15 results on '"N. Mastrodemos"'
Search Results
2. The unexpected surface of asteroid (101955) Bennu
- Author
-
D. S. Lauretta, D. N. DellaGiustina, C. A. Bennett, D. R. Golish, K. J. Becker, S. S. Balram-Knutson, O. S. Barnouin, T. L. Becker, W. F. Bottke, W. V. Boynton, H. Campins, H. C. Connolly Jr, C. Y. Drouet d’Aubigny, J. P. Dworkin, J. P. Emery, H. L. Enos, V. E. Hamilton, C. W. Hergenrother, E. S. Howell, M. R. M. Izawa, H. H. Kaplan, M. C. Nolan, B. Rizk, H. L. Roper, D. J. Scheeres, P. H. Smith, K. J. Walsh, C. W. V. Wolner, D. E. Highsmith, J. Small, D. Vokrouhlický, N. E. Bowles, E. Brown, K. L. Donaldson Hanna, T. Warren, C. Brunet, R. A. Chicoine, S. Desjardins, D. Gaudreau, T. Haltigin, S. Millington-Veloza, A. Rubi, J. Aponte, N. Gorius, A. Lunsford, B. Allen, J. Grindlay, D. Guevel, D. Hoak, J. Hong, D. L. Schrader, J. Bayron, O. Golubov, P. Sánchez, J. Stromberg, M. Hirabayashi, C. M. Hartzell, S. Oliver, M. Rascon, A. Harch, J. Joseph, S. Squyres, D. Richardson, L. McGraw, R. Ghent, R. P. Binzel, M. M. Al Asad, C. L. Johnson, L. Philpott, H. C. M. Susorney, E. A. Cloutis, R. D. Hanna, F. Ciceri, A. R. Hildebrand, E.-M. Ibrahim, L. Breitenfeld, T. Glotch, A. D. Rogers, B. E. Clark, S. Ferrone, C. A. Thomas, Y. Fernandez, W. Chang, A. Cheuvront, D. Trang, S. Tachibana, H. Yurimoto, J. R. Brucato, G. Poggiali, M. Pajola, E. Dotto, E. Mazzotta Epifani, M. K. Crombie, C. Lantz, J. de Leon, J. Licandro, J. L. Rizos Garcia, S. Clemett, K. Thomas-Keprta, S. Van wal, M. Yoshikawa, J. Bellerose, S. Bhaskaran, C. Boyles, S. R. Chesley, C. M. Elder, D. Farnocchia, A. Harbison, B. Kennedy, A. Knight, N. Martinez-Vlasoff, N. Mastrodemos, T. McElrath, W. Owen, R. Park, B. Rush, L. Swanson, Y. Takahashi, D. Velez, K. Yetter, C. Thayer, C. Adam, P. Antreasian, J. Bauman, C. Bryan, B. Carcich, M. Corvin, J. Geeraert, J. Hoffman, J. M. Leonard, E. Lessac-Chenen, A. Levine, J. McAdams, L. McCarthy, D. Nelson, B. Page, J. Pelgrift, E. Sahr, K. Stakkestad, D. Stanbridge, D. Wibben, B. Williams, K. Williams, P. Wolff, P. Hayne, D. Kubitschek, M. A. Barucci, J. D. P. Deshapriya, S. Fornasier, M. Fulchignoni, P. Hasselmann, F. Merlin, A. Praet, E. B. Bierhaus, O. Billett, A. Boggs, B. Buck, S. Carlson-Kelly, J.Cerna, K. Chaffin, E. Church, M. Coltrin, J. Daly, A. Deguzman, R. Dubisher, D. Eckart, D. Ellis, P. Falkenstern, A. Fisher, M. E. Fisher, P. Fleming, K. Fortney, S. Francis, S. Freund, S. Gonzales, P. Haas, A. Hasten, D. Hauf, A. Hilbert, D. Howell, F. Jaen, N. Jayakody, M. Jenkins, K. Johnson, M. Lefevre, H. Ma, C. Mario, K. Martin, C. May, M. McGee, B. Miller, C. Miller, G. Miller, A. Mirfakhrai, E. Muhle, C. Norman, R. Olds, C. Parish, M. Ryle, M. Schmitzer, P. Sherman, M. Skeen, M. Susak, B. Sutter, Q. Tran, C. Welch, R. Witherspoon, J. Wood, J. Zareski, M. Arvizu-Jakubicki, E. Asphaug, E. Audi, R.-L. Ballouz, R. Bandrowski, S. Bendall, H. Bloomenthal, D. Blum, J. Brodbeck, K. N. Burke, M. Chojnacki, A. Colpo, J. Contreras, J. Cutts, D. Dean, B. Diallo, D. Drinnon, K. Drozd, R. Enos, C. Fellows, T. Ferro, M. R. Fisher, G. Fitzgibbon, M. Fitzgibbon, J. Forelli, T. Forrester, I. Galinsky, R. Garcia, A. Gardner, N. Habib, D. Hamara, D. Hammond, K. Hanley, K. Harshman, K. Herzog, D. Hill, C. Hoekenga, S. Hooven, E. Huettner, A. Janakus, J. Jones, T. R. Kareta, J. Kidd, K. Kingsbury, L. Koelbel, J. Kreiner, D. Lambert, C. Lewin, B. Lovelace, M. Loveridge, M. Lujan, C. K. Maleszewski, R. Malhotra, K. Marchese, E. McDonough, N. Mogk, V. Morrison, E. Morton, R. Munoz, J. Nelson, J. Padilla, R. Pennington, A. Polit, N. Ramos, V. Reddy, M. Riehl, S. Salazar, S. R. Schwartz, S. Selznick, N. Shultz, S. Stewart, S. Sutton, T. Swindle, Y. H. Tang, M. Westermann, D. Worden, T. Zega, Z. Zeszut, A. Bjurstrom, L. Bloomquist, C. Dickinson, E. Keates, J. Liang, V. Nifo, A. Taylor, F. Teti, M. Caplinger, H. Bowles, S. Carter, S. Dickenshied, D. Doerres, T. Fisher, W. Hagee, J. Hill, M. Miner, D. Noss, N. Piacentine, M. Smith, A. Toland, P. Wren, M. Bernacki, D. Pino Munoz, S.-i. Watanabe, S. A. Sandford, A. Aqueche, B. Ashman, M. Barker, A. Bartels, K. Berry, B. Bos, R. Burns, A. Calloway, R. Carpenter, N. Castro, R. Cosentino, J. Donaldson, J. Elsila Cook, C. Emr, D. Everett, D. Fennell, K. Fleshman, D. Folta, D. Gallagher, J. Garvin, K. Getzandanner, D. Glavin, S. Hull, K. Hyde, H. Ido, A. Ingegneri, N. Jones, P. Kaotira, L. F. Lim, A. Liounis, C. Lorentson, D. Lorenz, J. Lyzhoft, E. M. Mazarico, R. Mink, W. Moore, M. Moreau, S. Mullen, J. Nagy, G. Neumann, J. Nuth, D. Poland, D. C. Reuter, L. Rhoads, S. Rieger, D. Rowlands, D. Sallitt, A. Scroggins, G. Shaw, A. A. Simon, J. Swenson, P. Vasudeva, M. Wasser, R. Zellar, J. Grossman, G. Johnston, M. Morris, J. Wendel, A. Burton, L. P. Keller, L. Mcnamara, S. Messenger, K. Messenger, A. Nguyen, K. Righter, E. Queen, K. Bellamy, K. Dill, S. Gardner, M. Giuntini, B. Key, J. Kissell, D. Patterson, D. Vaughan, B. Wright, R. W. Gaskell, L. Le Corre, J.-Y. Li, J. L. Molaro, E. E. Palmer, M. A. Siegler, P. Tricarico, J. R. Weirich, X.-D. Zou, T. Ireland, K. Tait, P. Bland, S. Anwar, N. Bojorquez-Murphy, P. R. Christensen, C. W. Haberle, G. Mehall, K. Rios, I. Franchi, B. Rozitis, C. B. Beddingfield, J. Marshall, D. N. Brack, A. S. French, J. W. McMahon, E. R. Jawin, T. J. McCoy, S. Russell, M. Killgore, J. L. Bandfield, B. C. Clark, M. Chodas, M. Lambert, R. A. Masterson, M. G. Daly, J. Freemantle, J. A. Seabrook, K. Craft, R. T. Daly, C. Ernst, R. C. Espiritu, M. Holdridge, M. Jones, A. H. Nair, L. Nguyen, J. Peachey, M. E. Perry, J. Plescia, J. H. Roberts, R. Steele, R. Turner, J. Backer, K. Edmundson, J. Mapel, M. Milazzo, S. Sides, C. Manzoni, B. May, M. Delbo, G. Libourel, P. Michel, A. Ryan, F. Thuillet, and B. Marty
- Subjects
Astronomy ,Exobiology - Abstract
NASA’S Origins, Spectral Interpretation, Resource Identification and Security-Regolith Explorer (OSIRIS-REx) spacecraft recently arrived at the near-Earth asteroid (101955) Bennu, a primitive body that represents the objects that may have brought prebiotic molecules and volatiles such as water to Earth1. Bennu is a low-albedo B-type asteroid2 that has been linked to organic-rich hydrated carbonaceous chondrites3. Such meteorites are altered by ejection from their parent body and contaminated by atmospheric entry and terrestrial microbes. Therefore, the primary mission objective is to return a sample of Bennu to Earth that is pristine—that is, not affected by these processes4. The OSIRIS-REx spacecraft carries a sophisticated suite of instruments to characterize Bennu’s global properties, support the selection of a sampling site and document that site at a sub-centimetre scale5,6,7,8,9,10,11. Here we consider early OSIRIS-REx observations of Bennu to understand how the asteroid’s properties compare to pre-encounter expectations and to assess the prospects for sample return. The bulk composition of Bennu appears to be hydrated and volatile-rich, as expected. However, in contrast to pre-encounter modelling of Bennu’s thermal inertia12 and radar polarization ratios13—which indicated a generally smooth surface covered by centimetre-scale particles—resolved imaging reveals an unexpected surficial diversity. The albedo, texture, particle size and roughness are beyond the spacecraft design specifications. On the basis of our pre-encounter knowledge, we developed a sampling strategy to target 50-metre-diameter patches of loose regolith with grain sizes smaller than two centimetres4. We observe only a small number of apparently hazard-free regions, of the order of 5 to 20 metres in extent, the sampling of which poses a substantial challenge to mission success.
- Published
- 2019
- Full Text
- View/download PDF
3. The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations
- Author
-
C. W. Hergenrother, C. K. Maleszewski, M. C. Nolan, J.-Y. Li, C. Y. Drouet d’Aubigny, F. C. Shelly, E. S. Howell, T. R. Kareta, M. R. M. Izawa, M. A. Barucci, E. B. Bierhaus, S. R. Chesley, B. E. Clark, E. J. Christensen, D. N. DellaGiustina, S. Fornasier, D. R. Golish, C. M. Hartzell, B. Rizk, D. J. Scheeres, P. H. Smith, X.-D. Zou, D. S. Lauretta, Jason Peter Dworkin, D.E. Highsmith, J. Small, D. Vokrouhlický, N.E. Bowles, E. Brown, K.L. Donaldson Hanna, T. Warren, C. Brunet, R.A. Chicoine, S. Desjardins, D. Gaudreau, T. Haltigin, S. Millington-Veloza, A. Rubi, J. Aponte, N. Gorius, A. Lunsford, B. Allen, J. Grindlay, D. Guevel, D. Hoak, J. Hong, D.L. Schrader, J. Bayron, O. Golubov, P. Sánchez, J. Stromberg, M. Hirabayashi, C.M. Hartzell, S. Oliver, M. Rascon, A. Harch, J. Joseph, S. Squyres, D. Richardson, J.P. Emery, L. McGraw, R. Ghent, R.P. Binzel, M.M. Al Asad, C.L. Johnson, L. Philpott, H.C.M. Susorney, E.A. Cloutis, R.D. Hanna, H.C. Connolly Jr, F. Ciceri, A.R. Hildebrand, E.-M. Ibrahim, L. Breitenfeld, T. Glotch, A.D. Rogers, B.E. Clark, S. Ferrone, C.A. Thomas, H. Campins, Y. Fernandez, W. Chang, A. Cheuvront, D. Trang, S. Tachibana, H. Yurimoto, J.R. Brucato, G. Poggiali, M. Pajola, E. Dotto, E. Mazzotta Epifani, M.K. Crombie, C. Lantz, M.R.M. Izawa, J. de Leon, J. Licandro, J.L.Rizos Garcia, S. Clemett, K. Thomas-Keprta, S. Van wal, M. Yoshikawa, J. Bellerose, S. Bhaskaran, C. Boyles, S.R. Chesley, C.M. Elder, D. Farnocchia, A. Harbison, B. Kennedy, A. Knight, N. Martinez-Vlasoff, N. Mastrodemos, T. McElrath, W. Owen, R. Park, B. Rush, L. Swanson, Y. Takahashi, D. Velez, K. Yetter, C. Thayer, C. Adam, P. Antreasian, J. Bauman, C. Bryan, B. Carcich, M. Corvin, J. Geeraert, J. Hoffman, J.M. Leonard, E. Lessac-Chenen, A. Levine, J. McAdams, L. McCarthy, D. Nelson, B. Page, J. Pelgrift, E. Sahr, K. Stakkestad, D. Stanbridge, D. Wibben, B. Williams, K. Williams, P. Wolff, P. Hayne, D. Kubitschek, M.A. Barucci, J.D.P. Deshapriya, M. Fulchignoni, P. Hasselmann, F. Merlin, A. Praet, E.B. Bierhaus, O. Billett, A. Boggs, B. Buck, S. Carlson-Kelly, J. Cerna, K. Chaffin, E. Church, M. Coltrin, J. Daly, A. Deguzman, R. Dubisher, D. Eckart, D. Ellis, P. Falkenstern, A. Fisher, M.E. Fisher, P. Fleming, K. Fortney, S. Francis, S. Freund, S. Gonzales, P. Haas, A. Hasten, D. Hauf, A. Hilbert, D. Howell, F. Jaen, N. Jayakody, M. Jenkins, K. Johnson, M. Lefevre, H. Ma, C. Mario, K. Martin, C. May, M. McGee, B. Miller, C. Miller, G. Miller, A. Mirfakhrai, E. Muhle, C. Norman, R. Olds, C. Parish, M. Ryle, M. Schmitzer, P. Sherman, M. Skeen, M. Susak, B. Sutter, Q. Tran, C. Welch, R. Witherspoon, J. Wood, J. Zareski, M. Arvizu-Jakubicki, E. Asphaug, E. Audi, R.-L. Ballouz, R. Bandrowski, K.J. Becker, T.L. Becker, S. Bendall, C.A. Bennett, H. Bloomenthal, D. Blum, W.V. Boynton, J. Brodbeck, K.N. Burke, M. Chojnacki, A. Colpo, J. Contreras, J. Cutts, C. Y. Drouet d'Aubigny, D. Dean, D.N. DellaGiustina, B. Diallo, D. Drinnon, K. Drozd, H.L. Enos, R. Enos, C. Fellows, T. Ferro, M.R. Fisher, G. Fitzgibbon, M. Fitzgibbon, J. Forelli, T. Forrester, I. Galinsky, R. Garcia, A. Gardner, D.R. Golish, N. Habib, D. Hamara, D. Hammond, K. Hanley, K. Harshman, C.W. Hergenrother, K. Herzog, D. Hill, C. Hoekenga, S. Hooven, E.S. Howell, E. Huettner, A. Janakus, J. Jones, T.R. Kareta, J. Kidd, K. Kingsbury, S.S. Balram-Knutson, L. Koelbel, J. Kreiner, D. Lambert, D.S. Lauretta, C. Lewin, B. Lovelace, M. Loveridge, M. Lujan, C.K. Maleszewski, R. Malhotra, K. Marchese, E. McDonough, N. Mogk, V. Morrison, E. Morton, R. Munoz, J. Nelson, M.C. Nolan, J. Padilla, R. Pennington, A. Polit, N. Ramos, V. Reddy, M. Riehl, Y.H. Tang, M. Westermann, C.W.V. Wolner, D. Worden, T. Zega, Z. Zeszut, A. Bjurstrom, L. Bloomquist, C. Dickinson, E. Keates, J. Liang, V. Nifo, A. Taylor, F. Teti, M. Caplinger, H. Bowles, S. Carter, S. Dickenshied, D. Doerres, T. Fisher, W. Hagee, J. Hill, M. Miner, D. Noss, N. Piacentine, M. Smith, A. Toland, P. Wren, M. Bernacki, D. Pino Munoz, S.-i. Watanabe, S. A. Sandford, A. Aqueche, B. Ashman, M. Barker, A. Bartels, K. Berry, B. Bos, R. Burns, A. Calloway, R. Carpenter, N. Castro, R. Cosentino, J. Donaldson, J.P. Dworkin, J. Elsila Cook, C. Emr, D. Everett, D. Fennell, K. Fleshman, D. Folta, D. Gallagher, J. Garvin, K. Getzandanner, D. Glavin, S. Hull, K. Hyde, H. Ido, A. Ingegneri, N. Jones, P. Kaotira, L.F. Lim, A. Liounis, C. Lorentson, D. Lorenz, J. Lyzhoft, E.M. Mazarico, R. Mink, W. Moore, M. Moreau, S. Mullen, J. Nagy, G. Neumann, J. Nuth, D. Poland, D.C. Reuter, L. Rhoads, S. Rieger, D. Rowlands, D. Sallitt, A. Scroggins, G. Shaw, A.A. Simon, J. Swenson, P. Vasudeva, M. Wasser, R. Zellar, J. Grossman, G. Johnston, M. Morris, J. Wendel, A. Burton, L.P. Keller, L. McNamara, S. Messenger, K. Nakamura-Messenger, A. Nguyen, K. Righter, E. Queen, K. Bellamy, K. Dill, S. Gardner, M. Giuntini, B. Key, J. Kissell, D. Patterson, D. Vaughan, B. Wright, R.W. Gaskell, L. Le Corre, J.L. Molaro, E.E. Palmer, M.A. Siegler, P. Tricarico, J.R. Weirich, T. Ireland, K. Tait, P. Bland, S. Anwar, A.S. French, J.W. McMahon, D.J. Scheeres, E.R. Jawin, T.J. McCoy, S. Russell, M. Killgore, W.F. Bottke, V.E. Hamilton, H.H. Kaplan, K.J. Walsh, J.L. Bandfield, B.C. Clark, M. Chodas, M. Lambert, R.A. Masterson, M.G. Daly, J. Freemantle, J.A. Seabrook, O.S. Barnouin, K. Craft, R.T. Daly, C. Ernst, R.C. Espiritu, M. Holdridge, M. Jones, A.H. Nair, L. Nguyen, J. Peachey, M.E. Perry, J. Plescia, J.H. Roberts, R. Steele, R. Turner, J. Backer, K. Edmundson, J. Mapel, M. Milazzo, S. Sides, C. Manzoni, B. May, M. Delbo’, G. Libourel, P. Michel, A. Ryan, F. Thuillet, and B. Marty
- Subjects
Geosciences (General) - Abstract
During its approach to asteroid (101955) Bennu, NASA’s Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft surveyed Bennu’s immediate environment, photometric properties, and rotation state. Discovery of a dusty environment, a natural satellite, or unexpected asteroid characteristics would have had consequences for the mission’s safety and observation strategy. Here we show that spacecraft observations during this period were highly sensitive to satellites (sub-meter scale) but reveal none, although later navigational images indicate that further investigation is needed. We constrain average dust production in September 2018 from Bennu’s surface to an upper limit of 150 g/s averaged over 34 min. Bennu’s disk-integrated photometric phase function validates measurements from the pre-encounter astronomical campaign. We demonstrate that Bennu’s rotation rate is accelerating continuously at 3.63 ± 0.52 × 10^(–6) degrees/sq. day, likely due to the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, with evolutionary implications.
- Published
- 2019
- Full Text
- View/download PDF
4. Ephemeris and hazard assessment for near-Earth asteroid (101955) Bennu based on OSIRIS-REx data
- Author
-
Brian Kennedy, Daniel P. Lubey, David Vokrouhlický, Steven R. Chesley, Joshua P. Emery, Julie Bellerose, Ryan S. Park, N. Mastrodemos, Peter G. Antreasian, Brian Rush, Benjamin Rozitis, J. Geeraert, Davide Farnocchia, Dante S. Lauretta, A. B. Davis, D. Velez, J. M. Leonard, and Y. Takahashi
- Subjects
Interplanetary dust cloud ,Near-Earth object ,Space and Planetary Science ,Asteroid ,Trajectory ,Yarkovsky effect ,Astronomy ,Astronomy and Astrophysics ,Ephemeris ,Orbit determination ,Geology ,Celestial mechanics - Abstract
Small bodies such as the near-Earth asteroid Bennu drift in their orbit due to thermal radiation forces (the Yarkovsky effect). Ground-based observations have indicated a nonzero probability of Bennu impacting Earth, depending on how its orbit evolves. Thus, among the goals of the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission to Bennu were to precisely measure the Yarkovsky effect and refine the impact hazard assessment for this body. Here we address these objectives. Using OSIRIS-REx spacecraft tracking data, we derive meter-level constraints on the distance between Earth and Bennu from January 2019 to October 2020. While these data greatly improve the knowledge of the trajectory of Bennu, they also require an unprecedented fidelity for the modeling of an asteroid’s trajectory. In particular, special care is needed to take into account the contribution of 343 small-body perturbers and the uncertainty in their masses. Radiation effects such as the Poynting–Robertson drag, so far only considered for interplanetary dust dynamics, now become a consideration for modeling the trajectory of a 500-m asteroid such as Bennu. By employing a thermophysical model based on OSIRIS-REx’s characterization of Bennu, we estimate a semimajor axis drift of − 284 . 6 ± 0 . 2 m/yr (signal-to-noise ratio ∼ 1400) at epoch 2011 January 1 caused by the Yarkovsky effect. The largest source of modeling error is solar wind drag, which may lower the magnitude of the semimajor axis drift from the Yarkovsky effect by up to 0.16 m/yr. The Yarkovsky-related semimajor axis drift varies by roughly ± 1 m/yr as the orbit of Bennu evolves due to planetary perturbations from 1900 to 2135. The Yarkovsky thermophysical model proves to be extremely accurate by predicting a bulk density estimate within 0.1% of that estimated through gravity science analysis. Compared to the information available before the OSIRIS-REx mission, the knowledge of the circumstances of the scattering Earth encounter that will occur in 2135 improves by a factor of 20, thus allowing us to rule out many previously possible impact trajectories. However, there remain some impact trajectories compatible with the data. Prior to the spacecraft encounter, the overall impact probability through 2200 was 3 . 7 × 1 0 − 4 (1 in 2700). As a result of our analysis, the cumulative impact probability through 2300 becomes 5 . 7 × 1 0 − 4 (1 in 1750) and the most significant individual impact solution is for September 2182, with an impact probability of 3 . 7 × 1 0 − 4 (1 in 2700). Both Bennu and (29075) 1950 DA have a Palermo scale value of − 1 . 42 and share the distinction as the currently most hazardous object in the asteroid catalog.
- Published
- 2021
5. Author Correction: Shape of (101955) Bennu indicative of a rubble pile with internal stiffness
- Author
-
M. Lefevre, Aaron S. Burton, Carina Bennett, J. A. Mapel, Renu Malhotra, Peter Fleming, J. McAdams, N. Mogk, R. L. Ballouz, P. H. Smith, V. Nifo, C. K. Maleszewski, Timothy D. Swindle, E. Dotto, Stephen R. Schwartz, C. May, J. Bayron, D. Patterson, D. Guevel, Ellen S. Howell, Humberto Campins, J. Kissell, E. Brown, J. Wood, E. Muhle, John Robert Brucato, J. Small, B. Miller, Oleksiy Golubov, R. Pennington, K. Harshman, J. Nelson, Catherine Elder, M. McGee, R. Burns, J. Contreras, S. Hull, D. Kubitschek, D. Noss, Andrew J. Liounis, J. Backer, B. May, G. Fitzgibbon, J. Donaldson, D. Worden, Bashar Rizk, R. Witherspoon, Catherine L. Johnson, Erica Jawin, G. Shaw, A. Aqueche, Dolores H. Hill, D. Folta, S. Ferrone, M. Lujan, Giovanni Poggiali, B. G. Williams, S. Selznick, Melissa A. Morris, K. Rios, Sara S. Russell, D. Lambert, J. Hong, Jeffrey B. Plescia, H. Bloomenthal, D. Drinnon, Olivier S. Barnouin, Derek S. Nelson, Amanda E. Toland, Michael C. Moreau, J. A. Seabrook, K. Dill, A. Mirfakhrai, K. Hyde, J. D. P. Deshapriya, Hannah Kaplan, Timothy P. McElrath, Juliette I. Brodbeck, N. Ramos, S. Stewart, James B. Garvin, Sei-ichiro Watanabe, M. Arvizu-Jakubicki, Jason P. Dworkin, Matthew A. Siegler, Collin Lewin, Masatoshi Hirabayashi, L. Bloomquist, S. Gardner, Keiko Nakamura-Messenger, A. H. Nair, M. Schmitzer, P. Haas, Julie Bellerose, Dolan E. Highsmith, L. Koelbel, C. C. Lorentson, J. Zareski, E. Queen, S. R. Chesley, Philip A. Bland, A. Cheuvront, V. E. Hamilton, Ronald G. Mink, N. Mastrodemos, H. C. Connolly, K. Bellamy, M. Killgore, A. Gardner, Y. Takahashi, M. Lambert, R. C. Espiritu, Z. Zeszut, E. T. Morton, Kevin J. Walsh, Timothy D. Glotch, M. Skeen, Brian Kennedy, Matthew R.M. Izawa, G. Neumann, F. Teti, D. Doerres, A. Hasten, F. Ciceri, D. Howell, A. Deguzman, J. Nagy, D. Vaughan, H. Ma, C. Lantz, D. N. Brack, David K. Hammond, Erwan Mazarico, Leilah K. McCarthy, L. Rhoads, Kathleen L. Craft, C. Welch, Jay W. McMahon, C. L. Parish, D. C. Reuter, M. Giuntini, N. Castro, Clive Dickinson, J. Kreiner, K. Kingsbury, S. Dickenshied, Joseph A. Nuth, Alan R. Hildebrand, Erik Asphaug, H. Ido, Eric M. Sahr, A. Harbison, Arlin E. Bartels, T. Forrester, D. Eckart, R. Bandrowski, Michael K. Barker, Robert Gaskell, J. Wendel, S. Freund, Marc Bernacki, Ryan S. Park, A. Taylor, E. B. Bierhaus, S. Millington-Veloza, J. Stromberg, L. B. Breitenfeld, K. Stakkestad, D. Ellis, Timothy J. McCoy, M. Susak, Richard G. Cosentino, C. Manzoni, Hisayoshi Yurimoto, C. Drouet d'Aubigny, A. Bjurstrom, Masako Yoshikawa, S. Francis, J. Peachey, J. Geeraert, K. Marchese, O. Billett, M. Rascon, F. Jaen, B. Diallo, Martin Miner, Kris J. Becker, E. Mazzotta Epifani, Florian Thuillet, A. Knight, James H. Roberts, Pasquale Tricarico, Edward A. Cloutis, T. Fisher, Dale Stanbridge, A. Colpo, Osiris-Rex Team, S. Gonzales, Q. Tran, M. K. Crombie, John Marshall, N. Bojorquez-Murphy, David Vokrouhlický, Allen W. Lunsford, H. Bowles, K. L. Edmundson, R. A. Masterson, Peter G. Antreasian, N. Gorius, Benjamin Rozitis, D. Pino Muñoz, S. Carlson-Kelly, C. Thayer, J. Elsila Cook, B. C. Clark, N. Piacentine, José C. Aponte, M. Al Asad, M. A. Barucci, D. Blum, P. Falkenstern, Neil Bowles, Matthew Chojnacki, J. M. Leonard, J. Daly, K. Yetter, M. R. Fisher, Jeffrey N. Grossman, A. Boggs, N. Jayakody, Cristina A. Thomas, C.M. Ernst, Namrah Habib, J. N. Kidd, R. J. Steele, Andrew B. Calloway, Andrew Ryan, Kimberly T. Tait, Paul O. Hayne, J. Y. Li, K. L. Berry, William V. Boynton, Yanga R. Fernandez, D. A. Lorenz, M. Wasser, Daniel J. Scheeres, K. Fortney, A. Scroggins, B. Allen, B. Sutter, T. Ferro, Jonathan Joseph, Derek C. Richardson, D. Hoak, Brian Carcich, W. Chang, P. Wren, C. Boyles, Kaj E. Williams, B. Marty, J. Liang, J. Hoffman, A. Harch, Daniel R. Wibben, Jamie Molaro, S. Rieger, R. Enos, C. W. Hergenrother, Stephen R. Sutton, J. Grindlay, E. J. Lessac-Chenen, E. Huettner, C. Norman, P. Sherman, L. Swanson, M. Coltrin, S. Van wal, B. Buck, A. Fisher, Kevin Righter, Brian Rush, David D. Rowlands, Lauren McGraw, A. Levine, K. Drozd, D. Gaudreau, A. Nguyen, S. Sides, M. Chodas, R. Dubisher, B. Ashman, Michael Caplinger, Amy Simon, W. Moore, S. S. Balram-Knutson, R. Carpenter, S. Fornasier, Shogo Tachibana, Russell Turner, Ian A. Franchi, Trevor Ireland, Chloe B. Beddingfield, D. F. Everett, M. Corvin, Lindsay P. Keller, Tammy L. Becker, S. Carter, J. L. Rizos Garcia, Mark E. Perry, E. Keates, Michael C. Nolan, P. Vasudeva, C. Fellows, K. Herzog, Mark A. Jenkins, J. R. Weirich, J. Swenson, D. R. Golish, Davide Farnocchia, Lydia C. Philpott, Rebecca R. Ghent, Hannah C.M. Susorney, S. W. Squyres, Pedro Hasselmann, J. Hill, Thomas J. Zega, B. Key, Marco Delbo, A. S. French, P. Sánchez, A. Hilbert, J. Y. Pelgrift, R. P. Binzel, L. McNamara, Vishnu Reddy, Michael Daly, Scott Messenger, Daniella DellaGiustina, Maurizio Pajola, Charles Brunet, Joshua L. Bandfield, J. Padilla, A. Janakus, M. Moreau, R. Garcia, R. A. Chicoine, P. Michel, P. Kaotira, K. S. Johnson, J. Forelli, G. Miller, K. Martin, I. Galinsky, S. Desjardins, Naru Hirata, Christine Hartzell, M. L. Jones, S. Hooven, D. Velez, R. Munoz, Carolyn M. Ernst, C. Emr, N. Martinez-Vlasoff, S. Bendall, R. Zellar, E. Church, Theodore Kareta, T. Warren, P. Wolff, V. Morrison, C. Bryan, S. Bhaskaran, N. Jones, D. Hauf, Jeremy Bauman, R. T. Daly, R. Olds, M. M. Westermann, D. K. Hamara, E. Audi, G. Johnston, Eric Palmer, Courtney Mario, Daniel P. Glavin, T. Haltigin, J. Cutts, Javier Licandro, Xiao-Duan Zou, H. L. Roper, Gregory A. Neumann, William M. Owen, S. Sugita, Y. H. Tang, Kevin Burke, H. L. Enos, D. Gallagher, William F. Bottke, K. Getzandanner, Philip R. Christensen, C. W. V. Wolner, K. Fleshman, D. Poland, J. P. Emery, M.M. Riehl, D. Fennell, D. Sallitt, A. D. Rogers, M. Fitzgibbon, John H. Jones, S. Mullen, S. Salazar, S. Oliver, A. T. Polit, J. Cerna, A. Praet, Mark E. Holdridge, E. M. Ibrahim, Coralie D. Adam, J. de León, Christopher J. Miller, M. Ryle, J. Lyzhoft, M. Loveridge, C. Hoekenga, Brent J. Bos, S. Anwar, K. Chaffin, Devin L. Schrader, B. Lovelace, Romy D. Hanna, C. D. Adam, G. L. Mehall, K. L. Donaldson Hanna, F. Merlin, B. Wright, Guy Libourel, L. F. Lim, N. Shultz, Dante S. Lauretta, K. Hanley, Beth E. Clark, L. Le Corre, K. Thomas-Keprta, Moses Milazzo, W. Hagee, B. Page, M. Fisher, E. McDonough, D. Trang, S. Clemett, A. Rubi, A. Ingegneri, Scott A. Sandford, D. Dean, J. Freemantle, Michael D. Smith, Christopher W. Haberle, L. Nguyen, M. Fulchignoni, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL), Centre de Mise en Forme des Matériaux (CEMEF), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,010504 meteorology & atmospheric sciences ,Rubble ,Stiffness ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,[SDU]Sciences of the Universe [physics] ,engineering ,medicine ,General Earth and Planetary Sciences ,Geotechnical engineering ,medicine.symptom ,Pile ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Geology ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences - Abstract
International audience
- Published
- 2020
- Full Text
- View/download PDF
6. High-resolution shape model of Ceres from stereophotoclinometry using Dawn Imaging Data
- Author
-
Christopher T. Russell, Anton I. Ermakov, Carol A. Polanskey, Carol A. Raymond, Andrew T. Vaughan, Alex S. Konopliv, Julie Castillo-Rogez, Joseph E. Riedel, Marc D. Rayman, Maria T. Zuber, Ryan S. Park, Andreas Nathues, Steven P. Joy, and N. Mastrodemos
- Subjects
Framing (visual arts) ,010504 meteorology & atmospheric sciences ,Pixel ,Spherical harmonics ,Astronomy and Astrophysics ,Ranging ,Geodesy ,01 natural sciences ,Jet propulsion ,Declination ,Ellipsoid ,Space and Planetary Science ,0103 physical sciences ,Right ascension ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
We present a high-resolution global shape model of Ceres determined using the stereophotoclinometry technique developed at the Jet Propulsion Laboratory by processing Dawn's Framing Camera data acquired during Approach to post-Low Altitude Mapping Orbit (LAMO) phases of the mission. A total of about 38,000 images were processed with pixel resolutions ranging from 35.6 km/pixel to 35 m/pixel and the final global shape model was produced with 100-m grid spacing. The final SPC-derived topography was computed relative to the (482 km, 482 km, 446 km) mean ellipsoid, which ranges from −7.3 km to 9.5 km. For the purpose of validation, we performed various error analyses to assess and quantify realistic uncertainties in the derived topography, such as dividing the data into different subsets and re-computing the entire topography. Based on these studies, we show that the average total height error of the final global topography model is 10.2 m and 88.9% of the surface has the total height error below 20 m. We also provide improved estimates of several physical parameters of Ceres. The resulting GM estimate is (62.62905 ± 0.00035) km3/s2, or the mass value of (938.392 ± 0.005) × 1018 kg. The volume estimate is (434.13 ± 0.50) × 106 km3 with a volumetric mean radius of 469.72 km. Combined with the mass estimate, the resulting bulk density is (2161.6 ± 2.5) kg/m3. Other improved parameters include the pole right ascension, α0 = (291.42763 ± 0.0002)°, pole declination, δ0 = (66.76033 ± 0.0002)°, and prime meridian and rotation rate of (W0 = 170.309 ± 0.011)° and (dW/dt = 952.1532635 ± 0.000002) deg/day, respectively. Also, for geophysical and geological studies, we provide spherical harmonic coefficients and a gravitational slope map derived from the global shape model.
- Published
- 2019
- Full Text
- View/download PDF
7. Improved detection of tides at Europa with radiometric and optical tracking during flybys
- Author
-
Tomas J. Martin-Mur, Timothy P. McElrath, Michael M. Watkins, Brent Buffington, N. Mastrodemos, Bruce G. Bills, William M. Folkner, Joseph E. Riedel, Ryan S. Park, and A. Konopliv
- Subjects
Spacecraft ,business.industry ,Astronomy and Astrophysics ,Orbital eccentricity ,Geodesy ,Tracking (particle physics) ,Physics::Geophysics ,Jupiter ,symbols.namesake ,Amplitude ,Gravitational field ,Space and Planetary Science ,Physics::Space Physics ,Trajectory ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,business ,Doppler effect ,Geology ,Remote sensing - Abstract
Due to its eccentric orbit about Jupiter, Europa experiences periodic tidal deformation, which causes changes in its gravitational field and induces both radial and transverse displacements of the surface. The amplitude and phase of these tidal changes are diagnostic of internal structure, and can be measured with sufficient radiometric and optical tracking of a spacecraft during a series of flyby encounters with Europa. This paper presents results of the simulated accuracy for recovery of the tides of Europa through measuring the second-degree tidal Love numbers k 2 , h 2 , and l 2 . A reference trajectory, which consists of a total of 45 close flybys, was considered and a detailed covariance analysis was performed. The study was based on Earth-based Doppler tracking during ± 2 h of each periapsis passage and surface imaging data taken below 500 km altitude. The result shows that the formal uncertainty of the second-degree tidal Love numbers can be estimated to be σ k 2 = 0.01 , σ h 2 = 0.02 , and σ l 2 = 0.01 , which is sufficient to constrain the global ice thickness to about 10 km under reasonable assumptions. Moreover, the forced librations of Europa can be measured to 0.3″ accuracy, which can further constrain Europa's interior structure.
- Published
- 2015
- Full Text
- View/download PDF
8. The Dawn Gravity Investigation at Vesta and Ceres
- Author
-
David E. Smith, N. Mastrodemos, Alex S. Konopliv, Maria T. Zuber, Sami W. Asmar, Ryan S. Park, Bruce G. Bills, and Carol A. Raymond
- Subjects
Physics ,Gravity (chemistry) ,Astronomy ,Astronomy and Astrophysics ,Moment of inertia ,Geodesy ,Tracking (particle physics) ,law.invention ,symbols.namesake ,Planetary science ,Gravitational field ,Space and Planetary Science ,law ,Physics::Space Physics ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,Hydrostatic equilibrium ,Spin (aerodynamics) ,Doppler effect - Abstract
The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn’s framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.
- Published
- 2011
- Full Text
- View/download PDF
9. Deep Impact Navigation System Performance
- Author
-
Steven R. Chesley, N. Mastrodemos, William M. Owen, Ramachandra S. Bhat, Raymond B. Frauenholz, and Mark Ryne
- Subjects
Spacecraft ,Computer science ,business.industry ,Aerospace Engineering ,Navigation system ,Reaction control system ,Attitude control ,Space and Planetary Science ,Trajectory ,Systems engineering ,Area navigation ,Baseline (configuration management) ,Orbit determination ,business - Abstract
Deep Impact successfully met its primary mission objective on 4 July 2005 when the smart impactor guided itself into the path of Comet 9P/Tempel 1. The mother flyby spacecraft then observed and recorded the breathtaking collision and subsequent plume development. Ground-based navigators targeted the prerelease trajectory using optical navigation image planning and data analysis, trajectory correction maneuver design and evaluation, and orbit determination using both radiometric and optical data. In-flight improvements to theTempel 1 ephemeriswere also a critical part of the overall navigation design and operations success. The achieved navigation accuracy established a new standard for comet encounters, and this difficult task taught several important lessons. This definitive work provides a mission overview, summarizes the navigation requirements, compares the achieved navigation performance with a baseline design that reflects in-flight updates, and identifies operational procedures that may benefit future comet-bound navigators.
- Published
- 2008
- Full Text
- View/download PDF
10. The challenges of deep impact autonomous navigation
- Author
-
N. Mastrodemos, Joseph E. Riedel, G. W. Null, Stephen P. Synnott, Shyam Bhaskaran, Andrew T. Vaughan, Robert A. Werner, Daniel G. Kubitschek, and Brian Kennedy
- Subjects
Spacecraft ,business.industry ,Autonomous Navigation System ,Comet ,Context (language use) ,Computer Science Applications ,Impact crater ,Control and Systems Engineering ,Trajectory ,business ,Ejecta ,Geology ,Remote sensing ,Telemeter - Abstract
On July 4, 2005 at 05:44:34 UTC the Impactor spacecraft (s/c) impacted comet 9P/Tempel 1 with a relative speed of more than 10 km/s. The Flyby s/c captured the impact event, using both the medium resolution imager and the high resolution imager, and tracked the impact site for the entire observing period following impact. The objective of the Impactor s/c was to impact in an illuminated area viewable from the Flyby s/c and telemeter high-resolution context images of the impact site prior to impact. The Flyby s/c had two primary objectives: (1) capture the impact event in order to observe the ejecta plume expansion dynamics and (2) track the impact site for at least 800 s to observe the crater formation and capture high-resolution images of the fully developed crater. All of these objectives were met by estimating the trajectory of each spacecraft relative to 9P/Tempel 1 using the autonomous navigation system, precise attitude information from the attitude determination and control subsystem, and allowing each spacecraft to independently select the same impact site. This paper describes the challenges of targeting and tracking comet 9P/Tempel 1. © 2007 Wiley Periodicals, Inc.
- Published
- 2007
- Full Text
- View/download PDF
11. Deep Impact: Excavating Comet Tempel 1
- Author
-
H. J. Melosh, Donald Hampton, Peter H. Schultz, Olivier Groussin, Dennis D. Wellnitz, Jessica M. Sunshine, R. L. White, Michael F. A'Hearn, Don J. Lindler, M. W. Baca, Jian-Yang Li, Kenneth P. Klaasen, Peter C. Thomas, I. Busko, Carey M. Lisse, J. Veverka, Mark Desnoyer, James E. Richardson, C. A. Eberhardy, Carolyn M. Ernst, Lucy A. McFadden, Karen J. Meech, Steven M. Collins, C. J. Crockett, M. J. S. Belton, Tony L. Farnham, N. Mastrodemos, William M. Owen, Jochen Kissel, Donald K. Yeomans, W. A. Delamere, Lori M. Feaga, and Sergei I. Ipatov
- Subjects
Gravity (chemistry) ,Multidisciplinary ,Impact crater ,Jupiter ,Spectrum Analysis ,Comet ,Mineralogy ,Meteoroids ,Radius ,Organic Chemicals ,Fault scarp ,Geomorphology ,Geology - Abstract
Deep Impact collided with comet Tempel 1, excavating a crater controlled by gravity. The comet's outer layer is composed of 1- to 100-micrometer fine particles with negligible strength (1000 kelvins). A large increase in organic material occurred during and after the event, with smaller changes in carbon dioxide relative to water. On approach, the spacecraft observed frequent natural outbursts, a mean radius of 3.0 ± 0.1 kilometers, smooth and rough terrain, scarps, and impact craters. A thermal map indicates a surface in equilibrium with sunlight.
- Published
- 2005
- Full Text
- View/download PDF
12. The Dawn Topography Investigation
- Author
-
T. Roatsch, Andreas Nathues, Laurent Jorda, Holger Sierks, Robert Gaskell, Maria T. Zuber, N. Mastrodemos, Frank Scholten, Stefano Mottola, Ralf Jaumann, David E. Smith, Carol A. Raymond, Horst Uwe Keller, and Frank Preusker
- Subjects
geography ,geography.geographical_feature_category ,Pixel ,Landform ,Dwarf planet ,Orthophoto ,Astronomy and Astrophysics ,Geodesy ,Vesta � Ceres � Dawn � Asteroid topography ,Stereophotography ,Planetary science ,Photogrammetry ,Space and Planetary Science ,Asteroid ,Geology ,Remote sensing - Abstract
The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids’ landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn’s framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta’s geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.
- Published
- 2011
- Full Text
- View/download PDF
13. The Dawn Gravity Investigation at Vesta and Ceres
- Author
-
A. S. Konopliv, S. W. Asmar, B. G. Bills, N. Mastrodemos, R. S. Park, C. A. Raymond, D. E. Smith, and M. T. Zuber
- Published
- 2011
- Full Text
- View/download PDF
14. Photometric Properties of Vesta
- Author
-
Michael D. Hicks, M. C. De Sanctis, Jian-Yang Li, L. Jorda, L. Le Corre, B. J. Buratti, Michael J. Hoffmann, T. Roatsch, Mark V. Sykes, Horst Uwe Keller, Carol A. Raymond, Stefano Mottola, Fabrizio Capaccioni, Vishnu Reddy, S. E. Schröder, Carle M. Pieters, Christopher T. Russell, Timothy N. Titus, N. Mastrodemos, Brett W. Denevi, M. T. Capria, and Andreas Nathues
- Subjects
Space and Planetary Science ,Astronomy ,Astronomy and Astrophysics ,Geology - Abstract
The Dawn spacecraft orbited Asteroid (4) Vesta for a year, and returned disk-resolved images and spectra covering visible and near-infrared wavelengths at scales as high as 20 m/pix. The visible geometric albedo of Vesta is ~ 0.36. The disk-integrated phase function of Vesta in the visible wavelengths derived from Dawn approach data, previous ground-based observations, and Rosetta OSIRIS observations is consistent with an IAU H-G phase law with H=3.2 mag and G=0.28. Hapke's modeling yields a disk-averaged single-scattering albedo of 0.50, an asymmetry factor of -0.25, and a roughness parameter of ~20 deg at 700 nm wavelength. Vesta's surface displays the largest albedo variations observed so far on asteroids, ranging from ~0.10 to ~0.76 in geometric albedo in the visible wavelengths. The phase function of Vesta displays obvious systematic variations with respect to wavelength, with steeper slopes within the 1- and 2-micron pyroxene bands, consistent with previous ground-based observations and laboratory measurement of HED meteorites showing deeper bands at higher phase angles. The relatively high albedo of Vesta suggests significant contribution of multiple scattering. The non-linear effect of multiple scattering and the possible systematic variations of phase function with albedo across the surface of Vesta may invalidate the traditional algorithm of applying photometric correction on airless planetary surfaces.
- Published
- 2012
- Full Text
- View/download PDF
15. Invited Article: Deep Impact instrument calibration.
- Author
-
Klaasen KP, A'Hearn MF, Baca M, Delamere A, Desnoyer M, Farnham T, Groussin O, Hampton D, Ipatov S, Li J, Lisse C, Mastrodemos N, McLaughlin S, Sunshine J, Thomas P, and Wellnitz D
- Subjects
- Artifacts, Calibration, Space Flight, Spectrophotometry, Infrared, Telemetry, United States, United States National Aeronautics and Space Administration, Equipment Design instrumentation, Spacecraft instrumentation
- Abstract
Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [ approximately 1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of approximately 9 pixels. The charge coupled device (CCD) read noise is approximately 1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to approximately 1%. Spectrometer read noise is approximately 2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to approximately 10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of approximately 2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to approximately 0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.