5 results on '"Navarro Marchal, Saul Abenhamar"'
Search Results
2. Biogeneration of silver nanoparticles from Cuphea procumbens for biomedical and environmental applications
- Author
-
González Pedroza, María G., Tapia Benítez, Andrea Regina, Navarro Marchal, Saul Abenhamar, Martínez-Martínez, Eduardo, Marchal Corrales, Juan Antonio, Boulaiz Tassi, Houria, and Morales‑Luckie, Raúl A.
- Subjects
Multidisciplinary - Abstract
Data availability All data generated or analysed during this study are included in this published article., Acknowledgements To the Mexican Council of Science and Technology (COMECYT) for the "Financing for Research of Women Scientists" of the Fund for Scientific Research and Technological Development of the State of Mexico and the FEDER Operational Program 2020/Junta de Andalucía-Consejería de Economía y Conocimiento/ Project (B-CTS-562-UGR20)., Nanotechnology is one of the most important and relevant disciplines today due to the specific electrical, optical, magnetic, chemical, mechanical and biomedical properties of nanoparticles. In the present study we demonstrate the efficacy of Cuphea procumbens to biogenerate silver nanoparticles (AgNPs) with antibacterial and antitumor activity. These nanoparticles were synthesized using the aqueous extract of C. procumbens as reducing agent and silver nitrate as oxidizing agent. The Transmission Electron Microscopy demonstrated that the biogenic AgNPs were predominantly quasi-spherical with an average particle size of 23.45 nm. The surface plasmonic resonance was analyzed by ultraviolet visible spectroscopy (UV–Vis) observing a maximum absorption band at 441 nm and Infrared Spectroscopy (FT IR) was used in order to structurally identify the functional groups of some compounds involved in the formation of nanoparticles. The AgNPs demonstrated to have antibacterial activity against the pathogenic bacteria Escherichia coli and Staphylococcus aureus, identifying the maximum zone of inhibition at the concentration of 0.225 and 0.158 µg/mL respectively. Moreover, compared to the extract, AgNPs exhibited better antitumor activity and higher therapeutic index (TI) against several tumor cell lines such as human breast carcinoma MCF-7 (IC50 of 2.56 µg/mL, TI of 27.65 µg/mL), MDA-MB-468 (IC50 of 2.25 µg/mL, TI of 31.53 µg/mL), human colon carcinoma HCT-116 (IC50 of 1.38 µg/mL, TI of 51.07 µg/mL) and melanoma A-375 (IC50 of 6.51 µg/mL, TI of 10.89 µg/mL). This fact is of great since it will reduce the side effects derived from the treatment. In addition, AgNPs revealed to have a photocatalytic activity of the dyes congo red (10–3 M) in 5 min and malachite green (10–3 M) in 7 min. Additionally, the degradation percentages were obtained, which were 86.61% for congo red and 82.11% for malachite green. Overall, our results demonstrated for the first time that C. procumbens biogenerated nanoparticles are excellent candidates for several biomedical and environmental applications., Mexican Council of Science and Technology (COMECYT) for the "Financing for Research of Women Scientists" of the Fund for Scientific Research and Technological Development of the State of Mexico, FEDER Operational Program 2020/Junta de Andalucía-Consejería de Economía y Conocimiento/ Project (B-CTS-562-UGR20)
- Published
- 2023
3. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment
- Author
-
Graván, Pablo, Aguilera Garrido, Aixa María, Marchal Corrales, Juan Antonio, Navarro Marchal, Saul Abenhamar, and Galisteo González, Francisco
- Subjects
Lipid nanoemulsions ,Colloid and Surface Chemistry ,Routes of administration ,Nanostructured lipid nanocarriers ,Solid lipid nanoparticles ,Surfaces and Interfaces ,Cáncer ,Physical and Theoretical Chemistry ,Preparation methods ,Lipid nanocapsules - Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized., MCIN/AEI FPU18/05336, European Social Fund (ESF), Ph.D. program of Biomedicine of the University of Granada, MCIN/AEI/FEDER "Una manera de hacer Europa" RTI2018.101309B-C21 RTI2018.101309B-C22
- Published
- 2023
4. Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool
- Author
-
Navarro Marchal, Saul Abenhamar, González Pedroza, María G., Jiménez Martínez, Yaiza, Marchal Corrales, Juan Antonio, and Boulaiz Tassi, Houria
- Subjects
Acetogenins ,Annona muricata fruit peel ,Green synthesis of silver nanoparticles ,Antiproliferative activity - Abstract
Cancer is one of the most prevalent diseases in the world and requires new therapies for its treatment. In this context, the biosynthesis of silver nanoparticles (AgNPs) has been developed to treat different types of tumors. The Annona muricata plant is known for having anticancer activity. Its main compounds present in the leaves, stems and skin, allowing for its use as reducing agents. In this manuscript, AgNPs with leaf extract (AgNPs-LE) and fruit peel extract (AgNPs-PE) of A. muricata were biosynthesized obtaining an average nanoparticle diameter sizes smaller than 50 nm, being 19.63 ± 3.7 nm and 16.56 ± 4.1 nm, and with a surface plasmonic resonance (SPR) at 447 and 448 nm, respectively. The lactone functional group present in the LE and PE extracts was identified by the FTIR technique. The behavior and antiproliferation activity of AgNPs-LE and AgNPs-PE were evaluated in breast, colon and melanoma cancer cell lines. Our results showed that Annona muricata fruit peel, which is a waste product, has an antitumor effect more potent than leaf extract. This difference is maintained with AgNPs where the destruction of cancer cells was, for the first time, achieved using concentrations that do not exceed 3 μg/mL with a better therapeutic index in the different tumor strains. In conclusion, we present a low-cost one-step experimental setup to generate AgNPs-PE whose in-vitro biocompatibility and powerful therapeutic effect make it a very attractive tool worth exploiting., Fundacion Empresa Universidad de Granada (Project PR/18/001), Fundación Mutua Madrileña (Project FMM-AP16683-2017), Consejería de Salud Junta de Andalucía (PI-0089-2017), Instituto de Salud Carlos III (RTI2018-101309-B-C22)
- Published
- 2021
5. Development and Evaluation of Smart Polymeric and Lipidic Nanoparticles for Theranosis of Breast and Pancreatic Cancer
- Author
-
Navarro Marchal, Saul Abenhamar, Marchal Corrales, Juan Antonio, Sánchez Martín, Rosario María, Peula García, José Manuel, and Universidad de Granada. Programa de Doctorado en Biomedicina
- Subjects
Breast cancer ,Theranosis ,Nanoparticles ,Pancreatic cancer - Abstract
Nanomedicine is playing a growing part in pharmaceutical research and development, primarily in the form of nanoparticle-based delivery systems for drugs and imaging agents. The development of targeted therapies, especially for cancer, is one of the main goals of nanomedicine today. Conventional chemotherapy usually prompts modest tumor response and provokes undesirable side effects due to the nonspecific action of drugs on proliferating tissues. To avoid these and other disadvantages, drug nanocarriers should be formulated to deliver the antitumor drug directly to the cancerous cells. The main objective of the application of nanomedicine in cancer is to have a better therapeutic effect, to increase the bioavailability and to allow the administration of lower doses of drug while obtaining lower toxicity rates and improving the patient's quality of life. Another objective is to overcome the multiple mechanisms of drug resistance that make this treatment ineffective in a high percentage of cancer cases since some subpopulations of tumor cells have the ability to evade drug associated cytotoxicity. However, to have a real translation of nanomedicine in patients it is necessary the interdisciplinary collaboration of different scientist areas since there is too many variables to be properly controlled. These variables include the use of biocompatible materials, with simple but robust processes for biomaterial assembly, usually requiring different conjugation chemistries followed by some purification processes. Therefore, current formulations based on complex nanostructures such as polymer conjugates, polymeric micelles, liposomes, carbon nanotubes, or nanoparticles, must be superficially modified to provide carriers with vectorization properties. Moreover, our research group has developed several strategies for preparing functionalized polymeric cross-linked polystyrene nanoparticles (NPs), which are covalently conjugated to cargoes of different nature. On the other hand, in recent years, lipid liquid nanocapsules (LLNCs) have been developed as potential nanocarriers. The inner hydrophobic domain, surrounded by an amphiphilic shell, has been used to encapsulate hydrophobic drugs that are protected during their transport to the target cells. Thus, the main objective of this thesis has been the development and evaluation of two different nanosystems in its composition, for the diagnosis and treatment of breast and pancreatic cancer. One of the nanosystems used has been polystyrene NPs. A novel chemical-based orthogonal bioconjugation strategy to produce trifunctionalized NPs carrying doxorubicin (DOX), near-infrared cyanine dye (Cy7) and a homing peptide CRGDK, a peptide specifically binds to neuropilin-1 (Nrp-1) overexpressed on triple negative breast cancer (TNBC) cells, has been validated. These theranostic NPs have been evaluated in vitro and in vivo using an orthotopic xenotransplant mouse model using TNBC cells. In vitro assays show that theranostic NPs improve the therapeutic index in comparison with free DOX. Remarkably, in vivo studies showed preferred location of theranostic NPs in the tumor area reducing the volume at the same level than free DOX while presenting lower side effects. Another of the nanosystems used have been LLNCs, specifically olive oil liquid nanocapsules (O2LNC). These LLNCs have been modified to evaluate several biological properties against cancer. In this sense, LLNCs covered by the human serum albumin (HSA) protein and loaded with curcumin as a hydrophobic model drug have been successfully developed. A cross-linking procedure with glutaraldehyde (GAD) was performed to further strengthen the protective protein layer. Physicochemical properties and release kinetics of the nanocapsules were investigated, and cellular uptake and killing capacity were evaluated on the MCF-7 human breast-cancer line. The nanocapsules exhibited a cytotoxic capacity (IC50) similar to that of free curcumin, but avoiding the problems associated with excipients, and displayed an outstanding uptake performance, entering cells massively in less than 1 min. On the other hand, O2LNC functionalized by covalent coupling of an anti-CD44-FITC antibody (αCD44) that can specifically target pancreatic cancer stem cells (PCSCs) overexpressing the CD44 receptor have been successfully developed. Firstly, O2LNCs formed by a core of olive oil were surrounded by a shell containing phospholipids (Epikuron®), a non-ionic surfactant (Pluronic® F68) and deoxycholic acid molecules to provide a surface enriched in solvent-exposed free carboxylic acid functional groups. Then, O2LNCs were coated with an αCD44 antibody to the optimized formulation of immuno-nanocapsules (αCD44-O2LNC). The optimization of an αCD44 coating procedure, a complete physico-chemical characterization of these functionalized nanosystems, as well as clear evidence of their efficacy in vitro and in vivo, were demonstrated. Our results indicate the high targeted uptake of these αCD44- O2LNCs and the increased antitumor efficacy (up to four times) of paclitaxel-loaded αCD44-O2LNC compared to free paclitaxel in PCSCs. Also, αCD44-O2LNCs were able to selectively target PCSCs in an orthotopic xenotransplant in vivo model., La nanomedicina está desempeñando un papel cada vez más importante en la investigación y el desarrollo farmacéutico, principalmente en forma de sistemas de administración de fármacos y agentes de imagen basados en nanopartículas. El desarrollo de terapias dirigidas, especialmente contra el cáncer, es uno de los principales objetivos de la nanomedicina en la actualidad. La quimioterapia convencional generalmente provoca una respuesta tumoral modesta y produce efectos secundarios indeseables debido a la acción inespecífica de los medicamentos sobre los tejidos en proliferación. Para evitar estas y otras desventajas, los nano-transportadores de fármacos deben formularse para administrar el fármaco antitumoral directamente a las células cancerígenas. El objetivo principal de la aplicación de la nanomedicina en el cáncer es tener un mejor efecto terapéutico, aumentar la biodisponibilidad y permitir la administración de dosis más bajas de fármaco mientras se obtienen tasas de toxicidad más bajas y se mejora la calidad de vida del paciente. Otro objetivo es superar los múltiples mecanismos de resistencia a los medicamentos que hacen que este tratamiento sea ineficaz en un alto porcentaje de casos de cáncer, ya que algunas subpoblaciones de células tumorales tienen la capacidad de evadir la citotoxicidad asociada a la quimioterapia. Sin embargo, para conseguir una traslación real de la nanomedicina a los pacientes, es necesaria la colaboración interdisciplinar de diferentes áreas científicas, ya que existen demasiadas variables que deben ser controlarlas adecuadamente. Estas variables incluyen el uso de materiales biocompatibles, obtenidos mediante el ensamblaje de biomateriales mediante procesos simples pero robustos, y que generalmente requieren diferentes químicas de conjugación seguidas de algunos procesos de purificación. Por lo tanto, las formulaciones actuales basadas en nanoestructuras complejas tales como conjugados poliméricos, micelas poliméricas, liposomas, nanotubos de carbono o nanopartículas, deben modificarse superficialmente para proporcionar nano-transportadores con propiedades de vectorización. Además, nuestro grupo de investigación ha desarrollado varias estrategias para preparar nanopartículas de poliestireno que luego se conjugan covalentemente con moléculas de diferente naturaleza. Del mismo modo, en los últimos años, se han desarrollado nanocápsulas lipídicas liquidas (LLNC) como potenciales nano-transportadores. El dominio hidrofóbico interno, rodeado por una corteza anfifílica, se ha utilizado para encapsular medicamentos hidrofóbicos que están protegidos durante su transporte a las células diana. Por lo tanto, el objetivo principal de esta tesis ha sido el desarrollo y la evaluación de dos nanosistemas diferentes en su composición, para el diagnóstico y tratamiento del cáncer de mama y de páncreas. Uno de los nanosistemas utilizados han sido las nanopartículas (NPs) de poliestireno. Se ha validado una nueva estrategia de bioconjugación ortogonal basada en productos químicos para producir NPs trifuncionalizadas, vehiculizando doxorrubicina (DOX), un colorante que emite en el infrarrojo cercano (Cy7) y un péptido específico CRGDK, que se une específicamente a la neuropilina-1 (Nrp-1, la cual se encuentra sobreexpresada en células de cáncer de mama triple negativo (TNBC). Estas NPs teranósticas se han evaluado in vitro e in vivo utilizando un modelo de xenotrasplante ortotópico en ratones de células TNBC. Los ensayos in vitro muestran que las NPs teranósticas mejoran el índice terapéutico en comparación con la DOX libre. Sorprendentemente, los estudios in vivo mostraron la ubicación preferida de las NPs teranósticas en el área del tumor, reduciendo el volumen al mismo nivel que la DOX libre pero presentando efectos secundarios más bajos. Otro de los nanosistemas utilizados han sido las LLNC, específicamente las nanocápsulas líquidas de aceite de oliva (O2LNCs). Estas LLNC han sufrido varias modificaciones. Por un lado, se han desarrollado con éxito O2LNCs cubiertas por la proteína albúmina sérica humana (HSA) y cargadas con curcumina como fármaco modelo de tipo hidrofóbico. Se realizó un procedimiento de reticulación con glutaraldehído (GAD) para fortalecer aún más la capa proteica protectora. Además, se investigaron las propiedades fisicoquímicas y la cinética de liberación de las nanocápsulas, y se evaluó la absorción celular y citotoxicidad en la línea de cáncer de mama humano MCF-7. Las nanocápsulas exhibieron una capacidad citotóxica (IC50) similar a la de la curcumina libre, pero evitando los problemas asociados con los excipientes, y mostraron un rendimiento de absorción altísimo, internalizándose en las células de forma masiva en menos de 1 minuto. Por otro lado, se han desarrollado con éxito O2LNC funcionalizadas mediante el acoplamiento covalente de un anticuerpo anti-CD44-FITC (αCD44) que puede dirigirse específicamente a las células madre cancerígenas pancreáticas (PCSC), que sobreexpresan el receptor CD44. En primer lugar, las O2LNC formados por un núcleo de aceite de oliva fueron recubiertos por una cubierta que contenía fosfolípidos (Epikuron®), un tensioactivo no iónico (Pluronic® F68) y moléculas de ácido desoxicólico para proporcionar una superficie enriquecida en grupos funcionales de ácido carboxílico libre expuesto al medio de dispersión. Luego, las O2LNC se funcionalizaron con un anticuerpo αCD44 para la formulación optimizada de inmuno-nanocápsulas (αCD44- O2LNC). Se demostró la optimización de un procedimiento de funcionalización αCD44, mediante una caracterización fisicoquímica completa de estos nanosistemas funcionalizados, así como una clara evidencia de su eficacia in vitro e in vivo. Nuestros resultados indican la alta captación selectiva de estas αCD44-O2LNC y la mayor eficacia antitumoral (hasta cuatro veces) de αCD44-O2LNC cargadas con paclitaxel en comparación con paclitaxel libre en PCSCs. Además, los αCD44-O2LNC pudieron dirigirse selectivamente a las PCSCs y acumularse en el tumor en un modelo in vivo de xenotrasplante ortotópico de cáncer de páncreas., Tesis Univ. Granada.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.