1. Phanogracilins A–C, New Bibenzochromenones of Crinoid Phanogenia gracilis (Hartlaub, 1890)
- Author
-
Elena A. Vasileva, Dmitrii V. Berdyshev, Natalia P. Mishchenko, Andrey V. Gerasimenko, Ekaterina S. Menchinskaya, Evgeniy A. Pislyagin, Ekaterina A. Chingizova, Leonid A. Kaluzhskiy, Salim Sh. Dautov, and Sergey A. Fedoreyev
- Subjects
echinoderms ,crinoids ,benzochromenones ,dimers ,antioxidants ,neuroprotectors ,Microbiology ,QR1-502 - Abstract
Three new bibenzochromenones named phanogracilins A–C (1–3) were isolated from the crinoid Phanogenia gracilis. The structure of 1 was established using X-ray crystallography as 5,5′,6,6′,8,8′-hexahydroxy-2,2′-dipropyl-4H,4′H-[7,9′-bibenzo[g]chromene]-4,4′-dione. This allowed us to assign reliably 2D NMR signals for compound 1 and subsequently for its isomer 2 that differed in the connecting position of two benzochromenone moieties (7,10′ instead of 7,9′), and compound for 3 that differed in the length of the aliphatic chain of one of the fragments. Compound 4 was derived from 1 in alkaline conditions, and its structure was elucidated as 5,5′,6′,8,8′-pentahydroxy-2,2′-dipropyl-4H,4′H-[7,9′-bibenzo[g]chromene]-4,4′,6,9-tetraone. Even though compounds 1–4 did not contain stereo centers, they possessed notable optical activity due to sterical hindrances, which limited the internal rotation of two benzochromenone fragments around C(7)–C(9′/10′) bonds. Isolated bibenzochromenones 1–4 were tested for their antiradical, neuroprotective and antimicrobial activities. Compounds 1, 3 and 4 demonstrated significant antiradical properties towards ABTS radicals higher than the positive control trolox. Compounds 1 and 4 exhibited moderate neuroprotective activity, increasing the viability of rotenone-treated Neuro-2a cells at a concentration of 1 µM by 9.8% and 11.8%, respectively. Compounds 1 and 3 at concentrations from 25 to 100 μM dose-dependently inhibited the growth of Gram-positive bacteria S. aureus and yeast-like fungi C. albicans, and they also prevented the formation of their biofilms. Compounds 2 and 4 exhibited low antimicrobial activity.
- Published
- 2024
- Full Text
- View/download PDF