Justin W. Walley, Huaming Chen, Anna Bartlett, Aaron Wise, Roberto Solano, Joseph R. Ecker, Lingling Yin, Natalie M. Clark, Bruce Jow, Mark Zander, Amber E. Langford, Joseph R. Nery, Mathew G. Lewsey, Elizabeth Hann, Ziv Bar-Joseph, J. Paola Saldierna Guzmán, German Research Foundation, European Commission, Salk Institute for Biological Studies, National Institutes of Health (US), National Science Foundation (US), Department of Energy (US), Gordon and Betty Moore Foundation, and Ministerio de Economía y Competitividad (España)
Understanding the systems-level actions of transcriptional responses to hormones provides insight into how the genome is reprogrammed in response to environmental stimuli. Here, we investigated the signalling pathway of the hormone jasmonic acid (JA), which controls a plethora of critically important processes in plants and is orchestrated by the transcription factor MYC2 and its closest relatives in Arabidopsis thaliana. We generated an integrated framework of the response to JA, which spans from the activity of master and secondary regulatory transcription factors, through gene expression outputs and alternative splicing, to protein abundance changes, protein phosphorylation and chromatin remodelling. We integrated time-series transcriptome analysis with (phospho)proteomic data to reconstruct gene regulatory network models. These enabled us to predict previously unknown points of crosstalk of JA to other signalling pathways and to identify new components of the JA regulatory mechanism, which we validated through targeted mutant analysis. These results provide a comprehensive understanding of how a plant hormone remodels cellular functions and plant behaviour, the general principles of which provide a framework for analyses of cross-regulation between other hormone and stress signalling pathways., M.Z. was supported by a Deutsche Forschungsgemeinschaft (DFG) research fellowship (Za-730/1-1) and by the Salk Pioneer Postdoctoral Endowment Fund. M.G.L. was supported by an EU Marie Curie FP7 International Outgoing Fellowship (252475). In addition, this work was supported by the Mass Spectrometry Core of the Salk Institute with funding from NIH-NCI CCSG (P30 014195) and the Helmsley Center for Genomic Medicine. This work was supported by grants from the National Science Foundation (NSF) (MCB-1818160 and IOS-1759023 to J.W.W., MCB-1024999 to J.R.E.), the National Institutes of Health (R01GM120316), the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences of the US Department of Energy (DE-FG02-04ER15517), and the Gordon and Betty Moore Foundation (GBMF3034). Research in the lab of R.S. was supported by grant BIO2016-77216-R (MINECO/FEDER) from the Ministry of Economy, Industry and Competitiveness.