The Drosophila Ret-like receptor, Stit, upholds signaling from the protein complex TORC1 during wing epithelial development, promoting growth under normal conditions and protecting tissues from an anabolic to catabolic switch in response to starvation., Body size in Drosophila larvae, like in other animals, is controlled by nutrition. Nutrient restriction leads to catabolic responses in the majority of tissues, but the Drosophila mitotic imaginal discs continue growing. The nature of these differential control mechanisms that spare distinct tissues from starvation are poorly understood. Here, we reveal that the Ret-like receptor tyrosine kinase (RTK), Stitcher (Stit), is required for cell growth and proliferation through the PI3K-I/TORC1 pathway in the Drosophila wing disc. Both Stit and insulin receptor (InR) signaling activate PI3K-I and drive cellular proliferation and tissue growth. However, whereas optimal growth requires signaling from both InR and Stit, catabolic changes manifested by autophagy only occur when both signaling pathways are compromised. The combined activities of Stit and InR in ectodermal epithelial tissues provide an RTK-mediated, two-tiered reaction threshold to varying nutritional conditions that promote epithelial organ growth even at low levels of InR signaling., Author Summary Growth of organs, or anabolism, is tightly controlled by nutritional and hormonal cues such as insulin-like peptides that also suppress autophagy through their receptors and downstream growth pathway. Starvation conditions induce growth arrest and catabolism (involving autophagy) in some tissues while sparing the growth of other prioritized organs. The mechanism behind this tissue-specific regulation of growth versus catabolism is largely unknown. In this study, we show that Stitcher, a Drosophila Ret-oncogene-like growth factor receptor, controls epithelial tissue growth. Stitcher, working in parallel with the Insulin receptor, endows epithelial organs, such as imaginal wing discs, with resistance to low nutrient and insulin conditions by suppressing autophagy and, at the same time, promotes cell division and growth in these tissues. Thus, Stitcher and the Insulin receptor work together to allow a two-threshold response to starvation in epithelial tissues. In cancer, this pathway is almost invariably constitutively stimulated, and so we postulate that oncogenic mutations of Ret promote tumor growth partly by counteracting the tumor suppressive effects of autophagy.