Masahiro Kuze, Anna Erickson, J. M. López-Castaño, J. Haser, S. Shimojima, Muriel Fallot, T. Classen, Michael Fechner, G. A. Horton-Smith, J.V. Dawson, I. M. Pepe, P. Chimenti, C. Palomares, J. M. LoSecco, G. Keefer, T. Matsubara, C. Langbrandtner, E. Kemp, Anselmo Meregaglia, Cécile Jollet, B. Reinhold, Florian Kaether, Y. Kibe, M. Ishitsuka, E. Conover, J. Felde, D. Franco, C. L. Jones, Lindley Winslow, H. H. Trinh Thi, J. Maeda, F. Hartmann, A. Stüken, F. Sato, R. Carr, D. Greiner, I. Gil-Botella, Tobias Lachenmaier, Kazuhiro Terao, L. Goodenough, R. Milincic, Robert Svoboda, Christopher Wiebusch, G. A. Valdiviesso, A. Tonazzo, M. C. Goodman, J. C. dos Anjos, Luis González, Nathaniel Bowden, Thomas Schwetz, Achim Stahl, Yoshio Abe, M. Obolensky, G. Pronost, H. de Kerret, L. N. Kalousis, T.J.C. Bezerra, P. Pfahler, C. E. Lane, A. Osborn, M. V. d'Agostino, S. V. Sukhotin, E. Smith, N. Haag, Manuel Meyer, Marcos Dracos, S. Lucht, V. Fischer, J. Martino, M. Bergevin, K. Crum, J. I. Crespo-Anadón, Y. Sakamoto, M. H. Shaevitz, Yu. Efremenko, Caren Hagner, APC - Neutrinos, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC)-AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire SUBATECH Nantes (SUBATECH), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique Nucl'eaire, Atomique et de Spectroscopie, Université de Liège, Double-CHOOZ, Massachusetts Institute of Technology. Department of Physics, Massachusetts Institute of Technology. Plasma Science and Fusion Center, Conrad, Janet, Jones, Christopher LaDon, Spitz, Joshua B., Terao, Yasuaki, Winslow, L., Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), and Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Particle physics ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Daya bay ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,CHOOZ ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Neutrino oscillation ,Nuclear Experiment ,Physics ,Muon ,010308 nuclear & particles physics ,Oscillation ,Neutron temperature ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,13. Climate action ,High Energy Physics::Experiment ,Neutrino - Abstract
Double Chooz is unique among modern reactor-based neutrino experiments studying ν¯e disappearance in that data can be collected with all reactors off. In this paper, we present data from 7.53 days of reactor-off running. Applying the same selection criteria as used in the Double Chooz reactor-on oscillation analysis, a measured background rate of 1.0±0.4 events/day is obtained. The background model for accidentals, cosmogenic β-n-emitting isotopes, fast neutrons from cosmic muons, and stopped-μ decays used in the oscillation analysis is demonstrated to be correct within the uncertainties. Kinematic distributions of the events, which are dominantly cosmic-ray-produced correlated-background events, are provided. The background rates are scaled to the shielding depths of two other reactor-based oscillation experiments, Daya Bay and RENO., United States. Dept. of Energy, National Science Foundation (U.S.)
- Published
- 2012
- Full Text
- View/download PDF
26. Reactor ν ̄e disappearance in the Double Chooz experiment
- Author
-
G. Mention, M. Ishitsuka, Matthew L Strait, Tobias Lachenmaier, I. M. Pepe, Daniel M. Kaplan, S. V. Sukhotin, E. Smith, M. V. d'Agostino, H. Miyata, M. Kuze, E. Caden, N. Haag, Christian Buck, A. Hatzikoutelis, S. Dazeley, T. Kawasaki, E. Damon, A.V. Etenko, T. Konno, H. P. Lima, F. Suekane, L.F.F. Stokes, I. Stancu, H. Furuta, L.N. Kalousis, Yuri Kamyshkov, C. N. Maesano, Y. Sakamoto, M. Toups, T. Miletic, P. Novella, D. McKee, D. Dietrich, S. Perasso, J. Busenitz, P.-J. Chang, J. Haser, S. Shimojima, Lindley Winslow, F. Yermia, S. Lucht, G. A. Horton-Smith, Michael Hofmann, A. Bernstein, Anatael Cabrera, P. Perrin, Michael Fechner, David Lhuillier, A. Cucoanes, E. Conover, H. H. Trinh Thi, E. Kemp, Luis González, Nathaniel Bowden, Thomas Schwetz, B. White, T.J.C. Bezerra, A. Remoto, C. L. Jones, A. Onillon, C. Mariani, P. Chimenti, Kazuhiro Terao, Janet Conrad, Marcos Dracos, Josef Jochum, T. Matsubara, T. Hayakawa, I. Gil-Botella, J. Martino, L. Bezrukhov, M. Bergevin, V. V. Sinev, F. von Feilitzsch, M. Obolensky, A. Osborn, H. de Kerret, Christopher Wiebusch, M. D. Skorokhvatov, J. Ebert, Michael Wurm, H. Watanabe, Robert Svoboda, Sebastian Wagner, G. A. Valdiviesso, M. Röhling, D. Kryn, M. C. Goodman, K. Crum, Alain Letourneau, Yu. Efremenko, Manfred Lindner, Antoine Collin, E. Blucher, Zelimir Djurcic, A. Hourlier, Lydie Giot, Stefan Schoppmann, W. Potzel, Caren Hagner, J. I. Crespo-Anadón, R. Gama, Anselmo Meregaglia, M. H. Shaevitz, J. C. dos Anjos, J. M. López-Castaño, Yoshio Abe, Bayarto Lubsandorzhiev, S. Schönert, Lothar Oberauer, C. Palomares, Thierry Lasserre, G. Keefer, V. Zimmer, Muriel Fallot, T. Classen, J. C. Barriere, A. J. Franke, R. Carr, D. Greiner, P. Pfahler, C. E. Lane, L. Camilleri, Florian Kaether, Y. Kibe, F. Hartmann, J. Felde, D. Franco, J.V. Dawson, T. Sumiyoshi, A. Stahl, J. L. Sida, M. Cerrada, Amanda Porta, J. Maricic, A. Stüken, F. Sato, J. Reichenbacher, C. Veyssiere, R. Santorelli, J. Tm. Goon, D. Shrestha, J. Spitz, V. Durand, R. Roncin, Ying Sun, T. Hara, John M. LoSecco, M. Elnimr, R. Milincic, S. Roth, I. Ostrovskiy, M. Franke, Th. A. Mueller, K. Nakajima, C. Aberle, M. Worcester, Cécile Jollet, B. Reinhold, C. Langbrandtner, J. Maeda, A. Tonazzo, M. Göger-Neff, and Yasushi Nagasaka
- Subjects
Physics ,NOνA ,Nuclear and High Energy Physics ,Particle physics ,010308 nuclear & particles physics ,Detector ,CHOOZ ,01 natural sciences ,Spectral line ,Nuclear physics ,0103 physical sciences ,010306 general physics ,Neutrino oscillation ,Electron neutrino - Abstract
The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power x detector mass x livetime) exposure using a 10.3 cubic meter fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of theta13 = 0 is 8,937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin^2 2{\theta}13 = 0.109 \pm 0.030(stat) \pm 0.025(syst). The data exclude the no-oscillation hypothesis at 99.9% CL (3.1{\sigma}).
- Published
- 2012
27. Indication of Reactorν¯eDisappearance in the Double Chooz Experiment
- Author
-
A. Cucoanes, F. Ardellier, M. Obolensky, M. Dracos, H. de Kerret, D. Shrestha, R. Svoboda, C. L. Jones, J. Maeda, I. Ostrovskiy, R. Santorelli, A. Tonazzo, C. Jollet, M. Franke, A. F. Barbosa, T. Hayakawa, J. Tm. Goon, I. Gil-Botella, Daniel M. Kaplan, G. Keefer, J.V. Dawson, R. Milincic, Tobias Lachenmaier, C. E. Lane, B. Guillon, J. Reichenbacher, J. Spitz, M. Worcester, N. Tamura, M. Dierckxsens, M. Cribier, J. Haser, G. Mention, H. Miyata, M. Kuze, K. Nakajima, C. Langbrandtner, J. Hartnell, Z. Sun, Christian Buck, H. P. Lima, M. Cerrada, C. Aberle, Yasushi Nagasaka, S. Cormon, Muriel Fallot, T. Classen, E. Kemp, J. Busenitz, Janet Conrad, E. Damon, S. Perasso, S. Roth, C. N. Maesano, C. Mariani, Th. A. Mueller, E. Caden, A. Onillon, W. Potzel, T. Kawasaki, D. Dietrich, Matthew L Strait, A. Hatzikoutelis, M. D. Skorokhvatov, Michael Wurm, H. Watanabe, A. Bernstein, Florian Kaether, Y. Kibe, J. Felde, Z. Djurcic, A. Osborn, A. Milzstajn, D. Franco, C. Palomares, K. Zbiri, D. E. Reyna, S. M. Fernandes, Yu. Efremenko, M. Bongrand, Ying Sun, Alain Letourneau, L. Bezrukhov, T.J.C. Bezerra, U. Schwan, Kazuhiro Terao, Yuri Kamyshkov, F. von Feilitzsch, Caren Hagner, R. Gama, Amanda Porta, H. H. Trinh Thi, T. Miletic, P. Perrin, A. Meregaglia, D. Kryn, J. Maricic, Christopher Wiebusch, J. M. LoSecco, David Lhuillier, Lothar Oberauer, Bayarto Lubsandorzhiev, B. White, P.-J. Chang, Masaki Ishitsuka, E. Falk, M. Elnimr, Thierry Lasserre, V. V. Sinev, M. Göger-Neff, H. Furuta, G. A. Horton-Smith, M. C. Goodman, F. Yermia, V. Durand, Lindley Winslow, Anatael Cabrera, F. X. Hartmann, E. Yanovitch, Y. Sakamoto, H. A. Rubin, Michael Hofmann, B. Reinhold, F. Sato, M. H. Shaevitz, Luis González, Nathaniel Bowden, Thomas Schwetz, E. Conover, H. Tabata, J. C. dos Anjos, V. Zimmer, L.N. Kalousis, M. Toups, I. M. Pepe, A. Baxter, A. Stüken, Steven Dazeley, R. Carr, D. Greiner, Yoshio Abe, L. Camilleri, Lydie Giot, M. V. d'Agostino, J. Martino, Sebastian Wagner, Manfred Lindner, Antoine Collin, E. Blucher, M. Röhling, S. Schönert, Y. Endo, P. Pfahler, M. Fechner, P. Chimenti, A.V. Etenko, T. Matsubara, J. M. López-Castanõ, I. Stancu, S. J. M. Peeters, T. Akiri, Stefan Schoppmann, D. Mckee, T. Haruna, Yehan Liu, T. Konno, A. Remoto, F. Suekane, P. Novella, T. Sumiyoshi, D. Motta, T. Hara, A. Stahl, J. L. Sida, R. Queval, M. Bergevin, J. Jochum, K. Crum, A. J. Franke, S. V. Sukhotin, J. I. Crespo-Anadón, E. Smith, N. Haag, S. Lucht, and C. Veyssiere
- Subjects
NOνA ,Physics ,Particle physics ,Muon ,010308 nuclear & particles physics ,General Physics and Astronomy ,Flux ,Daya Bay Reactor Neutrino Experiment ,CHOOZ ,7. Clean energy ,01 natural sciences ,Nuclear physics ,0103 physical sciences ,High Energy Physics::Experiment ,Neutrino ,Nuclear Experiment ,010306 general physics ,Neutrino oscillation ,Electron neutrino - Abstract
The Double Chooz experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944±0.016(stat)±0.040(syst) was obtained in 101 days of running at the Chooz nuclear power plant in France, with two 4.25GWth reactors. The results were obtained from a single 10m3 fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 flux measurement after correction for differences in core composition. The deficit can be interpreted as an indication of a nonzero value of the still unmeasured neutrino mixing parameter sin22θ13. Analyzing both the rate of the prompt positrons and their energy spectrum, we find sin22θ13=0.086±0.041(stat)±0.030(syst), or, at 90% C.L., 0.017
- Published
- 2012
- Full Text
- View/download PDF
28. Indication of reactor ν(e) disappearance in the Double Chooz experiment
- Author
-
Y, Abe, C, Aberle, T, Akiri, J C, dos Anjos, F, Ardellier, A F, Barbosa, A, Baxter, M, Bergevin, A, Bernstein, T J C, Bezerra, L, Bezrukhov, E, Blucher, M, Bongrand, N S, Bowden, C, Buck, J, Busenitz, A, Cabrera, E, Caden, L, Camilleri, R, Carr, M, Cerrada, P-J, Chang, P, Chimenti, T, Classen, A P, Collin, E, Conover, J M, Conrad, S, Cormon, J I, Crespo-Anadón, M, Cribier, K, Crum, A, Cucoanes, M V, D'Agostino, E, Damon, J V, Dawson, S, Dazeley, M, Dierckxsens, D, Dietrich, Z, Djurcic, M, Dracos, V, Durand, Y, Efremenko, M, Elnimr, Y, Endo, A, Etenko, E, Falk, M, Fallot, M, Fechner, F, von Feilitzsch, J, Felde, S M, Fernandes, D, Franco, A J, Franke, M, Franke, H, Furuta, R, Gama, I, Gil-Botella, L, Giot, M, Göger-Neff, L F G, Gonzalez, M C, Goodman, J T M, Goon, D, Greiner, B, Guillon, N, Haag, C, Hagner, T, Hara, F X, Hartmann, J, Hartnell, T, Haruna, J, Haser, A, Hatzikoutelis, T, Hayakawa, M, Hofmann, G A, Horton-Smith, M, Ishitsuka, J, Jochum, C, Jollet, C L, Jones, F, Kaether, L, Kalousis, Y, Kamyshkov, D M, Kaplan, T, Kawasaki, G, Keefer, E, Kemp, H, de Kerret, Y, Kibe, T, Konno, D, Kryn, M, Kuze, T, Lachenmaier, C E, Lane, C, Langbrandtner, T, Lasserre, A, Letourneau, D, Lhuillier, H P, Lima, M, Lindner, Y, Liu, J M, López-Castanõ, J M, LoSecco, B K, Lubsandorzhiev, S, Lucht, D, McKee, J, Maeda, C N, Maesano, C, Mariani, J, Maricic, J, Martino, T, Matsubara, G, Mention, A, Meregaglia, T, Miletic, R, Milincic, A, Milzstajn, H, Miyata, D, Motta, Th A, Mueller, Y, Nagasaka, K, Nakajima, P, Novella, M, Obolensky, L, Oberauer, A, Onillon, A, Osborn, I, Ostrovskiy, C, Palomares, S J M, Peeters, I M, Pepe, S, Perasso, P, Perrin, P, Pfahler, A, Porta, W, Potzel, R, Queval, J, Reichenbacher, B, Reinhold, A, Remoto, D, Reyna, M, Röhling, S, Roth, H A, Rubin, Y, Sakamoto, R, Santorelli, F, Sato, S, Schönert, S, Schoppmann, U, Schwan, T, Schwetz, M H, Shaevitz, D, Shrestha, J-L, Sida, V, Sinev, M, Skorokhvatov, E, Smith, J, Spitz, A, Stahl, I, Stancu, M, Strait, A, Stüken, F, Suekane, S, Sukhotin, T, Sumiyoshi, Y, Sun, Z, Sun, R, Svoboda, H, Tabata, N, Tamura, K, Terao, A, Tonazzo, M, Toups, H H, Trinh Thi, C, Veyssiere, S, Wagner, H, Watanabe, B, White, C, Wiebusch, L, Winslow, M, Worcester, M, Wurm, E, Yanovitch, F, Yermia, K, Zbiri, and V, Zimmer
- Abstract
The Double Chooz experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. An observed-to-predicted ratio of events of 0.944±0.016(stat)±0.040(syst) was obtained in 101 days of running at the Chooz nuclear power plant in France, with two 4.25 GW(th) reactors. The results were obtained from a single 10 m(3) fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 flux measurement after correction for differences in core composition. The deficit can be interpreted as an indication of a nonzero value of the still unmeasured neutrino mixing parameter sin(2)2θ(13). Analyzing both the rate of the prompt positrons and their energy spectrum, we find sin(2)2θ(13)=0.086±0.041(stat)±0.030(syst), or, at 90% C.L., 0.017sin(2)2θ(13)0.16.
- Published
- 2012
29. Unimolecular dissociation of anthracene and acridine cations: the importance of isomerization barriers for the C2H2 loss and HCN loss channels
- Author
-
Henning Zettergren, Preben Hvelplund, N Haag, H. A. B. Johansson, Anne I. S. Holm, Henrik Cederquist, Kristian Støchkel, Henning T. Schmidt, Jean Ann Wyer, S. Brøndsted Nielsen, and Maj-Britt Suhr Kirketerp
- Subjects
chemistry.chemical_compound ,Anthracene ,Collision-induced dissociation ,chemistry ,Electrospray ionization ,Acridine ,General Physics and Astronomy ,Protonation ,Physical and Theoretical Chemistry ,Biphenylene ,Photochemistry ,Isomerization ,Dissociation (chemistry) - Abstract
The loss of C(2)H(2) is a low activation energy dissociation channel for anthracene (C(14)H(10)) and acridine (C(13)H(9)N) cations. For the latter ion another prominent fragmentation pathway is the loss of HCN. We have studied these two dissociation channels by collision induced dissociation experiments of 50 keV anthracene cations and protonated acridine, both produced by electrospray ionization, in collisions with a neutral xenon target. In addition, we have carried out density functional theory calculations on possible reaction pathways for the loss of C(2)H(2) and HCN. The mass spectra display features of multi-step processes, and for protonated acridine the dominant first step process is the loss of a hydrogen from the N site, which then leads to C(2)H(2)/HCN loss from the acridine cation. With our calculations we have identified three pathways for the loss of C(2)H(2) from the anthracene cation, with three different cationic products: 2-ethynylnaphthalene, biphenylene, and acenaphthylene. The third product is the one with the overall lowest dissociation energy barrier. For the acridine cation our calculated pathway for the loss of C(2)H(2) leads to the 3-ethynylquinoline cation, and the loss of HCN leads to the biphenylene cation. Isomerization plays an important role in the formation of the non-ethynyl containing products. All calculated fragmentation pathways should be accessible in the present experiment due to substantial energy deposition in the collisions.
- Published
- 2011
30. Solar and Atmospheric Neutrinos: Background Sources for the Direct Dark Matter Searches
- Author
-
N. Haag, W. Potzel, A. Zöller, F. von Feilitzsch, S. Pfister, Lothar Oberauer, S. Roth, Martin Hofmann, M. von Sivers, J.-C. Lanfranchi, A. Gütlein, C. Ciemniak, R. D. Strauss, C. Isaila, T. Lachenmaier, Physik-Department E15, and Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM)
- Subjects
direct dark matter search ,Coherent neutrino nucleus scattering ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Physics::Instrumentation and Detectors ,Solar neutrino ,Dark matter ,FOS: Physical sciences ,chemistry.chemical_element ,7. Clean energy ,01 natural sciences ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Nuclear physics ,High Energy Physics - Phenomenology (hep-ph) ,Xenon ,WIMP ,0103 physical sciences ,010306 general physics ,Light dark matter ,Physics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,atmospheric neutrinos ,High Energy Physics - Phenomenology ,chemistry ,13. Climate action ,solar neutrinos ,Weakly interacting massive particles ,Neutrino ,Nucleon - Abstract
In experiments for direct dark matter searches, neutrinos coherently scattering off nuclei can produce similar events as Weakly Interacting Massive Particles (WIMPs). The calculated count rate for solar neutrinos in such experiments is a few events per ton-year. This count rate strongly depends on the nuclear recoil energy threshold achieved in the experiments for the WIMP search. We show that solar neutrinos can be a serious background source for direct dark matter search experiments using Ge, Ar, Xe and CaWO_4 as target materials. To reach sensitivities better than approximatly 10^-10 pb for the elastic WIMP nucleon spin-independent cross section in the zero-background limit, energy thresholds for nuclear recoils should be approximatly >2.05 keV for CaWO_4, >4.91 keV for Ge, >2.89 keV for Xe, and >8.62 keV for Ar as target material. Next-generation experiments should not only strive for a reduction of the present energy thresholds but mainly focus on an increase of the target mass. Atmospheric neutrinos limit the achievable sensitivity for the background-free direct dark matter search to approximatly >10^-12 pb., accepted by Astroparticle Physics
- Published
- 2010
- Full Text
- View/download PDF
31. On the hydrogen loss from protonated nucleobases after electronic excitation or collisional electron capture
- Author
-
Jean Ann Wyer, Henrik Cederquist, Steen Brøndsted Nielsen, Jimmy Rangama, Preben Hvelplund, N Haag, Henning T. Schmidt, Bernd A. Huber, R. Maisonny, Patrick Rousseau, H. A. B. Johansson, Brassy, Chantal, Department of Physics and Astronomy [Aarhus], Aarhus University [Aarhus], Department of Physics, Stockholm University, Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Stockholm], Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
neutralisation-reionisation ,Hydrogen ,Electron capture ,Guanine ,chemistry.chemical_element ,Protonation ,electron capture-induced dissociation ,010402 general chemistry ,Photochemistry ,01 natural sciences ,Nucleobase ,[PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,chemistry.chemical_compound ,Computational chemistry ,0103 physical sciences ,[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,Spectroscopy ,010304 chemical physics ,[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,Chemistry ,[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,Uracil ,General Medicine ,protonated nucleobases ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Thymine ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,charge reversal ,Cytosine - Abstract
In this work, we have subjected protonated nucleobases MH+ (M = guanine, adenine, thymine, uracil and cytosine) to a range of experiments that involve high-energy (50 keV) collision-induced dissociation (CID) and electron capture-induced dissociation. In the latter case, both neutralisation reionisation and charge reversal were done. For the CID experiments, the ions interacted with O2. In neutral reionisation, caesium atoms were used as the target gas and the protonated nucleobases captured electrons to give neutrals. These were reionised to cations a microsecond later in collisions with O2. In choosing Cs as the target gas, we have ensured that the first electron transfer process is favourable (by about 0.1–0.8 eV depending on the base). In the case of protonated adenine, charge reversal experiments (two Cs collisions) were also carried out, with the results corroborating those from the neutralisation–reionisation experiments. We find that while collisional excitation of protonated nucleobases in O2 may lead to hydrogen loss with limited probabilities, this channel becomes dominant for electron capture events. Indeed, when sampling reionised neutrals on a microsecond timescale, we see that the ratio between MH+ and M+ is 0.2–0.4 when one electron is captured from Cs. There are differences in these ratios between the bases but no obvious correlation with recombination energies was found.
- Published
- 2009
- Full Text
- View/download PDF
32. Two-Center Double-Capture Interference in FastHe2++H2Collisions
- Author
-
H. T. Schmidt, Ansgar Simonsson, Deepankar S. Misra, M. Gudmundsson, Anders Kallberg, Reinhold S. Schuch, Peter Reinhed, Henrik A B Johansson, Henrik Cederquist, Daniel Fischer, Markus Schöffler, N Haag, Bennaceur Najjari, and Alexander Voitkiv
- Subjects
Physics ,Projectile ,Atomic electron transition ,Nuclear Theory ,General Physics and Astronomy ,sense organs ,Matter wave ,Atomic physics ,skin and connective tissue diseases ,Nuclear Experiment ,Interference (wave propagation) ,Astrophysics::Galaxy Astrophysics - Abstract
We report the first observation of Young-type interference effects in a two-electron transfer process. These effects change strongly as the projectile velocity changes in fast (1.2 and 2.0 MeV) He^ ...
- Published
- 2009
- Full Text
- View/download PDF
33. Electron-capture-induced dissociation of microsolvated di- and tripeptide monocations: elucidation of fragmentation channels from measurements of negative ions
- Author
-
Jimmy Rangama, Subhasis Panja, Lamri Adoui, Bruno Manil, Mikkel Kofoed Larsen, Henning Zettergren, Umesh Kadhane, Anne I. S. Holm, H. A. B. Johansson, Bernd A. Huber, Kristian Støchkel, Henning T. Schmidt, Bo Liu, Preben Hvelplund, Henrik Cederquist, Steen Brøndsted Nielsen, Peter Reinhed, Virgile Bernigaud, and N Haag
- Subjects
Ions ,Chemistry ,Electron capture ,Analytical chemistry ,Cesium ,Electrons ,Tripeptide ,Photochemistry ,Mass spectrometry ,Atomic and Molecular Physics, and Optics ,Dissociation (chemistry) ,Mass Spectrometry ,Ion ,Electron transfer ,Excited state ,Cations ,Crown Ethers ,Physical and Theoretical Chemistry ,Peptides ,Bond cleavage - Abstract
The results from an experimental study of bare and microsolvated peptide monocations in high-energy collisions with cesium vapor are reported. Neutral radicals form after electron capture from cesium, which decay by H loss, NH(3) loss, or N-C(alpha) bond cleavage into characteristic z(*) and c fragments. The neutral fragments are converted into negatively charged species in a second collision with cesium and are identified by means of mass spectrometry. For protonated GA (G = glycine, A = alanine), the branching ratio between NH(3) loss and N-C(alpha) bond cleavage is found to strongly depend on the molecule attached (H(2)O, CH(3)CN, CH(3)OH, and 18-crown-6 ether (CE)). Addition of H(2)O and CH(3)OH increases this ratio whereas CH(3)CN and CE decrease it. For protonated AAA ([AAA+H](+)), a similar effect is observed with methanol, while the ratio between the z(1) and z(2) fragment peaks remains unchanged for the bare and microsolvated species. Density functional theory calculations reveal that in the case of [GA+H](+)(CE), the singly occupied molecular orbital is located mainly on the amide group in accordance with the experimental results.
- Published
- 2009
- Full Text
- View/download PDF
34. Collisions with biomolecules embedded in small water clusters
- Author
-
H. A. B. Johansson, Preben Hvelplund, Henning Zettergren, Bruno Manil, Bo Liu, S. Brøndsted Nielsen, N Haag, Henrik Cederquist, Henning T. Schmidt, Bernd A. Huber, Department of Physics, Stockholm University, School of Physics and Information Optoelectronics, Henan University, Department of Physics and Astronomy [Aarhus], Aarhus University [Aarhus], Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Brassy, Chantal
- Subjects
History ,Collision-induced dissociation ,Chemistry ,Electron capture ,[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,010402 general chemistry ,01 natural sciences ,Dissociation (chemistry) ,010305 fluids & plasmas ,0104 chemical sciences ,Computer Science Applications ,Education ,Ion ,Electron transfer ,Fragmentation (mass spectrometry) ,Chemical physics ,Excited state ,0103 physical sciences ,[PHYS.PHYS.PHYS-ATM-PH] Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,Water cluster ,Atomic physics - Abstract
International audience; We have studied fragmentation of water embedded adenosine 5'-monophosphate (AMP) anions after collisions with neutral sodium atoms. At a collision energy of 50 keV, loss of water molecules from the collisionally excited cluster ions is the dominant process and fragmentation of the AMP itself is almost completely prohibited if the number of attached water molecules is larger than 13. However, regardless of the initial number of water molecules attached to the ion, capture of an electron, i.e. formation of a dianion, always leads to loss of a single hydrogen atom accompanied by evaporation of water molecules. This damaging effect becomes more important as the size of the water cluster increases, which is just the opposite to the protective behavior observed for collision induced dissociation (CID) without electron transfer. For both cases, the loss of water molecules within the experimental time frame is qualitatively well described by means of a common model of an evaporative ensemble. These simulations, however, indicate that characteristically different distributions of internal energy are involved in CID and electron capture induced dissociation.
- Published
- 2009
35. General methods for determining projective invariants in imagery
- Author
-
Michael H. Brill, Nils N. Haag, Eamon B. Barrett, and Paul Max Payton
- Subjects
Multiple image ,Pure mathematics ,business.industry ,Computation ,General Engineering ,Cognitive neuroscience of visual object recognition ,Three-dimensional space ,Cardinal point ,General Earth and Planetary Sciences ,Focal length ,Computer vision ,Artificial intelligence ,Projective invariants ,Invariant (mathematics) ,business ,General Environmental Science ,Mathematics - Abstract
This paper presents the results of a study of projective invariants and their applications in image analysis and object recognition. The familiar cross-ratio theorem, relating collinear points in the plane to the projections through a point onto a line, provides a starting point for their investigation. Methods are introduced in two dimensions for extending the cross-ratio theorem to relate noncollinear object points to their projections on multiple image lines. The development is further extended to three dimensions. It is well known that, for a set of points distributed in three dimensions, stereo pairs of images can be made and relative distances of the points from the film plane computed from measurements of the disparity of the image points in the stereo pair. These computations require knowledge of the effective focal length and baseline of the imaging system. It is less obvious, but true, that invariant metric relationships among the object points can be derived from measured relationships among the image points. These relationships are a generalization into three dimensions of the invariant cross-ratio of distances between points on a line. In three dimensions the invariants are cross-ratios of areas and volumes defined by the object points. These invariant relationships, which are independent of the parameters of the imaging system, are derived and demonstrated with examples.
- Published
- 1991
- Full Text
- View/download PDF
36. Kinetic-energy-release distributions and barrier heights forC2+emission from multiply chargedC60andC70fullerenes
- Author
-
Zoltan Berenyi, Peter Reinhed, Henning T. Schmidt, H. A. B. Johansson, Henning Zettergren, M Gudmundsson, Daniel Fischer, N Haag, and Henrik Cederquist
- Subjects
Physics ,Fullerene ,Fission ,Excited state ,Charge (physics) ,Atomic physics ,Intensity ratio ,Kinetic energy ,Atomic and Molecular Physics, and Optics ,Ion - Abstract
We present experimental kinetic-energy-release distributions in the asymmetric fission processes $\mathrm{C}_{60}{}^{q+}\ensuremath{\rightarrow}\mathrm{C}_{58}{}^{(q\ensuremath{-}1)+}+\mathrm{C}_{2}{}^{+}$ and $\mathrm{C}_{70}{}^{q+}\ensuremath{\rightarrow}\mathrm{C}_{68}{}^{(q\ensuremath{-}1)+}+\mathrm{C}_{2}{}^{+}$ for highly excited mother ions in charge states $q=4\char21{}8$. We find that the distributions for $\mathrm{C}_{70}{}^{q+}$ are considerably narrower and peak at lower energies than for $\mathrm{C}_{60}{}^{q+}$ in the corresponding charge state when $qg4$. Further, semiempirical values for $\mathrm{C}_{2}{}^{+}$ fission barrier heights were extracted for $q=4\char21{}6$ by means of a statistical approach and the measured intensity ratios between fission and ${\mathrm{C}}_{2}$ evaporation.
- Published
- 2008
- Full Text
- View/download PDF
37. Two-center double-capture interference in fast He2+ + H2 collisions
- Author
-
Deepankar, Misra, H T, Schmidt, M, Gudmundsson, D, Fischer, N, Haag, H A B, Johansson, A, Källberg, B, Najjari, P, Reinhed, R, Schuch, M, Schöffler, A, Simonsson, A B, Voitkiv, and H, Cederquist
- Abstract
We report the first observation of Young-type interference effects in a two-electron transfer process. These effects change strongly as the projectile velocity changes in fast (1.2 and 2.0 MeV) He(2+) + H(2) collisions as manifested in strong variations of the double-electron capture rates with the H(2) orientation. This is consistent with fully quantum mechanical calculations, which ignore sequential electron transfer, and a simple projectile de Broglie wave picture assuming that two-electron transfer probabilities are higher in collisions where the projectile passes close to either one of the H(2) nuclei.
- Published
- 2008
38. Fragmentation of isolated and nanosolvated biomolecular systems
- Author
-
B. A. Huber, L. Adoui, V. Bernigaud, B. Manil, L. Maunoury, J. Rangama, P. Rousseau, N. Haag, H. Johansson, H. T. Schmidt, H. Cederquist, S. Bro̸ndsted Nielsen, B. Liu, H. Zettergren, P. Hvelplund, F. Alvarado, S. Bari, R. Hoekstra, J. Postma, T. Schlathölter, Károly Tokési, Béla Sulik, Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU), Laboratoire de Physique des Lasers (LPL), Université Paris 13 (UP13)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Stockholm], Stockholm University, Department of Physics and Astronomy [Aarhus], Aarhus University [Aarhus], KVI Atomic and Molecular Physics (KVI), University of Groningen [Groningen], Zernike Institute for Advanced Materials, Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Collision ,Biomolecule ,[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus] ,02 engineering and technology ,Electron ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,biomolecules ,Dissociation (chemistry) ,0104 chemical sciences ,Ion ,Fragmentation (mass spectrometry) ,chemistry ,13. Climate action ,Chemical physics ,Molecule ,ion ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Atomic physics ,0210 nano-technology ,cluster ,Macromolecule - Abstract
International audience; In the present communication we discuss different collision processes leading to the damage of biomolecular species. During the collision either an electron is attached or removed from the biomolecule or only energy is transferred without changing their charge state. In particular, we discuss the influence of the environment, i.e. the fact whether fragmentation processes are studied with isolated molecules in the gas phase, or whether they are embedded in a more realistic environment, i.e. surrounded by similar molecules in a cluster system or solvated in a given number of water molecules.
- Published
- 2008
- Full Text
- View/download PDF
39. Evidence of wave-particle duality for single fast hydrogen atoms
- Author
-
Henning T. Schmidt, M Gudmundsson, Reinhold Schuch, Daniel Fischer, Peter Reinhed, Henrik Cederquist, U. Sassenberg, S. B. Levin, Kristian Støchkel, Zoltan Berenyi, Anders Källberg, H. A. B. Johansson, N Haag, Ansgar Simonsson, and C. L. Cocke
- Subjects
Physics ,Atom interferometer ,Wave–particle duality ,Measurement theory ,Hydrogen ,chemistry ,Direct observation ,1s Slater-type function ,General Physics and Astronomy ,chemistry.chemical_element ,Matter wave ,Atomic physics ,Interference (wave propagation) - Abstract
We report the direct observation of interference effects in a Young's double-slit experiment where the interfering waves are two spatially separated components of the de Broglie wave of single 1.3 MeV hydrogen atoms formed close to either target nucleus in H++H2 electron-transfer collisions. Quantum interference strongly influences the results even though the hydrogen atoms have a de Broglie wavelength, lambda_{dB}, as small as 25 fm.
- Published
- 2008
40. Electron capture induced dissociation of nucleotide anions in water nanodroplets
- Author
-
Henrik J. Johansson, Preben Hvelplund, Henrik Cederquist, Bernd A. Huber, N Haag, S. Brøndsted Nielsen, Henning T. Schmidt, Bruno Manil, Henning Zettergren, and Bo Liu
- Subjects
Anions ,Models, Molecular ,Adenosine monophosphate ,Hydrogen ,Collision-induced dissociation ,Electron capture ,Inorganic chemistry ,Water ,General Physics and Astronomy ,chemistry.chemical_element ,Electrons ,Photochemistry ,Adenosine Monophosphate ,Dissociation (chemistry) ,Nanostructures ,Ion ,Microsecond ,chemistry.chemical_compound ,Models, Chemical ,chemistry ,Molecule ,Computer Simulation ,Physical and Theoretical Chemistry - Abstract
We have studied the outcome of collisions between the hydrated nucleotide anion adenosine 5'-monophosphate (AMP) and sodium. Electron capture leads to hydrogen loss as well as water evaporation regardless of the initial number m of water molecules attached to the parent ion (m< or =16). The yield of dianions with microsecond lifetimes increases strongly with m, which is explained from dielectric screening of the two charges by the water nanodroplet. For comparison, collision induced dissociation results in water losses with no or very little damage of the AMP molecule itself.
- Published
- 2008
41. Electron capture-induced dissociation of AK dipeptide dications: Influence of ion velocity, crown-ether complexation and collision gas
- Author
-
Sylwia Ptasinska, Subhasis Panja, Alexey V. Streletskii, Esben S. Worm, Henning Zettergren, Bruno Manil, Steen Brøndsted Nielsen, Umesh Kadhane, Kristian Støchkel, Henrik Cederquist, Henning T. Schmidt, Anne I. S. Holm, Jimmy Rangama, Peter Reinhed, N Haag, Virgile Bernigaud, Mikkel Koefoed Larsen, Preben Hvelplund, and Bernd A. Huber
- Subjects
chemistry.chemical_classification ,Dipeptide ,Chemistry ,Electron capture ,Protonation ,Condensed Matter Physics ,Photochemistry ,Dissociation (chemistry) ,Ion ,Electron transfer ,chemistry.chemical_compound ,Fragmentation (mass spectrometry) ,Physics::Plasma Physics ,Computational chemistry ,Astrophysics::Earth and Planetary Astrophysics ,Physical and Theoretical Chemistry ,Nuclear Experiment ,Instrumentation ,Spectroscopy ,Crown ether - Abstract
The fragmentation of doubly protonated AK dipeptide ions has been investigated after collisional electron transfer. Electron capture leads to three dominant channels, H loss, NH3 loss, and N–C? bond breakage to give either c+ or z+ fragment ions. The relative importance of these channels has been explored as a function of ion velocity, the degree of complexation with crown ether, and collision gas. Our results indicate that H loss and NH3 loss are competing channels whereas the probability of N–C? bond breakage is more or less constant.
- Published
- 2008
42. A New Facility for High-Energy Neutron-Induced Fission Studies
- Author
-
M. Carlsson, Christer Johansson, P. Mermod, M. Osterlund, B. Bergenwall, Jan Blomgren, Stephan Pomp, A. Hildebrand, Udomrat Tippawan, Somsak Dangtip, N. Haag, Alexander V. Prokofiev, and L. Einarsson
- Subjects
Nuclear physics ,Nuclear reaction ,Physics ,Uranium-238 ,Neutron flux ,Scattering ,Fission ,Nuclear Theory ,Neutron ,Alpha particle ,Nuclear Experiment ,Radioactive decay - Abstract
A new facility is constructed for measurements of neutron‐induced fission cross sections in the 20–180 MeV energy region versus the np scattering cross section, which is adopted as the primary neutron standard. The advantage of the experiment compared to earlier studies is that the fission‐fragment detection and the neutron‐flux measurement via np scattering are performed simultaneously and at the same position in the beam, and, therefore, many sources of systematic errors cancel out. Further reduction of systematic errors is achieved due to “embedded” determination of effective solid angle of particle detectors using α‐particles from the radioactive decay of the target nuclei. The performance of the facility is illustrated by first data obtained for angular distributions of fission fragments in the 238U(n,f) reaction.
- Published
- 2005
- Full Text
- View/download PDF
43. The New Uppsala Neutron Beam Facility
- Author
-
Jan Blomgren, Alexander V. Prokofiev, D. Wessman, Udomrat Tippawan, Volker Ziemann, O. Byström, A. Hildebrand, Olof Jönsson, N. Haag, Per-Ulf Renberg, Michael Österlund, Stephan Pomp, Leif Nilsson, Cecilia Johansson, Philippe Mermod, Nils Olsson, C. Ekström, and D. Reistad
- Subjects
Physics ,Nuclear physics ,law ,Dosimetry ,Particle accelerator ,Neutron radiation ,Key features ,Beam (structure) ,The Svedberg Laboratory ,law.invention ,Neutron physics - Abstract
A new quasi‐monoenergetic neutron beam facility has been constructed at the The Svedberg Laboratory (TSL) in Uppsala, Sweden. Key features include an energy range of 20 to 175 MeV, high fluxes, and the possibility of large‐area fields. Besides cross‐section measurements, the new facility has been designed specifically to provide optimal conditions for testing of single‐event effects in electronics and for dosimetry development. First results of the beam characterization measurements performed in early 2004 are reported.
- Published
- 2005
- Full Text
- View/download PDF
44. A macroscopic model of an interactive computing system.
- Author
-
James N. Haag
- Published
- 1967
- Full Text
- View/download PDF
45. Some invariant linear methods in photogrammetry and model-matching
- Author
-
P.M. Payton, M. H. Brill, E. B. Barrett, and N. N. Haag
- Subjects
Photogrammetry ,business.industry ,Computer vision ,Artificial intelligence ,Solid modeling ,Electrical capacitance tomography ,Inverse problem ,Invariant (physics) ,business ,System of linear equations ,Linear equation ,Stereo camera ,Mathematics - Abstract
For several useful tasks in photogrammetry and in model-based vision, noniterative methods that require only the inversion of systems of linear equations are developed. The methods are based on the theory of projective invariants. The tasks addressed are resection, intersection, and transfer, or model matching (with or without ground control points). The following kinds of transfer are examined: (a) coplanar object points (transfer to image 2 done using four reference points in image 1); (b) stereo camera system (transfer to stereo camera pair 2 done using four reference points in stereo pair 1); (c) general multicamera configuration (transfer of a ninth point to image 3 done using eight tie points in images 1 and 2). >
- Published
- 2003
- Full Text
- View/download PDF
46. Lifelong administration of high doses of ibandronate increases bone mass and maintains bone quality of lumbar vertebrae in rats
- Author
-
S. Lalla, Ludwig A. Hothorn, N. Haag, R. Bader, and F. Bauss
- Subjects
musculoskeletal diseases ,Male ,Bone density ,Endocrinology, Diabetes and Metabolism ,medicine.medical_treatment ,Lumbar vertebrae ,Ibandronic acid ,Bone and Bones ,Lumbar ,Sex Factors ,Bone Density ,Ultimate tensile strength ,Pressure ,Medicine ,Animals ,Quantitative computed tomography ,Rats, Wistar ,Ibandronic Acid ,Bone mineral ,Lumbar Vertebrae ,medicine.diagnostic_test ,Diphosphonates ,Dose-Response Relationship, Drug ,business.industry ,Bisphosphonate ,Rats ,medicine.anatomical_structure ,Female ,Stress, Mechanical ,Nuclear medicine ,business ,medicine.drug - Abstract
As part of a long-term safety study the bisphosphonate ibandronate was investigated for its effects on bone quality in lumbar vertebrae in rats. Bone area, bone density and mechanical properties were assessed by peripheral quantitative computed tomography (pQCT), dual-energy X-ray absorptiometry (DXA) and compression tests. Female and male groups of Wistar rats received either vehicle or 3, 7 or 15 mg/kg per day of ibandronate over 104 weeks orally by gavage. Compared with the control group, bone mineral density, compressive strength and stiffness were significantly higher in ibandronate-treated animals, whereas no changes occurred in strain or modulus of elasticity. The increase in vertebral body stress was significant in some of the ibandronate-treated groups. The changes in mechanical properties appear to be due mainly to an increase in bone mass. A highly significant correlation was found between bone mineral density measured either by DXA (r = 0.86) or pQCT (r = 0.85) and maximal strength in vertebral bodies (p0.0001 each). In conclusion, we demonstrated that lifelong administration of doses of ibandronate far in excess of any therapeutically intended dose not only increases bone mass and apparent density, but also maintains or even slightly improves bone quality. Bone mineral density measured either by pQCT or DXA can be used as a predictor for ultimate strength in rat lumbar vertebral bodies after treatment with ibandronate.
- Published
- 1998
47. Photogrammetric techniques for interferometric synthetic aperture radar data exploitation
- Author
-
Paul L. Poehler, Nils N. Haag, Houra Rais, and Arthur W. Mansfield
- Subjects
Synthetic aperture radar ,Interferometry ,Signal processing ,Data processing ,Geography ,Photogrammetry ,law ,Interferometric synthetic aperture radar ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Terrain ,Radar ,law.invention ,Remote sensing - Abstract
Recent advances in the areas of phase history processing, interferometry, and radargrammetric adjustment have made possible extremely accurate data extraction from synthetic aperture radar (SAR) imagery data. The potential gain from interferometric exploitation is significant since accuracy of measurements can theoretically be determined to within a resolution element of wavelength dimension. Recent work by the authors has shown that the main barrier to accurate and efficient elevation extraction is the measurement jitter caused by terrain variations, which overlay differently in the two SAR images. A unique combination of advanced photogrammetric and signal processing techniques is described which makes possible more accurate extraction of metric position and elevation model data form multiple pass SAR. This paper addresses the accuracy achievable from repeat passes of the ERS-1 and SIR-C spaceborne platforms and is also applicable to airborne SAR platforms.© (1997) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
- Published
- 1997
- Full Text
- View/download PDF
48. Fire Promotes Pollinator Visitation: Implications for Ameliorating Declines of Pollination Services
- Author
-
Morgan J. Douglas, Trey D. Greenwell, Joseph K. Bailey, Joseph T. LeRoy, Mark W. Busby, Elliot N. Haag, George Schuchmann, Quentin D. Read, Courtney E. Gorman, Jessica A. M. Bryant, Jonathan Collins, Robert N. Klein, Michael E. Van Nuland, and Jennifer A. Schweitzer
- Subjects
Population Density ,Multidisciplinary ,Fire regime ,Pollination ,Ecology ,lcsh:R ,fungi ,lcsh:Medicine ,food and beverages ,Agriculture ,Plant community ,Biology ,Population density ,Fires ,Pollinator ,Forb ,lcsh:Q ,Ecosystem ,Terrestrial ecosystem ,lcsh:Science ,Plant Physiological Phenomena ,Research Article - Abstract
Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue.
- Published
- 2013
- Full Text
- View/download PDF
49. Advanced techniques for interferometric synthetic aperture radar data exploitation
- Author
-
Houra Rais, Arthur W. Mansfield, Paul L. Poehler, and Nils N. Haag
- Subjects
Synthetic aperture radar ,business.industry ,Side looking airborne radar ,Data modeling ,Inverse synthetic aperture radar ,Interferometry ,Geography ,Radar imaging ,Interferometric synthetic aperture radar ,Synthetic aperture sonar ,Computer vision ,Artificial intelligence ,business ,Remote sensing - Abstract
Recent advances in the areas of phase history processing, interferometry, and radargrammetric adjustment have made possible extremely accurate data extraction from Synthetic Aperture Radar (SAR) imagery data. The potential gain from interferometric exploitation is significant since accuracy of measurements can theoretically be determined to within a resolution element of wavelength dimension. A unique combination of advanced techniques is described which has made possible more accurate extraction of metric position and elevation model data from multiple pass SAR. The unique approach outlined can be implemented on conventional stereo extraction workstations with appropriate refinements. This paper addresses the accuracy achievable from repeat passes of the ERS-1 platform. Experimental results are provided.© (1996) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
- Published
- 1996
- Full Text
- View/download PDF
50. The Double ElectroStatic Ion-Ring ExpEriment, DESIREE
- Author
-
Stefan Rosén, Mats Larsson, Richard D. Thomas, Mikael Björkhage, A. Paál, Karl G Rensfelt, Per Halldén, Erik Bäckström, S. Das, F. Seitz, Peter Reinhed, G. Andler, Henning T. Schmidt, Wolf D. Geppert, Jan Weimer, Lars Brännholm, Anders Källberg, Sven Leontein, Fredrik Hellberg, H. A. B. Johansson, N Haag, Ansgar Simonsson, Henning Zettergren, Leif Liljeby, P. Löfgren, Henrik Cederquist, and Mikael Blom
- Subjects
History ,Physics::Plasma Physics ,Chemistry ,Degrees of freedom (physics and chemistry) ,Relative velocity ,Vacuum chamber ,Atomic physics ,Ring (chemistry) ,Computer Science Applications ,Education ,Ion ,Production system - Abstract
We describe the status of the DESIREE facility, which is an electrostatic ion-storage device consisting of two storage rings with a common section, where ion beams of opposite charges stored in the two rings are merged. The electrostatic storage rings are mounted in a single common vacuum vessel, which is isolated inside an outer vacuum chamber and cooled by means of four cryogenerators. This unique system will allow for studies of interaction among ions of opposite charges at well controlled conditions both in terms of internal degrees of freedom and relative velocity. An advanced ion-beam production system for intense pulses of cold complex molecular ions is also presented.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.