1. Characterization of long G4-rich enhancer-associated genomic regions engaging in a novel loop:loop 'G4 Kissing' interaction
- Author
-
Raymond J. Langley, Naden W Kreitz, Susanna Pudner, Jeffrey D Demeis, Jonathan D. Williams, Mark N. Gillespie, Brad Dyniewski, Alexandra G Hughes, Dominika Houserova, Bradley R Johnson, Cameron H McInnis, Ashlyn N Stahly, Jingshan Huang, Kanesha R Ghee, Dakota D Bilbrey, Ana Turcu, Mohan Vamsi Kasukurthi, Addison A Barchie, G. Daly, Erik D. Larson, Alexandra Berroyer, Monica N Reeves, Aishwarya Prakash, Brianna C Watters, Sue Jinks-Robertson, Glen M. Borchert, and Hannah French
- Subjects
Guanine ,Base pair ,AcademicSubjects/SCI00010 ,Genomics ,Computational biology ,Saccharomyces cerevisiae ,Biology ,medicine.disease_cause ,Genome ,03 medical and health sciences ,Segmental Duplications, Genomic ,Genetics ,medicine ,Humans ,Enhancer ,Base Pairing ,030304 developmental biology ,Segmental duplication ,Sequence Deletion ,Gene Rearrangement ,0303 health sciences ,Mutation ,Genome, Human ,030302 biochemistry & molecular biology ,Gene regulation, Chromatin and Epigenetics ,Genetic Variation ,Gene rearrangement ,G-Quadruplexes ,Enhancer Elements, Genetic ,Nucleic Acid Conformation ,Human genome - Abstract
Mammalian antibody switch regions (∼1500 bp) are composed of a series of closely neighboring G4-capable sequences. Whereas numerous structural and genome-wide analyses of roles for minimal G4s in transcriptional regulation have been reported, Long G4-capable regions (LG4s)—like those at antibody switch regions—remain virtually unexplored. Using a novel computational approach we have identified 301 LG4s in the human genome and find LG4s prone to mutation and significantly associated with chromosomal rearrangements in malignancy. Strikingly, 217 LG4s overlap annotated enhancers, and we find the promoters regulated by these enhancers markedly enriched in G4-capable sequences suggesting G4s facilitate promoter-enhancer interactions. Finally, and much to our surprise, we also find single-stranded loops of minimal G4s within individual LG4 loci are frequently highly complementary to one another with 178 LG4 loci averaging >35 internal loop:loop complements of >8 bp. As such, we hypothesized (then experimentally confirmed) that G4 loops within individual LG4 loci directly basepair with one another (similar to characterized stem–loop kissing interactions) forming a hitherto undescribed, higher-order, G4-based secondary structure we term a ‘G4 Kiss or G4K’. In conclusion, LG4s adopt novel, higher-order, composite G4 structures directly contributing to the inherent instability, regulatory capacity, and maintenance of these conspicuous genomic regions.
- Published
- 2020