82 results on '"Neil Trappe"'
Search Results
2. Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission
- Author
-
Ludovic Montier, Baptiste Mot, Paolo de Bernardis, Bruno Maffei, Giampaolo Pisano, Fabio Columbro, Jon E. Gudmundsson, Sophie Henrot-Versillé, Luca Lamagna, Joshua Montgomery, Thomas Prouvé, Megan Russell, Giorgio Savini, Samantha Stever, Keith L. Thompson, Masahiro Tsujimoto, Carole Tucker, Benjamin Westbrook, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, Ranajoy Banerji, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Masashi Hazumi, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Gianluca Morgante, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Gianluca Polenta, Davide Poletti, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), LiteBIRD, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, European Research Council, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Lystrup, Makenzie, Montier, L, Mot, B, de Bernardis, P, Maffei, B, Pisano, G, Columbro, F, Gudmundsson, J, Henrot-Versillé, S, Lamagna, L, Montgomery, J, Prouvé, T, Russell, M, Savini, G, Stever, S, Thompson, K, Tsujimoto, M, Tucker, C, Westbrook, B, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Morgante, G, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Polenta, G, Poletti, D, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, and Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Cosmic microwave background ,cosmic background radiation: polarization ,detector: noise ,magnetic field ,02 engineering and technology ,LiteBIRD, cosmic microwave background, polarization measurements, space telescopes ,7. Clean energy ,01 natural sciences ,law.invention ,law ,detector: calibration ,media_common ,Physics ,conductivity: thermal ,Settore FIS/05 ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,Polarization (waves) ,inflation: model ,experimental equipment ,B-mode ,cosmic radiation ,cryogenics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,0210 nano-technology ,cosmic background radiation: detector ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,lens ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,FOS: Physical sciences ,LiteBIRD ,Polarization measurements ,Space telescopes ,Astrophysics::Cosmology and Extragalactic Astrophysics ,bolometer: superconductivity ,frequency: high ,Radio spectrum ,tensor scalar: ratio ,010309 optics ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,numerical calculations ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: angular resolution ,Astrophysics::Galaxy Astrophysics ,Gravitational wave ,synchrotron radiation ,gravitational radiation: primordial ,Astronomy ,Physics::History of Physics ,optics ,detector: sensitivity ,13. Climate action ,Sky ,Satellite ,temperature: stability ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy. European collaborators acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement Nos. 772253, 819478, and 849169). The European Space Agency (ESA) has led a Concurrent Design Facility study, focused on the MHFT and Sub-Kelvin coolers, and funded Technology Research Programmes for “Large radii Half-Wave Plate (HWP) development” (contract number: 4000123266/18/NL/AF) and for the ‘Development of Large Anti-Reflection Coated Lenses for Passive (Sub)Millimeter-Wave Science Instruments” (contract number: 4000128517/19/NL/AS).
- Published
- 2020
- Full Text
- View/download PDF
3. LiteBIRD: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization
- Author
-
Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versillé, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouvé, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Hélium : du fondamental aux applications (NEEL - HELFA), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Commission, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Lystrup, Makenzie, Hazumi, M, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banjeri, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minami, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, Noviello, F, O'Sullivan, C, Ogawa, H, Oguri, S, Ohsaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Rambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sekimoto, Y, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, and Zonca, A
- Subjects
cosmological model ,experimental methods ,detector: satellite ,Physics beyond the Standard Model ,Cosmic microwave background ,LiteBIRD, cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravi- tational waves, quantum gravity, space telescope ,cosmic background radiation: polarization ,detector: noise ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,expansion: multipole ,Cosmology ,General Relativity and Quantum Cosmology ,B-mode: primordial ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,general relativity ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,B-mode polarization ,media_common ,Physics ,new physics ,quantum mechanics ,Astrophysics::Instrumentation and Methods for Astrophysics ,021001 nanoscience & nanotechnology ,BICEP ,inflation: model ,High Energy Physics - Phenomenology ,error: statistical ,experimental equipment ,cryogenics ,power spectrum: angular dependence ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,readout ,Astrophysics::Earth and Planetary Astrophysics ,dust ,control system ,0210 nano-technology ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,cosmic microwave background ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,cosmic inflation ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,primordial gravi- tational waves ,Cosmic background radiation ,space telescope ,Lagrangian point ,FOS: Physical sciences ,LiteBIRD ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,polarization: sensitivity ,010309 optics ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,gravitation: lens ,0103 physical sciences ,ionization ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,cosmic background radiation: power spectrum ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Inflation (cosmology) ,synchrotron radiation ,primordial gravitational waves ,gravitational radiation: primordial ,Astronomy ,calibration ,Physics::History of Physics ,recombination ,detector: sensitivity ,angular resolution ,Sky ,quantum gravity ,gravitational radiation: emission ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Satellite ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,experimental results - Abstract
Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online.-- et al., LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 µK-arcmin with a typical angular resolution of 0.5◦ at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes., This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceleration program of JAXA research and development directorate, by the World Premier International Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat a l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Norwegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No. 263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia Estatal de Investigacion (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-P. Funds that support the Swedish contributions come from the Swedish National Space Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959). The German participation in LiteBIRD is supported in part by the Excellence Cluster ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This research used resources of the Central Computing System owned and operated by the Computing Research Center at KEK, as well as resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy.
- Published
- 2020
- Full Text
- View/download PDF
4. Application of non-PEC walled mode-matching techniques to a prototype SAFARI M-band multimode receiver
- Author
-
Neil Trappe, Joseph Brennan, Peter A. R. Ade, and Marcin Gradziel
- Subjects
Azimuth ,Physics ,Multi-mode optical fiber ,Field (physics) ,Acoustics ,Horn (acoustic) ,Surface roughness ,Boundary (topology) ,Lossy compression ,Mode matching - Abstract
An extension of the traditional mode-matching methods to consider non-PEC boundary walls is presented. These non-PEC boundary walls consider mechanisms for loss which are generally not included in the analysis of guide structures. In particular, these losses manifest themselves more significantly in multi-moded structures, as field distributions for increasing azimuthal order modes are localised to a greater extent at the boundary walls. This lossy mode-matching method is applied to a prototype M-band horn for the proposed SAFARI system. Here we attempt reconcile the measurement data with simulation results by considering the surface impedance of the guide walls due to the finite conductivity and surface roughness from the manufacturing process.
- Published
- 2020
- Full Text
- View/download PDF
5. A novel, highly efficient cavity backshort design for far-infrared TES detectors
- Author
-
Michael D. Audley, J. A. Murphy, D. Watson, G. de Lange, C. Bracken, Neil Trappe, Marcin Gradziel, and Willem-Jan Vreeling
- Subjects
Materials science ,Terahertz radiation ,VNA ,Flatness (systems theory) ,Bolometer ,Physics::Optics ,Anisotropic silicon crystal etching ,01 natural sciences ,law.invention ,010309 optics ,Optics ,Far infrared ,law ,0103 physical sciences ,Globar ,Cavity backshort ,010303 astronomy & astrophysics ,Coupling ,business.industry ,Detector ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Far-infrared ,FTS ,Transition edge sensor ,business - Abstract
In this paper we present a new cavity backshort design for TES (transition edge sensor) detectors which will provide increased coupling of the incoming astronomical signal to the detectors. The increased coupling results from the improved geometry of the cavities, where the geometry is a consequence of the proposed chemical etching manufacturing technique. Using a number of modelling techniques, predicted results of the performance of the cavities for frequencies of 4.3–10 THz are presented and compared to more standard cavity designs. Excellent optical efficiency is demonstrated, with improved response flatness across the band. In order to verify the simulated results, a scaled model cavity was built for testing at the lower W-band frequencies (75–100 GHz) with a VNA system. Further testing of the scale model at THz frequencies was carried out using a globar and bolometer via an FTS measurement set-up. The experimental results are presented, and compared to the simulations. Although there is relatively poor comparison between simulation and measurement at some frequencies, the discrepancies are explained by means of higher-mode excitation in the measured cavity which are not accounted for in the single-mode simulations. To verify this assumption, a better behaved cylindrical cavity is simulated and measured, where excellent agreement is demonstrated in those results. It can be concluded that both the simulations and the supporting measurements give confidence that this novel cavity design will indeed provide much-improved optical coupling for TES detectors in the far-infrared/THz band.
- Published
- 2018
- Full Text
- View/download PDF
6. Analysis of multi-mode waveguide cavities containing free space gaps for use in future far-infrared telescopes
- Author
-
Maarten van der Vorst, J. Anthony Murphy, D. McCarthy, Marcin Gradziel, Créidhe O'Sullivan, Stephen Doherty, Neil Trappe, Michael D. Audley, C. Bracken, and Gert de Lange
- Subjects
Cosmic Vision ,Spectrometer ,Computer science ,Electromagnetic spectrum ,business.industry ,Infrared telescope ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spica ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,law.invention ,Horn antenna ,law ,Aerospace engineering ,Space research ,business ,Waveguide - Abstract
In order to investigate the formation and evolution of galaxies, stars and planetary systems, it is necessary to carry out astronomical observations in the far-infrared portion of the electromagnetic spectrum. Missions such as the Herschel Space Observatory (European Space Agency) have already completed observations in this region with great success. Proposed high resolution spectrometer instruments such as SAFARI (a joined European/Japanese (ESA/JAXA) proposal as part of the SPICA mission), aim to build upon the work of previous missions by carrying out observations in the 1.5–10 THz band with unprecedented levels of sensitivity. Spica (SPace Infrared telescope for Cosmology and Astrophysics) is currently a candidate mission as part of ESA’s Cosmic Vision 2015–2025. Future far-IR missions must realise higher levels of sensitivity, limited only by the cosmic microwave background. One solution in achieving these sensitivity goals is to use waveguide coupled Transition Edge Sensor (TES) detectors, arranged in a densely packed focal plane. Additionally, multi-mode pixels can be used in order to maximise the optical throughput and coupling while still defining a definite beam shape. For the SAFARI instrument multimoded horns coupling into integrating waveguide cavities that house the TES detectors and associated absorbing layer are envisioned. This represents a significant technological challenge in terms of accurate manufacture tolerances relative to the short wavelength, however in the case of the SAFARI instrument pixel much work has already been carried out, with prototype pixels having undergone extensive testing at SRON (Space Research Organisation of the Netherlands) Groningen. In order to fully characterise the experimental results, it is necessary also to carry out comprehensive electromagnetic modelling of these structures which is also computationally intensive and requires novel approaches. These waveguide structures (horn and cavity) are typically electrically large however, and so analysis techniques using commercial finite element software prove inefficient (particularly as the structures are multimoded). The mode-matching technique with new analytical features offer a computationally efficient and reliable alternative to full electromagnetic solvers, and in this paper we outline the additions to this technique that were necessary in order to allow typical SAFARI far-infrared pixels to be modeled, including the complete optical coupling calculation of the measurement test setup at SRON and the inclusion of the free space gap within the horn antenna and the integrating cavity. Optical coupling efficiencies simulated using this developed technique show excellent agreement with the experimental measurements.
- Published
- 2020
7. Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
- Author
-
Mario G. Lattanzi, Carlo Baccigalupi, François Levrier, J. M. Duval, J. Austermann, M. Brilenkov, B. Thorne, Eiichiro Komatsu, D. Rambaud, T. Nagasaki, Peter Shirron, H. Imada, Nozomu Kogiso, Jeff Van Lanen, H. Takakura, T. Kawasaki, Lionel Duband, Ingunn Kathrine Wehus, Y. Hoshino, Tadayasu Dotani, Enrique Martinez-Gonzalez, Tucker Elleflot, S. Beckman, T. Kaga, Shogo Nakamura, A. Kato, Giorgio Savini, S. Bounissou, S. Mandelli, Peter Charles Hargrave, Francois Boulanger, Julien Grain, S. Realini, Reijo Keskitalo, Bruno Maffei, Y. Nagano, Davide Maino, D. Herman, Michael R. Vissers, B. Mot, R. Banerji, N. Katayama, James A. Beall, Johannes Hubmayr, Tomotake Matsumura, Shugo Oguri, G. Patanchon, S. Basak, S. Takakura, Créidhe O'Sullivan, Massimo Gervasi, Y. Takase, S. Stever, A. Carones, Raphael Flauger, F. J. Casas, T. de Haan, Yasuhiro Murata, T. Prouvé, Douglas Scott, P. Vielva, Toshiya Namikawa, Mayu Tominaga, Yuki Sakurai, Luca Lamagna, Eric Hivon, S. Nerval, Ken Ebisawa, Noriko Y. Yamasaki, Julian Borrill, Shingo Kashima, Hajime Sugai, M. De Petris, R. Nagata, Ted Kisner, D. W. Curtis, A. Mennella, P. de Bernardis, Alexandre E. Adler, Misao Sasaki, Jiansong Gao, Kam Arnold, K. Ganga, T. Ghigna, Kazunori Kohri, Ben Westbrook, R. Aurlien, T. Toda, Yasuhiro Takeda, U. Fuskeland, Alessandro Gruppuso, Giuseppe Puglisi, A. Ritacco, I. Kreykenbohm, C. Leloup, M. A. Dobbs, Jochen Weller, Joel N. Ullom, Chao-Lin Kuo, M. Migliaccio, Charles A. Hill, E. Allys, Nicola Vittorio, T. Yoshida, R. Takaku, Thomas Essinger-Hileman, Alessandro Paiella, J. Aumont, Berend Winter, Junji Yumoto, Yutaka Terao, Aritoki Suzuki, T. Hasebe, Toshiyuki Nishibori, A. Cukierman, P. Campeti, Y. Hirota, Alan J. Kogut, Josquin Errard, S. Sugiyama, L. P. L. Colombo, Anthony Challinor, Yohei Kobayashi, A. Kushino, Gemma Luzzi, Makoto Nagai, M. Sandri, Christopher Raum, Giuseppe D'Alessandro, Masashi Hazumi, Masaya Hasegawa, Renée Hlozek, Silvia Masi, Joseph Seibert, F. Piacentini, J. A. Murphy, Greg Jaehnig, Jose Alberto Rubino-Martin, Davide Poletti, Michael L. Brown, Blake D. Sherwin, Daniela Paoletti, Joshua Montgomery, F. Columbro, Gianluca Morgante, J. Bermejo, M. Tomasi, Haruki Nishino, P. Diego-Palazuelos, Hirokazu Ishino, T. Iida, Kazuhisa Mitsuda, Haruyuki Sakurai, Keith L. Thompson, Javier Cubas, Neil Trappe, Keisuke Shinozaki, Adrian T. Lee, Hiroyuki Ohsaki, Martina Gerbino, D. Herranz, M. Tsuji, Marco Bersanelli, Nadia Dachlythra, M. Russell, E. Gjerløw, Maresuke Shiraishi, E. de la Hoz, Eric V. Linder, Graeme Smecher, Eric R. Switzer, Erminia Calabrese, G. Roudil, Mario Zannoni, T. Maciaszek, L. Pagano, D. Auguste, Frank Grupp, Kosei Ishimura, Fabrizio Villa, Kuniaki Konishi, I. S. Ohta, G. Signorelli, J. Bonis, A. Tartari, Jun-ichi Suzuki, R. B. Barreiro, J. F. Cliche, M. Maki, Douglas H Beck, Ricardo Genova-Santos, A. J. Banday, M. Galloway, T. L. Svalheim, Fabio Finelli, L. A. Montier, H. K. Eriksen, Nicoletta Krachmalnicoff, Karen C. Cheung, Cristian Franceschet, Matthieu Tristram, V. Chan, G. Polenta, Clive Dickinson, N. W. Halverson, Kiyotomo Ichiki, Yuji Chinone, Mathieu Remazeilles, Giampaolo Pisano, Jon E. Gudmundsson, J. Peloton, M. Reinecke, Shannon M. Duff, Carole Tucker, Y. Minanmi, Gene C. Hilton, Martin Bucher, P. A. R. Ade, G. Vermeulen, K. Komatsu, Norio Okada, Thibaut Louis, Sophie Henrot-Versille, Edward J. Wollack, Paolo Natoli, Hideo Ogawa, Jörn Wilms, E. Taylor, Andrea Zonca, Makoto Hattori, Radek Stompor, Masahiro Tsujimoto, Yutaro Sekimoto, Marcin Gradziel, H. Thommesen, Zmuidzinas, Jonas, Sekimoto, Y, Ade, P, Adler, A, Allys, E, Arnold, K, Auguste, D, Aumont, J, Aurlien, R, Austermann, J, Baccigalupi, C, Banday, A, Banerji, R, Barreiro, R, Basak, S, Beall, J, Beck, D, Beckman, S, Bermejo, J, de Bernardis, P, Bersanelli, M, Bonis, J, Borrill, J, Boulanger, F, Bounissou, S, Brilenkov, M, Brown, M, Bucher, M, Calabrese, E, Campeti, P, Carones, A, Casas, F, Challinor, A, Chan, V, Cheung, K, Chinone, Y, Cliche, J, Colombo, L, Columbro, F, Cubas, J, Cukierman, A, Curtis, D, D'Alessandro, G, Dachlythra, N, De Petris, M, Dickinson, C, Diego-Palazuelos, P, Dobbs, M, Dotani, T, Duband, L, Duff, S, Duval, J, Ebisawa, K, Elleflot, T, Eriksen, H, Errard, J, Essinger-Hileman, T, Finelli, F, Flauger, R, Franceschet, C, Fuskeland, U, Galloway, M, Ganga, K, Gao, J, Genova-Santos, R, Gerbino, M, Gervasi, M, Ghigna, T, Gjerløw, E, Gradziel, M, Grain, J, Grupp, F, Gruppuso, A, Gudmundsson, J, de Haan, T, Halverson, N, Hargrave, P, Hasebe, T, Hasegawa, M, Hattori, M, Hazumi, M, Henrot-Versillé, S, Herman, D, Herranz, D, Hill, C, Hilton, G, Hirota, Y, Hivon, E, Hlozek, R, Hoshino, Y, de la Hoz, E, Hubmayr, J, Ichiki, K, Iida, T, Imada, H, Ishimura, K, Ishino, H, Jaehnig, G, Kaga, T, Kashima, S, Katayama, N, Kato, A, Kawasaki, T, Keskitalo, R, Kisner, T, Kobayashi, Y, Kogiso, N, Kogut, A, Kohri, K, Komatsu, E, Komatsu, K, Konishi, K, Krachmalnicoff, N, Kreykenbohm, I, Kuo, C, Kushino, A, Lamagna, L, Lanen, J, Lattanzi, M, Lee, A, Leloup, C, Levrier, F, Linder, E, Louis, T, Luzzi, G, Maciaszek, T, Maffei, B, Maino, D, Maki, M, Mandelli, S, Martinez-Gonzalez, E, Masi, S, Matsumura, T, Mennella, A, Migliaccio, M, Minanmi, Y, Mitsuda, K, Montgomery, J, Montier, L, Morgante, G, Mot, B, Murata, Y, Murphy, J, Nagai, M, Nagano, Y, Nagasaki, T, Nagata, R, Nakamura, S, Namikawa, T, Natoli, P, Nerval, S, Nishibori, T, Nishino, H, O'Sullivan, C, Ogawa, H, Oguri, S, Osaki, H, Ohta, I, Okada, N, Pagano, L, Paiella, A, Paoletti, D, Patanchon, G, Peloton, J, Piacentini, F, Pisano, G, Polenta, G, Poletti, D, Prouvé, T, Puglisi, G, Tambaud, D, Raum, C, Realini, S, Reinecke, M, Remazeilles, M, Ritacco, A, Roudil, G, Rubino-Martin, J, Russell, M, Sakurai, H, Sakurai, Y, Sandri, M, Sasaki, M, Savini, G, Scott, D, Seibert, J, Sherwin, B, Shinozaki, K, Shiraishi, M, Shirron, P, Signorelli, G, Smecher, G, Stever, S, Stompor, R, Sugai, H, Sugiyama, S, Suzuki, A, Suzuki, J, Svalheim, T, Switzer, E, Takaku, R, Takakura, H, Takakura, S, Takase, Y, Takeda, Y, Tartari, A, Taylor, E, Terao, Y, Thommesen, H, Thompson, K, Thorne, B, Toda, T, Tomasi, M, Tominaga, M, Trappe, N, Tristram, M, Tsuji, M, Tsujimoto, M, Tucker, C, Ullom, J, Vermeulen, G, Vielva, P, Villa, F, Vissers, M, Vittorio, N, Wehus, I, Weller, J, Westbrook, B, Wilms, J, Winter, B, Wollack, E, Yamasaki, N, Yoshida, T, Yumoto, J, Zannoni, M, Zonca, A, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de l'ENS (LPTENS), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Paris (OP), Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d’Études Spatiales [Paris] (CNES), Centre National d'Études Spatiales [Toulouse] (CNES), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), LiteBIRD, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Aperture ,FOS: Physical sciences ,7. Clean energy ,cryogenic telescope ,law.invention ,Cosmic microwave background ,Entrance pupil ,Telescope ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Optics ,millimeter-wave polarization ,space program ,Settore FIS/05 - Astronomia e Astrofisica ,law ,Angular resolution ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,Stray light ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarization (waves) ,Lens (optics) ,Cardinal point ,Astrophysics - Instrumentation and Methods for Astrophysics ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^\circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5\,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented., Comment: 21 pages, 14 figures
- Published
- 2020
- Full Text
- View/download PDF
8. Development of Mode-matching Techniques to Efficiently Model Multi-mode Horns with Non-PEC Walls
- Author
-
Neil Trappe, Joseph Brennan, and Marcin Gradziel
- Subjects
Computer science ,Horn (acoustic) ,Computation ,Acoustics ,Attenuation ,Surface roughness ,Boundary value problem ,Conical surface ,Classification of discontinuities ,Perfect conductor - Abstract
In the design and analysis of millimetre wave components imperfections of the guide wall material are frequently overlooked and PEC (Perfect Electric Conductor) behaviour is assumed to simplify the problem. These imperfections could be due to the large yet finite wall conductivity or the surface roughness associated with manufacturing processes. In reality, when non-PEC walls are considered, they have a non-negligible effect on mode attenuation and mode mixing, particularly at guide discontinuities An extension of the well-established Mode-Matching method to include non-PEC materials is investigated in this paper. Simply put, Mode-Matching is a method used to determine the scattering coefficients at guide discontinuities. Here the transverse fields on both sides of the step are “matched” such that we have conservation of complex power for incident modes. The additional boundary conditions imposed by the non-PEC walls are considered as perturbations to the PEC solutions. In uniform guides this opens further channels of mode mixing, as opposed to modes bijectively matching; and introduces mechanisms for attenuation which exist due to the necessary surface impedance on the guide walls. While at junctions, further mechanisms for attenuation exist due to the surface impedance on the overlap region of the guides. A volumetric finite element solver is used as a benchmark for the verification of the method. However, for larger components the simulation time required for the finite element solver becomes impractical. Hence, the Mode-Matching description provides a near perfect description of the effect of the non-PEC walls at a fraction of the computational cost when compared to the finite element solver. We model two types of manufactured horn antennae; a conical cylindrical and corrugated cylindrical horn each with 100+ segments. A PEC solution is used as a benchmark for simulations where the physical surface parameters are included. This highlights the effect of including loss in the guide on the losses in individual horn modes. With the increasing detail of horn geometries, the computational effort and simulation time required to effectively model them also increases. We also discuss methods of parallelisation and hardware acceleration of the Mode-Matching code to deal with the increasing computation demand on electromagnetic simulations. These methods are developed in OpenCL to ensure portability of the software across different hardware architectures.
- Published
- 2019
- Full Text
- View/download PDF
9. Exploring cosmic origins with CORE:mitigation of systematic effects
- Author
-
M. Tristram, Daniela Paoletti, Eric Hivon, Jose M. Diego, M. López-Caniego, Hannu Kurki-Suonio, D. Tramonte, J. Borrill, M. Piat, Shaul Hanany, Guillaume Patanchon, M. Bonato, Matthieu Roman, J. González-Nuevo, F. Piacentini, G. Signorelli, Stephen M. Feeney, Silvia Galli, Miguel Quartin, M. Migliaccio, François R. Bouchet, A. Bonaldi, E. Di Valentino, R. Van de Weijgaert, Ricardo Genova-Santos, L. Salvati, Zhen-Yi Cai, Nicola Bartolo, Martino Calvo, Julien Lesgourgues, Reijo Keskitalo, Alessandro Coppolecchia, Jens Chluba, Carlo Burigana, G. Castellano, Bruno Maffei, D. McCarthy, R. Banerji, Daniel Baumann, Martina Gerbino, Thomas Kitching, Alessandro Monfardini, Francois Boulanger, M. Tomasi, Carlos Hernández-Monteagudo, L. Polastri, Alessandro Melchiorri, Ted Kisner, S. Basak, Giuseppe D'Alessandro, Peter A. R. Ade, Massimiliano Lattanzi, Sebastien Clesse, Marco Bersanelli, Mario Zannoni, R. Allison, Will Handley, J. Valiviita, P. Vielva, Diego Molinari, Mathieu Remazeilles, A. Gruppuso, Matthew Hills, K. Kiiveri, A. Lewis, Mattia Negrello, Michele Liguori, Carole Tucker, Gemma Luzzi, G. Polenta, Silvia Masi, Alessandro Paiella, Giampaolo Pisano, L. Pagano, P. de Bernardis, Anthony Challinor, Sebastian Grandis, Martin Bucher, Luca Lamagna, R. Fernandez-Cobos, Tiziana Trombetti, G. de Gasperis, C. S. Carvalho, A. Tartari, Jacques Delabrouille, Nazzareno Mandolesi, C. Baccigalupi, Vivian Poulin, Ana Achúcarro, Alessio Notari, Alessandro Buzzelli, I. Colantoni, Enrique Martinez-Gonzalez, Fabio Finelli, James G. Bartlett, Francesco Forastieri, Mario Ballardini, Anthony Lasenby, Vincent Vennin, Christopher G. R. Wallis, E. Keihänen, D. T. Hoang, J. J. A. Baselmans, Jean-Baptiste Melin, M. Ashdown, Sophie Henrot-Versille, M. Kunz, S. Hagstotz, Josquin Errard, Jose Alberto Rubino-Martin, C. J. A. P. Martins, G. de Zotti, Neil Trappe, Nicola Vittorio, V. Lindholm, J. Greenslade, Karl Young, O. Perdereau, B. Van Tent, A. J. Banday, Thejs Brinckmann, Graziano Rossi, A. Pollo, C. Hervias-Caimapo, Martin Crook, Paolo Natoli, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Lagrange de Paris, Sorbonne Université (SU), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), CORE, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Sorbonne Universités, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Cryogénie (NEEL - Cryo), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPhP), Hélium : du fondamental aux applications (NEEL - HELFA), Helsinki Institute of Physics, Department of Physics, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Natoli, P, Ashdown, M, Banerji, R, Borrill, J, Buzzelli, A, de Gasperis, G, Delabrouille, J, Hivon, E, Molinari, D, Patanchon, G, Polastri, L, Tomasi, M, Bouchet, F, Henrot-Versillé, S, Hoang, D, Keskitalo, R, Kiiveri, K, Kisner, T, Lindholm, V, Mccarthy, D, Piacentini, F, Perdereau, O, Polenta, G, Tristram, M, Achucarro, A, Ade, P, Allison, R, Baccigalupi, C, Ballardini, M, Banday, A, Bartlett, J, Bartolo, N, Basak, S, Baumann, D, Bersanelli, M, Bonaldi, A, Bonato, M, Boulanger, F, Brinckmann, T, Bucher, M, Burigana, C, Cai, Z, Calvo, M, Carvalho, C, Castellano, M, Challinor, A, Chluba, J, Clesse, S, Colantoni, I, Coppolecchia, A, Crook, M, D'Alessandro, G, de Bernardis, P, Zotti, G, Valentino, E, Diego, J, Errard, J, Feeney, S, Fernandez-Cobos, R, Finelli, F, Forastieri, F, Galli, S, Genova-Santos, R, Gerbino, M, González-Nuevo, J, Grandis, S, Greenslade, J, Gruppuso, A, Hagstotz, S, Hanany, S, Handley, W, Hernandez-Monteagudo, C, Hervías-Caimapo, C, Hills, M, Keihänen, E, Kitching, T, Kunz, M, Kurki-Suonio, H, Lamagna, L, Lasenby, A, Lattanzi, M, Lesgourgues, J, Lewis, A, Liguori, M, López-Caniego, M, Luzzi, G, Maffei, B, Mandolesi, N, Martinez-González, E, Martins, C, Masi, S, Matarrese, S, Melchiorri, A, Melin, J, Migliaccio, M, Monfardini, A, Negrello, M, Notari, A, Pagano, L, Paiella, A, Paoletti, D, Piat, M, Pisano, G, Pollo, A, Poulin, V, Quartin, M, Remazeilles, M, Roman, M, Rossi, G, Rubino-Martin, J, Salvati, L, Signorelli, G, Tartari, A, Tramonte, D, Trappe, N, Trombetti, T, Tucker, C, Valiviita, J, de Weijgaert, R, Tent, B, Vennin, V, Vielva, P, Vittorio, N, Wallis, C, Young, K, Zannoni, M, String Theory (ITFA, IoP, FNWI), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de l'Accélérateur Linéaire ( LAL ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Institut d'astrophysique spatiale ( IAS ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Néel ( NEEL ), Université Grenoble Alpes [Saint Martin d'Hères]-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Département de Physique des Particules (ex SPP) ( DPP ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Laboratoire d'Annecy-le-Vieux de Physique Théorique ( LAPTH ), Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique d'Orsay [Orsay] ( LPT ), and Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Cosmic microwave background ,Astrophysics ,Residual ,01 natural sciences ,NOISE ,Photometric calibration ,CMBR experiments ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010303 astronomy & astrophysics ,media_common ,Physics ,COSMIC cancer database ,INSTRUMENT ,FLIGHT ,Astrophysics::Instrumentation and Methods for Astrophysics ,symbols ,astro-ph.CO ,CMBR experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,CMBR polarisation ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,POLARIZATION MAPS ,FOS: Physical sciences ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,NO ,LIKELIHOOD ,symbols.namesake ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,Robustness (computer science) ,0103 physical sciences ,SPECTRA ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Planck ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,CMBR polarization ,010308 nuclear & particles physics ,MAP-MAKING ALGORITHM ,Astronomy and Astrophysics ,PLANCK SURVEYOR ,115 Astronomy, Space science ,CMBR experiments, CMBR polarisation, gravitational waves and CMBR polarization ,Reliability engineering ,Future study ,CMB EXPERIMENTS ,Sky ,astro-ph.IM ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,gravitational waves and CMBR polarization ,astronomy and astrophysics - Abstract
This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We also thank CSC — IT Center for Science (Finland) for computational resources. We acknowledge financial support by ASI Grant 2016-24-H.0 and Academy of Finland grant 295113. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 687312. CJM is supported by an FCT Research Professorship, contract reference IF/00064/2012, funded by FCT/MCTES (Portugal) and POPH/FSE (EC). JGN acknowledges financial support from the Spanish MINECO for a ‘Ramon y Cajal’ fellowship (RYC-2013-13256) and the I+D 2015 project AYA2015-65887-P (MINECO/FEDER). GR acknowledges support from the National Research Foundation of Korea (NRF) through Grant No. 2017R1E1A1A01077508 funded by the Korean Ministry of Education, Science and Technology (MoEST), and from the faculty research fund of Sejong University in 2018. We thank Jean Kaplan for useful comments on the manuscript., Natoli, P., Ashdown, M., Banerji, R., Borrill, J., Buzzelli, A., De Gasperis, G., Delabrouille, J., Hivon, E., Molinari, D., Patanchon, G., Polastri, L., Tomasi, M., Bouchet, F.R., Henrot-Versillé, S., Hoang, D.T., Keskitalo, R., Kiiveri, K., Kisner, T., Lindholm, V., McCarthy, D., Piacentini, F., Perdereau, O., Polenta, G., Tristram, M., Achucarro, A., Ade, P., Allison, R., Baccigalupi, C., Ballardini, M., Banday, A.J., Bartlett, J., Bartolo, N., Basak, S., Baumann, D., Bersanelli, M., Bonaldi, A., Bonato, M., Boulanger, F., Brinckmann, T., Bucher, M., Burigana, C., Cai, Z.-Y., Calvo, M., Carvalho, C.-S., Castellano, M.G., Challinor, A., Chluba, J., Clesse, S., Colantoni, I., Coppolecchia, A., Crook, M., D'Alessandro, G., De Bernardis, P., Zotti, G.D., Valentino, E.D., Diego, J.-M., Errard, J., Feeney, S., Fernandez-Cobos, R., Finelli, F., Forastieri, F., Galli, S., Genova-Santos, R., Gerbino, M., González-Nuevo, J., Grandis, S., Greenslade, J., Gruppuso, A., Hagstotz, S., Hanany, S., Handley, W., Hernandez-Monteagudo, C., Hervías-Caimapo, C., Hills, M., Keihänen, E., Kitching, T., Kunz, M., Kurki-Suonio, H., Lamagna, L., Lasenby, A., Lattanzi, M., Lesgourgues, J., Lewis, A., Liguori, M., López-Caniego, M., Luzzi, G., Maffei, B., Mandolesi, N., Martinez-González, E., Martins, C.J.A.P., Masi, S., Matarrese, S., Melchiorri, A., Melin, J.-B., Migliaccio, M., Monfardini, A., Negrello, M., Notari, A., Pagano, L., Paiella, A., Paoletti, D., Piat, M., Pisano, G., Pollo, A., Poulin, V., Quartin, M., Remazeilles, M., Roman, M., Rossi, G., Rubino-Martin, J.-A., Salvati, L., Signorelli, G., Tartari, A., Tramonte, D., Trappe, N., Trombetti, T., Tucker, C., Valiviita, J., De Weijgaert, R.V., Tent, B.V., Vennin, V., Vielva, P., Vittorio, N., Wallis, C., Young, K., Zannoni, M.
- Published
- 2018
- Full Text
- View/download PDF
10. Exploring cosmic origins with CORE: cosmological parameters
- Author
-
Daniela Paoletti, Nicola Bartolo, Jens Chluba, J. Greenslade, P. Vielva, Mattia Negrello, Karl Young, Matteo Bonato, Andrea Tartari, Alessandro Paiella, Alessandro Coppolecchia, Andrea Caputo, Nicola Vittorio, V. Lindholm, Anthony Challinor, Agnieszka Pollo, Francois Boulanger, Luca Lamagna, Simone Ferraro, Martin Crook, D. McCarthy, M. López-Caniego, Ted Kisner, G. de Gasperis, L. Polastri, Alessandro Melchiorri, Josquin Errard, Rien van de Weygaert, D. Tramonte, Jose Alberto Rubino-Martin, C. J. A. P. Martins, Deanna C. Hooper, Matthieu Roman, Gianfranco De Zotti, Neil Trappe, M. Piat, Daniel Baumann, Gianluca Polenta, Jussi Valiviita, M. Tomasi, Paolo de Bernardis, Christophe Ringeval, Marco De Petris, Marco Bersanelli, Mario Zannoni, Giuseppe D'Alessandro, R. Fernandez-Cobos, Julien Lesgourgues, Paolo Natoli, Laura Salvati, Miguel Quartin, Thomas Kitching, R. Allison, Antony Lewis, K. Kiiveri, Carole Tucker, Diego Molinari, M. Kunz, Joseph J. Mohr, Ricardo Genova-Santos, C. Hervias-Caimapo, Jean-Baptiste Melin, Sebastian Grandis, Sylvain Martin, Michele Liguori, Shaul Hanany, Mario Ballardini, Vincent Vennin, Eleonora Di Valentino, Enrique Martinez-Gonzalez, Jose M. Diego, Giovanni Cabass, Hannu Kurki-Suonio, Jacques Delabrouille, J. González-Nuevo, Anthony Lasenby, F. Piacentini, Jochem J. A. Baselmans, Gemma Luzzi, S. Hagstotz, Tiziana Trombetti, Stephen M. Feeney, Alessio Notari, C. S. Carvalho, Fabio Finelli, Simone Paradiso, Silvia Masi, James G. Bartlett, Carlos Hernández-Monteagudo, Massimiliano Lattanzi, A. J. Banday, Thejs Brinckmann, Cora Dvorkin, Eric Hivon, Sebastien Clesse, Alessandro Buzzelli, Vivian Poulin, Ana Achúcarro, Martina Gerbino, M. Ashdown, A. Bonaldi, Luca Pagano, Julian Borrill, Will Handley, Martino Calvo, R. Banerji, Ivan Charles, Alessandro Monfardini, Frederico Arroja, S. Basak, Mathieu Remazeilles, Giampaolo Pisano, I. Colantoni, Silvia Galli, Gérard Vermeulen, Francesco Forastieri, Elena Giusarma, Dhiraj Kumar Hazra, François R. Bouchet, Zhen-Yi Cai, Carlo Burigana, G. Castellano, Peter A. R. Ade, Matthew Hills, Bruno Maffei, Martin Bucher, Bartjan van Tent, Guillaume Patanchon, Helsinki Institute of Physics, Department of Physics, String Theory (ITFA, IoP, FNWI), Astronomy, Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Lagrange de Paris, Sorbonne Universités, Laboratoire d'Annecy-le-Vieux de Physique Théorique ( LAPTH ), Université Savoie Mont Blanc ( USMB [Université de Savoie] [Université de Chambéry] ) -Centre National de la Recherche Scientifique ( CNRS ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Institut d'astrophysique spatiale ( IAS ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Département de Recherche Fondamentale sur la Matière Condensée ( DRFMC ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Département de Physique des Particules (ex SPP) ( DPP ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Institut Néel ( NEEL ), Université Grenoble Alpes [Saint Martin d'Hères]-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Physique Théorique d'Orsay [Orsay] ( LPT ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), CORE, Di Valentino, E, Brinckmann, T, Gerbino, M, Poulin, V, Bouchet, F, Lesgourgues, J, Melchiorri, A, Chluba, J, Clesse, S, Delabrouille, J, Dvorkin, C, Forastieri, F, Galli, S, Hooper, D, Lattanzi, M, Martins, C, Salvati, L, Cabass, G, Caputo, A, Giusarma, E, Hivon, E, Natoli, P, Pagano, L, Paradiso, S, Rubiño-Martin, J, Achúcarro, A, Ade, P, Allison, R, Arroja, F, Ashdown, M, Ballardini, M, Banday, A, Banerji, R, Bartolo, N, Bartlett, J, Basak, S, Baumann, D, de Bernardis, P, Bersanelli, M, Bonaldi, A, Bonato, M, Borrill, J, Boulanger, F, Bucher, M, Burigana, C, Buzzelli, A, Cai, Z, Calvo, M, Carvalho, C, Castellano, G, Challinor, A, Charles, I, Colantoni, I, Coppolecchia, A, Crook, M, D'Alessandro, G, De Petris, M, De Zotti, G, Diego, J, Errard, J, Feeney, S, Fernandez-Cobos, R, Ferraro, S, Finelli, F, de Gasperis, G, Génova-Santos, R, González-Nuevo, J, Grandis, S, Greenslade, J, Hagstotz, S, Hanany, S, Handley, W, Hazra, D, Hernández-Monteagudo, C, Hervias-Caimapo, C, Hills, M, Kiiveri, K, Kisner, T, Kitching, T, Kunz, M, Kurki-Suonio, H, Lamagna, L, Lasenby, A, Lewis, A, Liguori, M, Lindholm, V, Lopez-Caniego, M, Luzzi, G, Maffei, B, Martin, S, Martinez-Gonzalez, E, Masi, S, Matarrese, S, Mccarthy, D, Melin, J, Mohr, J, Molinari, D, Monfardini, A, Negrello, M, Notari, A, Paiella, A, Paoletti, D, Patanchon, G, Piacentini, F, Piat, M, Pisano, G, Polastri, L, Polenta, G, Pollo, A, Quartin, M, Remazeilles, M, Roman, M, Ringeval, C, Tartari, A, Tomasi, M, Tramonte, D, Trappe, N, Trombetti, T, Tucker, C, Väliviita, J, van de Weygaert, R, Van Tent, B, Vennin, V, Vermeulen, G, Vielva, P, Vittorio, N, Young, K, Zannoni, M, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Département de Recherche Fondamentale sur la Matière Condensée (DRFMC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Cryogénie (NEEL - Cryo), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Département de Physique des Particules (ex SPP) (DPhP), Hélium : du fondamental aux applications (NEEL - HELFA), Sorbonne Université (SU), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
gravitation: model ,[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph] ,Cosmic microwave background ,cosmological parameters from CMBR, CMBR experiments, neutrino masses from cosmology ,BACKGROUND ANISOTROPIES ,cosmic background radiation: polarization ,Astrophysics ,baryon: oscillation: acoustic ,NEUTRINO MASS ,01 natural sciences ,COBE FIRAS INSTRUMENT ,current: constraint ,DESI ,High Energy Physics - Phenomenology (hep-ph) ,CMBR experiments ,CMB POLARIZATION ,dark energy ,010303 astronomy & astrophysics ,general relativity and quantum cosmology ,QC ,cosmological parameters from CMBR ,neutrino masses from cosmology ,media_common ,helium: primordial ,QB ,Physics ,birefringence ,hep-th ,formation ,Astrophysics::Instrumentation and Methods for Astrophysics ,hep-ph ,TEMPERATURE-REDSHIFT RELATION ,high energy physics - theory ,inflation: model ,high energy physics - phenomenology ,curvature ,symbols ,astro-ph.CO ,CMBR experiment ,FUNDAMENTAL CONSTANTS ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,ANGULAR POWER SPECTRUM ,Primordial fluctuations ,media_common.quotation_subject ,gr-qc ,Dark matter ,satellite ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,NO ,BROKEN LEPTON NUMBER ,symbols.namesake ,FIS/05 - ASTRONOMIA E ASTROFISICA ,Settore FIS/05 - Astronomia e Astrofisica ,FINE-STRUCTURE CONSTANT ,0103 physical sciences ,ionization ,LARGE-SCALE STRUCTURE ,structure ,Planck ,Reionization ,PROBING NEUTRINO MASSES ,Inflation (cosmology) ,010308 nuclear & particles physics ,fluctuation: primordial ,Astronomy and Astrophysics ,dark matter: annihilation ,sensitivity ,115 Astronomy, Space science ,MICROWAVE-ANISOTROPY-PROBE ,Universe ,recombination ,COLD DARK-MATTER ,High Energy Physics - Theory (hep-th) ,13. Climate action ,Dark energy ,DIGITAL SKY SURVEY ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,MICROWAVE BACKGROUND POLARIZATION - Abstract
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume LCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base LCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. (ABRIDGED), Comment: 90 pages, 25 Figures. Revised version with new authors list and references
- Published
- 2018
- Full Text
- View/download PDF
11. Exploring Cosmic Origins with CORE:survey requirements and mission design
- Author
-
Karl Young, N. Mandolesi, A. Renzi, D. McCarthy, Andrea Lapi, F. Voisin, F. Oppizzi, Mark Hindmarsh, A. Mennella, Josquin Errard, S. Martin, Jose M. Diego, Enrico Pajer, Douglas Scott, A. Da Silva, Luigi Danese, R. B. Partridge, Subodh P. Patil, Créidhe O'Sullivan, A. M. C. Le Brun, Gianluca Polenta, Deanna C. Hooper, Alessandro Buzzelli, O. Perdereau, Jose Alberto Rubino-Martin, Nicolas Ponthieu, C. J. A. P. Martins, Eric Hivon, M. De Petris, Reijo Keskitalo, Bruno Maffei, Rashid Sunyaev, Michael L. Brown, Elena Giusarma, Marek Biesiada, Joanes Lizarraga, Nicola Bartolo, F. Piacentini, Stephen M. Feeney, G. de Zotti, Neil Trappe, Bin Hu, Cristian Franceschet, Matthieu Tristram, Pasquale Mazzotta, R. Allison, Hannu Kurki-Suonio, Jens Chluba, J. Greenslade, R. Fernandez-Cobos, Alicia Gomez, Stephen Serjeant, A. Catalano, Paolo Natoli, C. S. Carvalho, K. Kiiveri, David L. Clements, Diego Molinari, S. Paradiso, Martina Gerbino, Vincent Vennin, Carole Tucker, Kaustuv Basu, Alexei A. Starobinsky, Sabino Matarrese, Andrea Ravenni, L. Salvati, Eduardo Artal, G. Vermeulen, M. Piat, M. Tucci, F. Noviello, Ingunn Kathrine Wehus, Elia S. Battistelli, Matteo Bonato, R. Banerji, Ted Kisner, Jean-Baptiste Melin, Christophe Ringeval, Christopher G. R. Wallis, Benjamin D. Wandelt, Julian Borrill, Massimiliano Lattanzi, Aurelien Bideaud, Sebastien Clesse, Tiziana Trombetti, Martin Crook, Will Handley, P. de Bernardis, Ruth Durrer, Francois Boulanger, Matthieu Roman, C. Y. Tan, Sébastien Triqueneaux, Silvia Galli, G. Signorelli, A. Tartari, Gianmassimo Tasinato, S. Basak, Nicola Vittorio, D. Tramonte, V. Lindholm, Julien Lesgourgues, J. F. Macías-Pérez, E. Di Valentino, Francesco Forastieri, G. de Gasperis, Thomas Kitching, Vincent Desjacques, François R. Bouchet, Zhen-Yi Cai, Sergio Colafrancesco, Richard A. Battye, Alessandro Monfardini, F.-X. Désert, Alessandro Paiella, Jesús Torrado, Michele Liguori, Anthony Challinor, Carlo Burigana, G. Castellano, Agnieszka Pollo, Daniel Baumann, L. Pagano, Boudewijn F. Roukema, Mathieu Remazeilles, Sophie Henrot-Versille, M. Tomasi, Enrique Martinez-Gonzalez, Giampaolo Pisano, M. Kunz, Joseph J. Mohr, Ricardo Genova-Santos, P. Vielva, Mattia Negrello, Marcella Massardi, Carlo Baccigalupi, Guilaine Lagache, Marco Bersanelli, Anthony Lasenby, S. Hagstotz, Domingos Barbosa, E. Keihänen, D. Prêle, Vivian Poulin, Mario Zannoni, Alain Benoit, Ana Achúcarro, D. T. Hoang, I. Colantoni, U. Fuskeland, D. Contreras, Giovanni Cabass, Jochem J. A. Baselmans, Johannes Goupy, Jochen Weller, I. Charles, Sebastian Grandis, Giuseppe D'Alessandro, M. Ashdown, A. Bonaldi, Frederico Arroja, Guido D'Amico, Gemma Luzzi, M. A. de Avillez, Martino Calvo, Silvia Masi, Daniela Paoletti, Alessandro Coppolecchia, Andrea Caputo, L. Polastri, Alessandro Melchiorri, Jon Urrestilla, Licia Verde, Mario Ballardini, Luisa Toffolatti, Jacques Delabrouille, Alessio Notari, Maciej Bilicki, Fabio Finelli, L. A. Montier, James G. Bartlett, Guillaume Patanchon, Carlos Hernández-Monteagudo, Miguel Quartin, Cora Dvorkin, Simon Doyle, H. K. Eriksen, C. Hervias-Caimapo, R. van de Weygaert, Clive Dickinson, Peter A. R. Ade, Matthew Hills, Luca Lamagna, B. Van Tent, A. J. Banday, Thejs Brinckmann, F. J. Casas, Martin Bucher, Shaul Hanany, Jussi Valiviita, J. González-Nuevo, Diederik Roest, String Theory (ITFA, IoP, FNWI), Universitat de Barcelona, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut Lagrange de Paris, Sorbonne Universités, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), CORE, Department of Physics, Helsinki Institute of Physics, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Hélium : du fondamental aux applications (NEEL - HELFA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Cryogénie (NEEL - Cryo), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire des Cryoréfrigérateurs et Cryogénie Spatiale (LCCS), Service des Basses Températures (SBT ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Sorbonne Université (SU), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Delabrouille, J, de Bernardis, P, Bouchet, F, Achúcarro, A, Ade, P, Allison, R, Arroja, F, Artal, E, Ashdown, M, Baccigalupi, C, Ballardini, M, Banday, A, Banerji, R, Barbosa, D, Bartlett, J, Bartolo, N, Basak, S, Baselmans, J, Basu, K, Battistelli, E, Battye, R, Baumann, D, Benoít, A, Bersanelli, M, Bideaud, A, Biesiada, M, Bilicki, M, Bonaldi, A, Bonato, M, Borrill, J, Boulanger, F, Brinckmann, T, Brown, M, Bucher, M, Burigana, C, Buzzelli, A, Cabass, G, Cai, Z, Calvo, M, Caputo, A, Carvalho, C, Casas, F, Castellano, G, Catalano, A, Challinor, A, Charles, I, Chluba, J, Clements, D, Clesse, S, Colafrancesco, S, Colantoni, I, Contreras, D, Coppolecchia, A, Crook, M, D'Alessandro, G, D'Amico, G, da Silva, A, de Avillez, M, de Gasperis, G, De Petris, M, de Zotti, G, Danese, L, Désert, F, Desjacques, V, Valentino, E, Dickinson, C, Diego, J, Doyle, S, Durrer, R, Dvorkin, C, Eriksen, H, Errard, J, Feeney, S, Fernández-Cobos, R, Finelli, F, Forastieri, F, Franceschet, C, Fuskeland, U, Galli, S, Génova-Santos, R, Gerbino, M, Giusarma, E, Gomez, A, González-Nuevo, J, Grandis, S, Greenslade, J, Goupy, J, Hagstotz, S, Hanany, S, Handley, W, Henrot-Versillé, S, Hernández-Monteagudo, C, Hervias-Caimapo, C, Hills, M, Hindmarsh, M, Hivon, E, Hoang, D, Hooper, D, Hu, B, Keihänen, E, Keskitalo, R, Kiiveri, K, Kisner, T, Kitching, T, Kunz, M, Kurki-Suonio, H, Lagache, G, Lamagna, L, Lapi, A, Lasenby, A, Lattanzi, M, Brun, A, Lesgourgues, J, Liguori, M, Lindholm, V, Lizarraga, J, Luzzi, G, Macìas-Pérez, J, Maffei, B, Mandolesi, N, Martin, S, Martinez-Gonzalez, E, Martins, C, Masi, S, Massardi, M, Matarrese, S, Mazzotta, P, Mccarthy, D, Melchiorri, A, Melin, J, Mennella, A, Mohr, J, Molinari, D, Monfardini, A, Montier, L, Natoli, P, Negrello, M, Notari, A, Noviello, F, Oppizzi, F, O'Sullivan, C, Pagano, L, Paiella, A, Pajer, E, Paoletti, D, Paradiso, S, Partridge, R, Patanchon, G, Patil, S, Perdereau, O, Piacentini, F, Piat, M, Pisano, G, Polastri, L, Polenta, G, Pollo, A, Ponthieu, N, Poulin, V, Prêle, D, Quartin, M, Ravenni, A, Remazeilles, M, Renzi, A, Ringeval, C, Roest, D, Roman, M, Roukema, B, Rubiño-Martin, J, Salvati, L, Scott, D, Serjeant, S, Signorelli, G, Starobinsky, A, Sunyaev, R, Tan, C, Tartari, A, Tasinato, G, Toffolatti, L, Tomasi, M, Torrado, J, Tramonte, D, Trappe, N, Triqueneaux, S, Tristram, M, Trombetti, T, Tucci, M, Tucker, C, Urrestilla, J, Väliviita, J, de Weygaert, R, Tent, B, Vennin, V, Verde, L, Vermeulen, G, Vielva, P, Vittorio, N, Voisin, F, Wallis, C, Wandelt, B, Wehus, I, Weller, J, Young, K, and Zannoni, M
- Subjects
CMBR experiments ,CMBR polarisation ,gravitational lensing ,physics of the early universe ,POLARIZATION ,Computer science ,Cosmic microwave background ,cosmic background radiation: polarization ,CMB ,7. Clean energy ,01 natural sciences ,Cosmology ,Physics, Particles & Fields ,cosmic flows ,CMBR polarization ,astronomy and astrophysics ,Cosmic physics ,CMBR experiments – CMBR theory – reionization – high redshift galaxies ,010303 astronomy & astrophysics ,QC ,QB ,COSMIC cancer database ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Nuclear & Particles Physics ,cryogenics ,Physical Sciences ,Physics::Space Physics ,Systems engineering ,astro-ph.CO ,proposed experiment ,Astrophysics::Earth and Planetary Astrophysics ,CMBR experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,performance ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics and Astronomy ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,CMBR experiments, CMBR polarisation, gravitational lensing, physics of the early universe ,satellite ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,NO ,HALF-WAVE PLATE ,0202 Atomic, Molecular, Nuclear, Particle And Plasma Physics ,Mission design ,Settore FIS/05 - Astronomia e Astrofisica ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,detector: design ,activity report ,Science & Technology ,Cosmologia ,010308 nuclear & particles physics ,astro-ph.IM ,115 Astronomy, Space science ,sensitivity ,Complementarity (physics) ,0201 Astronomical And Space Sciences ,angular resolution ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Física còsmica - Abstract
The CORE collaboration thanks CNES, Thales Alenia Space, and Air Liquide Advanced Technologies for advice and technical support during the preparation of the CORE proposal. We also thank the ESA CDF team for the CMB Polarisation CDF study performed in March 2016, the results of which were extensively used to define the mission concept presented in this paper. J.G.N. acknowledges financial support from the Spanish MINECO for a Ramon y Cajal fellowship (RYC-2013-13256) and the I+D 2015 project AYA2015-65887-P (MINECO/FEDER). CJM is supported by an FCT Research Professorship, contract reference IF/00064/2012, funded by FCT/MCTES (Portugal) and POPH/FSE. F.J.C., R.F.-C., E.M.-G. and P.V. acknowledge support from the Spanish Ministerio de Econom´ıa y Competitividad project ESP2015-70646-C2-1-R (cofinanced with EU FEDER funds), ConsoliderIngenio 2010 project CSD2010-00064 and from the CSIC “Proyecto Intramural Especial” project 201550E091. FA is supported by the National Taiwan University (NTU) under Project No. 103R4000 and by the NTU Leung Center for Cosmology and Particle Astrophysics (LeCosPA) under Project No. FI121. BFR acknowledges support from the National Science Centre, Poland, under grant 2014/13/B/ST9/00845., Macìas-Pérez, J.F., Delabrouille, J., De Bernardis, P., Bouchet, F.R., Achúcarro, A., Ade, P.A.R., Allison, R., Arroja, F., Artal, E., Ashdown, M., Baccigalupi, C., Ballardini, M., Banday, A.J., Banerji, R., Barbosa, D., Bartlett, J., Bartolo, N., Basak, S., Baselmans, J.J.A., Basu, K., Battistelli, E.S., Battye, R., Baumann, D., Benoít, A., Bersanelli, M., Bideaud, A., Biesiada, M., Bilicki, M., Bonaldi, A., Bonato, M., Borrill, J., Boulanger, F., Brinckmann, T., Brown, M.L., Bucher, M., Burigana, C., Buzzelli, A., Cabass, G., Cai, Z.-Y., Calvo, M., Caputo, A., Carvalho, C.-S., Casas, F.J., Castellano, G., Catalano, A., Challinor, A., Charles, I., Chluba, J., Clements, D.L., Clesse, S., Colafrancesco, S., Colantoni, I., Contreras, D., Coppolecchia, A., Crook, M., D'Alessandro, G., D'Amico, G., Silva, A.D., De Avillez, M., De Gasperis, G., Petris, M.D., De Zotti, G., Danese, L., Désert, F.-X., Desjacques, V., Valentino, E.D., Dickinson, C., Diego, J.M., Doyle, S., Durrer, R., Dvorkin, C., Eriksen, H.K., Errard, J., Feeney, S., Fernández-Cobos, R., Finelli, F., Forastieri, F., Franceschet, C., Fuskeland, U., Galli, S., Génova-Santos, R.T., Gerbino, M., Giusarma, E., Gomez, A., González-Nuevo, J., Grandis, S., Greenslade, J., Goupy, J., Hagstotz, S., Hanany, S., Handley, W., Henrot-Versillé, S., Hernández-Monteagudo, C., Hervias-Caimapo, C., Hills, M., Hindmarsh, M., Hivon, E., Hoang, D.T., Hooper, D.C., Hu, B., Keihänen, E., Keskitalo, R., Kiiveri, K., Kisner, T., Kitching, T., Kunz, M., Kurki-Suonio, H., Lagache, G., Lamagna, L., Lapi, A., Lasenby, A., Lattanzi, M., Brun, A.M.C.L., Lesgourgues, J., Liguori, M., Lindholm, V., Lizarraga, J., Luzzi, G., Macìas-Pérez, J.F., Maffei, B., Mandolesi, N., Martin, S., Martinez-Gonzalez, E., Martins, C.J.A.P., Masi, S., Massardi, M., Matarrese, S., Mazzotta, P., McCarthy, D., Melchiorri, A., Melin, J.-B., Mennella, A., Mohr, J., Molinari, D., Monfardini, A., Montier, L., Natoli, P., Negrello, M., Notari, A., Noviello, F., Oppizzi, F., O'Sullivan, C., Pagano, L., Paiella, A., Pajer, E., Paoletti, D., Paradiso, S., Partridge, R.B., Patanchon, G., Patil, S.P., Perdereau, O., Piacentini, F., Piat, M., Pisano, G., Polastri, L., Polenta, G., Pollo, A., Ponthieu, N., Poulin, V., Prêle, D., Quartin, M., Ravenni, A., Remazeilles, M., Renzi, A., Ringeval, C., Roest, D., Roman, M., Roukema, B.F., Rubiño-Martin, J.-A., Salvati, L., Scott, D., Serjeant, S., Signorelli, G., Starobinsky, A.A., Sunyaev, R., Tan, C.Y., Tartari, A., Tasinato, G., Toffolatti, L., Tomasi, M., Torrado, J., Tramonte, D., Trappe, N., Triqueneaux, S., Tristram, M., Trombetti, T., Tucci, M., Tucker, C., Urrestilla, J., Väliviita, J., De Weygaert, R.V., Tent, B.V., Vennin, V., Verde, L., Vermeulen, G., Vielva, P., Vittorio, N., Voisin, F., Wallis, C., Wandelt, B., Wehus, I.K., Weller, J., Young, K., Zannoni, M.
- Published
- 2018
- Full Text
- View/download PDF
12. Propagation at THz Frequencies
- Author
-
Antti V. Räisänen, Dmitri Lioubtchenko, Andrey Generalov, J. Anthony Murphy, Créidhe O'Sullivan, Marcin L. Gradziel, Neil Trappe, Luis Enrique Garcia Muñoz, Alejandro Garcia‐Lamperez, and Javier Montero‐de‐Paz
- Subjects
symbols.namesake ,Materials science ,Maxwell's equations ,Terahertz radiation ,symbols ,Computational physics - Published
- 2015
- Full Text
- View/download PDF
13. Exploring Cosmic Origins with CORE: Cluster Science
- Author
-
Alessandro Monfardini, Karl Young, Mario Ballardini, E. Di Valentino, Massimiliano Lattanzi, Sebastien Clesse, Mathieu Remazeilles, Giampaolo Pisano, Michele Liguori, Alessandro Buzzelli, Tiziana Trombetti, Joseph J. Mohr, Ricardo Genova-Santos, François R. Bouchet, Jose M. Diego, Zhen-Yi Cai, Carlo Burigana, J. Borrill, Jean-Baptiste Melin, Stephen M. Feeney, Josquin Errard, C. S. Carvalho, Ted Kisner, M. Kunz, Nicola Bartolo, Kaustuv Basu, Jose Alberto Rubino-Martin, Jens Chluba, S. Triqueneaux, C. J. A. P. Martins, G. de Gasperis, G. de Zotti, P. Vielva, Bruno Maffei, A. M. C. Le Brun, Neil Trappe, D. McCarthy, Enrique Martinez-Gonzalez, J. Greenslade, G. Polenta, Anthony Lasenby, Nicola Vittorio, V. Lindholm, Daniel Baumann, Carlos Hernández-Monteagudo, Vincent Vennin, M. López-Caniego, Diego Molinari, R. Allison, Alessandro Coppolecchia, Luca Lamagna, D. Tramonte, Simone Ferraro, A. Lewis, K. Kiiveri, L. Polastri, Alessandro Melchiorri, Carole Tucker, S. Hagstotz, R. Fernandez-Cobos, Silvia Galli, P. de Bernardis, Alessandro Paiella, A. Tartari, Daniela Paoletti, Francois Boulanger, Anthony Challinor, Jacques Delabrouille, Giuseppe D'Alessandro, Alessio Notari, M. Tomasi, Fabio Finelli, Marco Castellano, Martina Gerbino, Marco Bersanelli, James G. Bartlett, J. J. A. Baselmans, Francesco Forastieri, Richard A. Battye, Mario Zannoni, Paolo Natoli, M. Piat, M. Ashdown, Will Handley, A. Bonaldi, J. Valiviita, Martin Crook, Martino Calvo, Vivian Poulin, Ana Achúcarro, Peter A. R. Ade, Mattia Negrello, S. Colafrancesco, R. Banerji, Miguel Quartin, S. Basak, R. van de Weygaert, Sebastian Grandis, Matthew Hills, Martin Bucher, Guillaume Patanchon, M. Bonato, Hannu Kurki-Suonio, B. Van Tent, A. J. Banday, Thejs Brinckmann, Shaul Hanany, J. González-Nuevo, Eric Hivon, M. De Petris, A. Pollo, C. Hervias-Caimapo, Matthieu Roman, Julien Lesgourgues, Thomas Kitching, L. Salvati, J. F. Macías-Pérez, I. Colantoni, Jochen Weller, Gemma Luzzi, Silvia Masi, Département de Physique des Particules (ex SPP) (DPP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Lagrange de Paris, Sorbonne Université (SU), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), CORE, Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Sorbonne Universités, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Universitat de Barcelona, Melin, J, Bonaldi, A, Remazeilles, M, Hagstotz, S, Diego, J, Hernández-Monteagudo, C, Génova-Santos, R, Luzzi, G, Martins, C, Grandis, S, Mohr, J, Bartlett, J, Delabrouille, J, Ferraro, S, Tramonte, D, Rubiño-Martín, J, Macìas-Pérez, J, Achúcarro, A, Ade, P, Allison, R, Ashdown, M, Ballardini, M, Banday, A, Banerji, R, Bartolo, N, Basak, S, Basu, K, Battye, R, Baumann, D, Bersanelli, M, Bonato, M, Borrill, J, Bouchet, F, Boulanger, F, Brinckmann, T, Bucher, M, Burigana, C, Buzzelli, A, Cai, Z, Calvo, M, Carvalho, C, Castellano, M, Challinor, A, Chluba, J, Clesse, S, Colafrancesco, S, Colantoni, I, Coppolecchia, A, Crook, M, D'Alessandro, G, de Bernardis, P, de Gasperis, G, Petris, M, Zotti, G, Valentino, E, Errard, J, Feeney, S, Fernández-Cobos, R, Finelli, F, Forastieri, F, Galli, S, Gerbino, M, González-Nuevo, J, Greenslade, J, Hanany, S, Handley, W, Hervias-Caimapo, C, Hills, M, Hivon, E, Kiiveri, K, Kisner, T, Kitching, T, Kunz, M, Kurki-Suonio, H, Lamagna, L, Lasenby, A, Lattanzi, M, Brun, A, Lesgourgues, J, Lewis, A, Liguori, M, Lindholm, V, Lopez-Caniego, M, Maffei, B, Martinez-Gonzalez, E, Masi, S, Mazzotta, P, Mccarthy, D, Melchiorri, A, Molinari, D, Monfardini, A, Natoli, P, Negrello, M, Notari, A, Paiella, A, Paoletti, D, Patanchon, G, Piat, M, Pisano, G, Polastri, L, Polenta, G, Pollo, A, Poulin, V, Quartin, M, Roman, M, Salvati, L, Tartari, A, Tomasi, M, Trappe, N, Triqueneaux, S, Trombetti, T, Tucker, C, Väliviita, J, de Weygaert, R, Tent, B, Vennin, V, Vielva, P, Vittorio, N, Weller, J, Young, K, Zannoni, M, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Département de Physique des Particules (ex SPP) (DPhP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Cryogénie (NEEL - Cryo), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Hélium : du fondamental aux applications (NEEL - HELFA), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astronomy, String Theory (ITFA, IoP, FNWI), Helsinki Institute of Physics, and Department of Physics
- Subjects
cluster count ,Cosmic microwave background ,MICROWAVE BACKGROUND COMPTONIZATION ,Astrophysics ,01 natural sciences ,HOT GAS ,law.invention ,law ,cluster counts ,CMBR experiments ,galaxy clusters ,Sunyaev-Zeldovich effect ,CMBR experiments, Sunyaev-Zeldovich effect, cluster counts, galaxy clusters ,WEAK-LENSING MASSES ,MASSIVE GALAXY CLUSTERS ,010303 astronomy & astrophysics ,TEMPERATURE ,QC ,QB ,Physics ,Clusters of galaxies ,Settore FIS/05 ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmology ,symbols ,astro-ph.CO ,Halo ,CMBR experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,galaxy cluster ,Cúmuls de galàxies ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,COSMOLOGICAL PARAMETERS ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,NO ,Primary mirror ,Telescope ,SUNYAEV-ZELDOVICH MAPS ,symbols.namesake ,FIS/05 - ASTRONOMIA E ASTROFISICA ,0103 physical sciences ,Cluster (physics) ,Planck ,Galaxy cluster ,Astrophysics::Galaxy Astrophysics ,Cosmologia ,RELATIVISTIC CORRECTIONS ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Redshift ,EVOLUTION ,RADIATION ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We thank the anonymous referee for useful comments, which helped to clarify the paper. Some of the results in this paper have been derived using the HEALPix package. Parts of the cosmological analysis was made using Cosmo MC, CLASS and MontePython. C.H.-M. acknowledges financial support of the Spanish Ministry of Economy and Competitiveness via I+D project AYA-2015-66211-C2-2-P. CJM is supported by an FCT Research Professorship, contract reference IF/00064/2012, funded by FCT/MCTES (Portugal) and POPH/FSE. J.G.N. acknowledges financial support from the Spanish MINECO for a ‘Ramon y Cajal’ fellowship (RYC-2013-13256) and the I+D 2015 project AYA2015-65887-P (MINECO/FEDER)., Melin, J.-B., Bonaldi, A., Remazeilles, M., Hagstotz, S., Diego, J.M., Hernández-Monteagudo, C., Génova-Santos, R.T., Luzzi, G., Martins, C.J.A.P., Grandis, S., Mohr, J.J., Bartlett, J.G., Delabrouille, J., Ferraro, S., Tramonte, D., Rubiño-Martín, J.A., Macìas-Pérez, J.F., Achúcarro, A., Ade, P., Allison, R., Ashdown, M., Ballardini, M., Banday, A.J., Banerji, R., Bartolo, N., Basak, S., Basu, K., Battye, R.A., Baumann, D., Bersanelli, M., Bonato, M., Borrill, J., Bouchet, F., Boulanger, F., Brinckmann, T., Bucher, M., Burigana, C., Buzzelli, A., Cai, Z.-Y., Calvo, M., Carvalho, C.S., Castellano, M.G., Challinor, A., Chluba, J., Clesse, S., Colafrancesco, S., Colantoni, I., Coppolecchia, A., Crook, M., D'Alessandro, G., De Bernardis, P., De Gasperis, G., Petris, M.D., Zotti, G.D., Valentino, E.D., Errard, J., Feeney, S.M., Fernández-Cobos, R., Finelli, F., Forastieri, F., Galli, S., Gerbino, M., González-Nuevo, J., Greenslade, J., Hanany, S., Handley, W., Hervias-Caimapo, C., Hills, M., Hivon, E., Kiiveri, K., Kisner, T., Kitching, T., Kunz, M., Kurki-Suonio, H., Lamagna, L., Lasenby, A., Lattanzi, M., Brun, A.M.C.L., Lesgourgues, J., Lewis, A., Liguori, M., Lindholm, V., Lopez-Caniego, M., Maffei, B., Martinez-Gonzalez, E., Masi, S., Mazzotta, P., McCarthy, D., Melchiorri, A., Molinari, D., Monfardini, A., Natoli, P., Negrello, M., Notari, A., Paiella, A., Paoletti, D., Patanchon, G., Piat, M., Pisano, G., Polastri, L., Polenta, G., Pollo, A., Poulin, V., Quartin, M., Roman, M., Salvati, L., Tartari, A., Tomasi, M., Trappe, N., Triqueneaux, S., Trombetti, T., Tucker, C., Väliviita, J., De Weygaert, R.V., Tent, B.V., Vennin, V., Vielva, P., Vittorio, N., Weller, J., Young, K., Zannoni, M.
- Published
- 2018
- Full Text
- View/download PDF
14. Optical design and verification of a 4mm receiver for the 20m telescope at Onsala Space Observatory
- Author
-
Anthony Murphy, Jonas Flygare, George W. Walker, Neil Trappe, Eimante Kalinauskaite, D. McCarthy, Miroslav Pantaleev, and Leif Helldner
- Subjects
Physics ,010308 nuclear & particles physics ,business.industry ,Physical optics ,01 natural sciences ,Atomic, molecular, and optical physics ,law.invention ,Telescope ,Radio telescope ,Optics ,law ,Onsala Space Observatory ,0103 physical sciences ,Systems design ,business ,010303 astronomy & astrophysics ,Communication channel ,Gaussian beam - Abstract
The work of this research is the design, analysis and verification of the optical performance of a 4 mm receiver channel for the 20 m telescope at Onsala Space Observatory, Onsala, Sweden. The 4 mm (75 GHz) receiver is a newly proposed channel designed to be installed parallel to the existing 3 mm (100 GHz) channel targeting new science at that longer wavelength. Gaussian beam mode analysis is used to produce the fundamental optical design of the system. The design is then analysed more accurately with the physical optics approximation. We report on the comparison of simulation and measurement and verification of the system design.
- Published
- 2016
- Full Text
- View/download PDF
15. Optical characterisation and analysis of multi-mode pixels for use in future far infrared telescopes
- Author
-
J. Anthony Murphy, Gert de Lange, Stephen Doherty, Neil Trappe, Créidhe O'Sullivan, D. McCarthy, Michael D. Audley, Marcin Gradziel, and Maarten van der Vorst
- Subjects
Physics ,Spectrometer ,business.industry ,Infrared telescope ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,020206 networking & telecommunications ,02 engineering and technology ,Spica ,Feed horn ,01 natural sciences ,010309 optics ,Optics ,Cardinal point ,Far infrared ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Transition edge sensor ,business - Abstract
In this paper we present the development and verification of feed horn simulation code based on the mode- matching technique to simulate the electromagnetic performance of waveguide based structures of rectangular cross-section. This code is required to model multi-mode pyramidal horns which may be required for future far infrared (far IR) space missions where wavelengths in the range of 30 to 200 µm will be analysed. Multi-mode pyramidal horns can be used effectively to couple radiation to sensitive superconducting devices like Kinetic Inductance Detectors (KIDs) or Transition Edge Sensor (TES) detectors. These detectors could be placed in integrating cavities (to further increase the efficiency) with an absorbing layer used to couple to the radiation. The developed code is capable of modelling each of these elements, and so will allow full optical characterisation of such pixels and allow an optical efficiency to be calculated effectively. As the signals being measured at these short wavelengths are at an extremely low level, the throughput of the system must be maximised and so multi-mode systems are proposed. To this end, the focal planes of future far IR missions may consist of an array of multi-mode rectangular feed horns feeding an array of, for example, TES devices contained in individual integrating cavities. Such TES arrays have been fabricated by SRON Groningen and are currently undergoing comprehensive optical, electrical and thermal verification. In order to fully understand and validate the optical performance of the receiver system, it is necessary to develop comprehensive and robust optical models in parallel. We outline the development and verification of this optical modelling software by means of applying it to a representative multi-mode system operating at 150 GHz in order to obtain sufficiently short execution times so as to comprehensively test the code. SAFARI (SPICA FAR infrared Instrument) is a far infrared imaging grating spectrometer, to be proposed as an ESA M5 mission. It is planned for this mission to be launched on board the proposed SPICA (SPace Infrared telescope for Cosmology and Astrophysics) mission, in collaboration with JAXA. SAFARI is planned to operate in the 1.5-10 THz band, focussing on the formation and evolution of galaxies, stars and planetary systems. The pixel that drove the development of the techniques presented in this paper is typical of one option that could be implemented in the SAFARI focal plane, and so the ability to accurately understand and characterise such pixels is critical in the design phase of the next generation of far IR telescopes.
- Published
- 2016
- Full Text
- View/download PDF
16. W-band planar antennas for next generation sub-millimeter focal plane arrays
- Author
-
Bruno Maffei, Prafulla Deo, Giampaolo Pisano, Neil Trappe, and Matthew Robinson
- Subjects
Physics ,business.industry ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,020206 networking & telecommunications ,Cosmic microwave background ,Multiband antenna ,Planar antenna ,W-band ,02 engineering and technology ,01 natural sciences ,law.invention ,010309 optics ,Optics ,Planar ,W band ,law ,0103 physical sciences ,Broadband ,0202 electrical engineering, electronic engineering, information engineering ,Optoelectronics ,Millimeter ,Antenna (radio) ,business ,Waveguide - Abstract
Current and future generations of astronomical instruments in the millimetre (mm) and sub-mm range are in need of increased sensitivity through the use of ever larger focal planes with 1000s of pixels. Mass, dimensions and manufacture requirements, mainly for new space missions, is driving the technology to go from feedhorn, and generally waveguide based cold optics to planar coupled detectors, while maintaining RF performance. The present results of a current ESA TRP are presented with respect to the work on planar antennae that will be coupled to cold bolometric detectors through the use of planar mesh lenses. Two planar antennae operating at W-band are developed, namely, a broadband sinuous antenna and a variation on the classical dual-slot antenna to realise multi-band functionality.
- Published
- 2016
- Full Text
- View/download PDF
17. Modeling multimode feed-horn coupled bolometers for millimeter-wave and terahertz astronomical instrumentation
- Author
-
Marcin Gradziel, Bruno Maffei, Anthony Murphy, Eimante Kalinauskaite, Giorgio Savini, Jean-Michel Lamarre, Créidhe O'Sullivan, D. McCarthy, Neil Trappe, Peter A. R. Ade, C. Bracken, I. McAuley, and Stephen Doherty
- Subjects
Physics ,Waveguide (electromagnetism) ,Multi-mode optical fiber ,Terahertz radiation ,business.industry ,Bolometer ,Single-mode optical fiber ,Physics::Optics ,Feed horn ,01 natural sciences ,Radiation pattern ,law.invention ,010309 optics ,Optics ,law ,0103 physical sciences ,Extremely high frequency ,business ,010303 astronomy & astrophysics - Abstract
Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.
- Published
- 2016
- Full Text
- View/download PDF
18. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments
- Author
-
F. Piacentini, Créidhe O'Sullivan, R. Stompor, Marcin Gradziel, M. Bucher, F. Noviello, Prafulla Deo, A. Tartari, Silvia Masi, P. Verhoeve, A. Ghribi, M. Robinson, P. de Bernardis, Bruno Maffei, Sumedh Mahashabde, M. van der Vorst, Neil Trappe, Giampaolo Pisano, L. Pagano, Stephen Doherty, Leonid Kuzmin, Marco DePetris, M. Piat, J. Delabrouille, J. A. Murphy, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,Cosmic microwave background ,Telescope design ,Electrons ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,Optics ,W band ,Extremely high frequency ,law ,Polarization ,0103 physical sciences ,Electronic ,Staring arrays ,Optical and Magnetic Materials ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Lenses ,Physics ,Reflectors ,010308 nuclear & particles physics ,business.industry ,Sensors ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Breadboard ,Bolometers ,Lens (optics) ,Manufacturing ,Cardinal point ,Antennas ,business ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Telescopes - Abstract
International audience; The main objective of this activity is to develop new focal plane coupling array concepts and technologies thatoptimise the coupling from reflector optics to the large number of detectors for next generation sub millimetrewave telescopes particularly targeting measurement of the polarization of the cosmic microwave background(CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing andexperimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrayswhich will be demanded to reach the required sensitivity of future CMB polarization missions. One majordevelopment was to have multichroic operation to potentially reduce the required focal plane size of a CMBmission. After research in the optimum telescope design and definition of requirements based on a stringentscience case review, a number of compact focal plane architecture concepts were investigated before a pixeldemonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB forfiltering and detection of the dual frequency signal was planned for manufacture and test. In this demonstratorthe frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal.In the next year the prototype breadboards will be developed to test the beams produced by the manufacturedflat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also beverified.© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
- Published
- 2016
- Full Text
- View/download PDF
19. Optical performance of an ultra-sensitive horn-coupled transition-edge-sensor bolometer with hemispherical backshort in the far infrared
- Author
-
Marcel L. Ridder, Gert de Lange, R. A. Hijmering, Philip Daniel Mauskopf, Michael D. Audley, Jian-Rong Gao, Neil Trappe, Dmitry Morozov, Stephen Doherty, and Pourya Khosropanah
- Subjects
Physics ,Physics - Instrumentation and Detectors ,business.industry ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Conical surface ,Radiation ,01 natural sciences ,Noise (electronics) ,law.invention ,010309 optics ,Optics ,Far infrared ,law ,Horn (acoustic) ,0103 physical sciences ,Transition edge sensor ,Astrophysics - Instrumentation and Methods for Astrophysics ,010306 general physics ,business ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Instrumentation - Abstract
The next generation of far infrared space observatories will require extremely sensitive detectors that can be realized only by combining extremely low intrinsic noise with high optical efficiency. We have measured the broad-band optical response of ultra-sensitive TES bolometers (NEP$\approx2\rm\ aW/\sqrt Hz$) in the 30--60-$\mu\rm m$ band where radiation is coupled to the detectors with a few-moded conical feedhorn and a hemispherical backshort. We show that these detectors have an optical efficiency of 60% (the ratio of the power detected by the TES bolometer to the total power propagating through the feedhorn). We find that the measured optical efficiency can be understood in terms of the modes propagating through the feedhorn with the aid of a spatial mode-filtering technique., Comment: 22 pages, 11 figures. The following article has been accepted by Review of Scientific Instruments. After it is published, it will be found at http://scitation.aip.org/content/aip/journal/rsi
- Published
- 2016
20. Quasi-optical assessment of the ALMA band 9 front-end
- Author
-
Andrey M. Baryshev, Neil Trappe, Massimo Candotti, and Astronomy
- Subjects
Heterodyne ,Physics ,Cassegrain antenna ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Near-field beam pattern measurements ,Condensed Matter Physics ,Physical optics ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,law.invention ,Front and back ends ,Physical optics simulations ,Optics ,Antenna ,law ,Quasi-optical systems ,Calibration ,Antenna (radio) ,business ,Beam splitter ,Communication channel - Abstract
The ALMA band 9 (600-720 GHz) receiver is a dual channel heterodyne system which is capable of detecting orthogonally polarised signals utilising a wire grid beam splitter. Two Superconductor-Insulator-Superconductor (SIS) mixers mounted behind hybrid mode corrugated horns are coupled to the 12 m Cassegrain antenna via a wavelength independent configuration of two off-axis elliptical mirrors. We outline an approach involving accurate physical optics simulations in conjunction with precise experimental measurements of the complete optical front-end which guarantees the highest performances. This practical verification approach can be generalised to all quasi-optical receivers to validate system performance. In this paper, we verify the optical design and estimate antenna system efficiency. Comparison between measurement and simulation indicates precise information is achievable in estimating system performance allowing potential improvements in ALMA instrument calibration accuracy. (C) 2009 Elsevier B.V. All rights reserved.
- Published
- 2009
- Full Text
- View/download PDF
21. The optimisation, design and verification of feed horn structures for future Cosmic Microwave Background missions
- Author
-
Créidhe O'Sullivan, Maarten van der Vorst, Neil Trappe, J. Anthony Murphy, Arturo Polegro, Peter G. Huggard, Stephen Doherty, Darragh McCarthy, and Marcin Gradziel
- Subjects
Physics ,business.industry ,Cosmic microwave background ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,02 engineering and technology ,Feed horn ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,010309 optics ,symbols.namesake ,Optics ,0103 physical sciences ,Genetic algorithm ,symbols ,Return loss ,Piecewise ,Sensitivity (control systems) ,Aerospace engineering ,Planck ,0210 nano-technology ,business - Abstract
In order to investigate the origins of the Universe, it is necessary to carry out full sky surveys of the temperature and polarisation of the Cosmic Microwave Background (CMB) radiation, the remnant of the Big Bang. Missions such as COBE and Planck have previously mapped the CMB temperature, however in order to further constrain evolutionary and inflationary models, it is necessary to measure the polarisation of the CMB with greater accuracy and sensitivity than before. Missions undertaking such observations require large arrays of feed horn antennas to feed the detector arrays. Corrugated horns provide the best performance, however owing to the large number required (circa 5000 in the case of the proposed COrE+ mission), such horns are prohibitive in terms of thermal, mechanical and cost limitations. In this paper we consider the optimisation of an alternative smooth-walled piecewise conical profiled horn, using the mode-matching technique alongside a genetic algorithm. The technique is optimised to return a suitable design using efficient modelling software and standard desktop computing power. A design is presented showing a directional beam pattern and low levels of return loss, cross-polar power and sidelobes, as required by future CMB missions. This design is manufactured and the measured results compared with simulation, showing excellent agreement and meeting the required performance criteria. The optimisation process described here is robust and can be applied to many other applications where specific performance characteristics are required, with the user simply defining the beam requirements.
- Published
- 2016
22. Determination of the Phase Centers of Millimeter-Wave Horn Antennas Using a Holographic Interference Technique
- Author
-
Créidhe O'Sullivan, I. McAuley, D. McCarthy, Neil Trappe, R. Mahon, Marcin Gradziel, and J. Anthony Murphy
- Subjects
Physics ,Radiation ,business.industry ,Holography ,02 engineering and technology ,Feed horn ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Polarization (waves) ,Interference (wave propagation) ,01 natural sciences ,law.invention ,010309 optics ,Optics ,Horn antenna ,law ,Reference beam ,0103 physical sciences ,Extremely high frequency ,Phase center ,Electrical and Electronic Engineering ,0210 nano-technology ,business ,Instrumentation - Abstract
In this paper, we discuss how a holographic interference technique can be applied in the experimental determination of the phase centers of non-standard horn antennas in the millimeter-waveband. The phase center is the point inside the horn from which the radiation appears to emanate when viewed from the far-field, and knowing its location is necessary for optimizing coupling efficiencies to quasi-optical systems. For non-standard horn designs, and other feed structures, the phase center may be difficult to reliably predict by simulation, in which case, before committing to antenna manufacture, there is a requirement for it to be determined experimentally. Although the phase center can be recovered by direct phase measurement of the far-field beam pattern, this usually involves expensive instrumentation such as a vector network analyzer for millimeter wave horn antennas. In this paper, we describe one inexpensive alternative, which is based on measuring the interference pattern in intensity between the radiation from the horn of interest and a reference beam derived from the same coherent source in an off-axis holography setup. The accuracy of the approach is improved by comparison with the interference pattern of a well-understood standard horn (such as a corrugated conical horn) in the same experimental setup. We present an example of the technique applied to a profiled smooth-walled horn antenna, which has been especially designed for cosmic microwave background (CMB) polarization experiments.
- Published
- 2016
23. Planar mesh-lens arrays for millimeter and sub-mm wave focal planes
- Author
-
M. van der Vorst, Neil Trappe, M. Robinson, Prafulla Deo, Bruno Maffei, Carole Tucker, and Giampaolo Pisano
- Subjects
Lenslets ,Terahertz radiation ,Planar array ,Cosmic microwave background ,02 engineering and technology ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Mesh filters ,law.invention ,010309 optics ,Optics ,Planar ,law ,Mesh filters, Microwave components, Lenslets, Arrays ,0103 physical sciences ,Arrays ,Physics ,Pixel ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Microwave components ,021001 nanoscience & nanotechnology ,Polarization (waves) ,Lens (optics) ,Millimeter ,0210 nano-technology ,business - Abstract
—Traditional focal plane arrays for millimeter and sub-millimeter wave instrumentation are designed using corrugated horn antennas. The next generation of experiments dedicated to the detection of Cosmic Microwave Background (CMB) polarization will require large sensitivities and therefore a large number of pixels in their focal planes. In the context of the technology development for future Cosmic Microwave Background satellite missions, we report the preliminary results of the development of a planar array of small lenses based on the mesh-filter technology.
- Published
- 2016
24. Performance of horn-coupled transition edge sensors for L- and S-band optical detection on the SAFARI instrument
- Author
-
Neil Trappe, P. A. R. Ade, Jiajun Chen, Stafford Withington, David J. Goldie, Dorata Glowacka, Orlando Quaranta, R. V. Sudiwala, and Dmitry Morozov
- Subjects
Physics ,Superconductivity ,optical characterization ,L band ,business.industry ,Terahertz radiation ,Detector ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,010309 optics ,Optics ,far-infrared bolometer ,0103 physical sciences ,Optoelectronics ,S band ,Transition edge sensor ,0210 nano-technology ,business ,ultra-low noise ,Saturation (magnetic) ,Dark current - Abstract
We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting ß-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/$\sqrt{Hz}$ and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 µm and S-band 34 - 60 µm .
- Published
- 2016
25. Gaussian beam mode analysis of standing waves between two coupled corrugated horns
- Author
-
John Anthony Murphy, Neil Trappe, Stafford Withington, and Willem Jellema
- Subjects
Physics ,Experimental Physics ,business.industry ,Terahertz radiation ,Wave propagation ,Modal analysis ,Physics::Optics ,Standing wave ,Optics ,Horn antenna ,Horn (acoustic) ,Mode coupling ,Electrical and Electronic Engineering ,business ,Gaussian beam - Abstract
—In this paper we present the theoretical analysis of the effects of standing waves between coupled horn antennas that can occur in terahertz quasi-optical systems. In particular we illustrate the approach for the case of two coupled horn antennas as the distance between them is varied. The full mode matching scattering matrix approach is based on combining a standard waveguide mode description of the horn antenna and a quasi-optical Gaussian beam description of the free space propagation. Track is kept of both the backward and forward going components of the propagating fields.We compare theoretical predictions with actual experimental test results for a quasi-optical system operating at a frequency of 0.480 THz.
- Published
- 2005
- Full Text
- View/download PDF
26. The quasi-optical analysis of Bessel beams in the far infrared
- Author
-
J. Anthony Murphy, William Lanigan, Stafford Withington, Neil Trappe, and R. Mahon
- Subjects
Physics ,Diffraction ,Depth of focus ,business.industry ,Physics::Optics ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,Axicon ,Wavelength ,symbols.namesake ,Optics ,Far infrared ,Bessel beam ,symbols ,Physics::Accelerator Physics ,business ,Bessel function ,Gaussian beam - Abstract
We discuss the Gaussian beam mode analysis of Bessel beams, eigen-solutions of the wave-equation in cylindrical polar coordinates which neither change form nor spread out as they propagate. Approximate, limited diffraction finite aperture, pseudo-Bessel beams having intense on-axis spots with large depths of field can be produced experimentally in the far infrared by using plastic conical lenses, known as axicons. We illustrate the physical insight provided by Gaussian beam mode analysis of such systems. Such pseudo-Bessel beams can be usefully approximated by high-order Gaussian–Laguerre modes, which have similar propagation characteristics. The size of the on-axis spot produced by an axicon, and its depth of focus, can be estimated from a single best-fit high-order Gaussian–Laguerre mode, and a more detailed description of behaviour can be achieved by adding a few additional modes of neighbouring orders. The strength of Gaussian beam mode analysis is that it is straightforward to model the propagation of Bessel beams through complex systems of long wavelength optical components, such as apertures, mirrors, and lenses. We report the experimental generation and measurement of a 0.1 THz Bessel beam, and show that useful performance is possible for an axicon having a scale size just one order of magnitude greater than the wavelength. This work confirms the technical feasibility of designing and building long-wavelength optical systems based on Bessel beams.
- Published
- 2005
- Full Text
- View/download PDF
27. MIMO Antenna Design and Channel Modeling 2014
- Author
-
Manos M. Tentzeris, Yan Zhang, Xinyi Tang, Wenhua Chen, Neil Trappe, and Yuan Yao
- Subjects
3G MIMO ,Article Subject ,Computer science ,MIMO ,Mimo antenna ,lcsh:HE9713-9715 ,Multi-user MIMO ,Precoding ,Electronic engineering ,lcsh:Cellular telephone services industry. Wireless telephone industry ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,Electrical and Electronic Engineering ,lcsh:TK1-9971 ,Communication channel - Published
- 2015
28. Refractive telescope systems for future cosmic microwave background polarimetry experiments
- Author
-
Peter Charles Hargrave, Maarten van der Vorst, Neil Trappe, Anthony Challinor, Niall Tynan, Rashmikant V. Sudiwala, Giorgio Savini, Stig Sørenson, Massimo Candotti, Marcin Gradziel, and Peter A. R. Ade
- Subjects
Physics ,business.industry ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Polarimetry ,Physics::Optics ,law.invention ,Lens (optics) ,Telescope ,Software ,Optics ,law ,Refracting telescope ,Instrumentation (computer programming) ,Antenna (radio) ,business ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
This paper presents the key findings of an ESA-funded programme of work to investigate refractive systems and their application to precision polarimetry experiments. We briefly summarize the derivation of requirements on the optical system for CMB polarimetry, and the design of a refractive telescope system which meets these stringent requirements. An extensive programme of experimental work was undertaken in order to better understand the optical, thermal and mechanical characteristics of the lens material, and of lenses made from this material. A repeatable and controllable antireflection coating procedure was developed and validated, and used to coat lenses used in this study. Optical measurements before and after coating have been used to validate a new module for an industry-standard antenna modelling software package. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
- Published
- 2014
- Full Text
- View/download PDF
29. Optical characterization of ultra-sensitive TES bolometers for SAFARI
- Author
-
Stafford Withington, Gerhard de Lange, Dmitry Morozov, Stephen Doherty, Neil Trappe, Philip Daniel Mauskopf, Michael D. Audley, Jian-Rong Gao, and Pourya Khosropanah
- Subjects
Physics ,Spectrometer ,business.industry ,Bolometer ,Detector ,Imaging spectrometer ,Field of view ,Spica ,law.invention ,Optics ,Black body ,law ,Transition edge sensor ,business - Abstract
We have characterized the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays will image a 2’×2’ field of view with spectral information over the wavelength range 34—210 μm. SAFARI requires extremely sensitive detectors (goal NEP ~ 0.2 aW/√Hz), with correspondingly low saturation powers (~5 fW), to take advantage of SPICA's cooled optics. We have constructed an ultra-low background optical test facility containing an internal cold black-body illuminator and have recently added an internal hot black-body source and a light-pipe for external illumination. We illustrate the performance of the test facility with results including spectral-response measurements. Based on an improved understanding of the optical throughput of the test facility we find an optical efficiency of 60% for prototype SAFARI detectors. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
- Published
- 2014
- Full Text
- View/download PDF
30. Optical modelling of far-infrared astronomical instrumentation exploiting multimode horn antennas
- Author
-
Fiachra Cahill, Daniel Wilson, Giorgio Savini, T. Peacocke, Ian Mc Auley, K. Ganga, Créidhe O'Sullivan, Neil Trappe, Marcin Gradziel, and J. Anthony Murphy
- Subjects
Physics ,Multi-mode optical fiber ,business.industry ,Aperture ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Physical optics ,law.invention ,Optics ,Far infrared ,law ,Quasioptics ,business ,Waveguide - Abstract
In this paper we describe the optical modelling of astronomical telescopes that exploit bolometric detectors fed by multimoded horn antennas. In cases where the horn shape is profiled rather than being a simple cone, we determine the beam at the horn aperture using an electromagnetic mode-matching technique. Bolometers, usually placed in an integrating cavity, can excite many hybrid modes in a corrugated horn; we usually assume they excite all modes equally. If the waveguide section feeding the horn is oversized these modes can propagate independently, thereby increasing the throughput of the system. We use an SVD analysis on the matrix that describes the scattering between waveguide (TE/TM) modes to recover the independent orthogonal fields (hybrid modes) and then propagate these to the sky independently where they are added in quadrature. Beam patterns at many frequencies across the band are then added with a weighting appropriate to the source spectrum. Here we describe simulations carried out on the highest-frequency (857-GHz) channel of the Planck HFI instrument. We concentrate in particular on the use of multimode feedhorns and consider the effects of possible manufacturing tolerances on the beam on the sky. We also investigate the feasibility of modelling far-out sidelobes across a wide band for electrically large structures and bolometers fed by multi-mode feedhorns. Our optical simulations are carried out using the industry-standard GRASP software package.
- Published
- 2014
- Full Text
- View/download PDF
31. Efficient algorithms for optimising the optical performance of profiled smooth walled horns for future CMB and Far-IR missions
- Author
-
C. Bracken, J. Anthony Murphy, Créidhe O'Sullivan, Peter G. Huggard, Neil Trappe, Arturo Martin Polegre, Marcin Gradziel, Niall Tynan, Stephen Doherty, and D. McCarthy
- Subjects
Physics ,Terahertz radiation ,business.industry ,Cosmic microwave background ,Polarization (waves) ,law.invention ,Observational astronomy ,Optics ,Horn antenna ,Far infrared ,W band ,law ,business ,Waveguide - Abstract
Astronomical observations in the far-infrared are critical for investigation of cosmic microwave background (CMB) radiation and the formation and evolution of planets, stars and galaxies. In the case of space telescope receivers, a strong heritage exists for corrugated horn antenna feeds to couple the far-infrared signals to the detectors mounted in a waveguide or cavity structure. Such antenna feeds have been utilized, for example, in the Planck satellite in both single-mode channels for the observation of the CMB and the multi-mode channels optimized for the detection of foreground sources. Looking to the demands of the future space missions, it is clear that the development of new technology solutions for the optimization and simplification of horn antenna structures will be required for large arrays. Horn antennas will continue to offer excellent control of beam and polarization properties for CMB polarisation experiments satisfying stringent requirements on low sidelobe levels, symmetry, and low cross polarization in large arrays. Similarly for far infrared systems, multi-mode horn and waveguide cavity structures are proposed to enhance optical coupling of weak signals for cavity coupled bolometers. In this paper we present a computationally efficient approach for modelling and optimising horn character-istics. We investigate smooth-walled horns that have an equivalent optical performance to that of corrugated horns traditionally used for CMB measurements. We discuss the horn optimisation process and the algorithms available to maximise performance of a merit parameter such as low cross polarisation or high Gaussicity. A single moded horn resulting from this design process has been constructed and experimentally verified in the W band. The results of the measurement campaign are presented in this paper and compared to the simulated results, showing a high level of agreement in co and cross polarisation radiation patterns, with low levels of integrated cross polar power. For future Far IR receivers using waveguide bounded bolometers and absorbers, an optimisation of the waveg-uide structures and absorber location within the integrating cavity is critical to maximise coupling performance particularly for multimoded systems. We outline the benefit of using multi-moded horns in focal plane arrays and illustrate the increased optical sensitivity associated with a many-moded approach, which may be optimized for coupling to particular incident beams.
- Published
- 2014
- Full Text
- View/download PDF
32. Multimode horn antennas for far-infrared astronomy
- Author
-
Stephen Doherty, Bruno Maffei, F. Noviello, R. V. Sudiwala, Daniel Wilson, V. Yurchenko, T. Peacocke, Neil Trappe, J.-L. Puget, J. A. Murphy, Richard Wylde, C. Bracken, Marcin Gradziel, I. McAuley, Peter A. R. Ade, J.-M. Lamarre, Créidhe O'Sullivan, Giorgio Savini, Emily Gleeson, Stafford Withington, and Giampaolo Pisano
- Subjects
Physics ,Diffraction ,Multi-mode optical fiber ,business.industry ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Far-infrared astronomy ,Spica ,Horn antenna ,Optics ,far-infrared astronomy ,horn antenna ,multimode ,Horn (acoustic) ,Optical filter ,business - Abstract
Multi-mode horns combined with bolometric or incoherent detectors are finding application in astronomical receivers for which partially coherent operation can provide increased throughput and thus sensitivity. This is advantageous when observing faint sources, especially if diffraction limited resolution is not required, or if the horn beam is truncated by a cold stop in the optical train. We discuss how such horns can be simulated and present examples from receiver instrumentation on the Planck and SPICA space telescopes.
- Published
- 2014
- Full Text
- View/download PDF
33. [Untitled]
- Author
-
Créidhe O'Sullivan, Neil Trappe, Stafford Withington, William Lanigan, J. Anthony Murphy, and R. Colgan
- Subjects
Radiation ,Materials science ,business.industry ,Local oscillator ,Modal analysis ,Physics::Optics ,Grating ,Condensed Matter Physics ,Multiplexer ,Multiplexing ,Optics ,Heterodyne detection ,Electrical and Electronic Engineering ,business ,Instrumentation ,Refractive index ,Gaussian beam - Abstract
This paper is concerned with the analysis of phase gratings as passive quasi-optical multiplexing devices. One important application of such components is in the local oscillator injection chain of heterodyne array receivers. Gaussian beam mode analysis can be applied as a powerful tool when modelling the optical performance of phase gratings in a real submillimeter system of finite throughput and bandwidth. In our experimental investigations we have concentrated on the Dammann Grating (DG) which is a binary optical component and thus straightforward to manufacture. A number of quartz gratings were fabricated and carefully tested to evaluate the practical limitations of such quasi-optical components. Because of its convenient refractive index quartz can be used to produce gratings with very low reflection losses. The results presented confirm DGs to be particularly suitable multiplexers for sparse arrays of finite bandwidth.
- Published
- 1999
- Full Text
- View/download PDF
34. Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI
- Author
-
J. R. Gao, Michael D. Audley, M. Ranjan, Neil Trappe, Dmitry Morozov, Stafford Withington, Philip Daniel Mauskopf, Pourya Khosropanah, G. de Lange, Marcel L. Ridder, Stephen Doherty, Astronomy, and Research unit Nuclear & Hadron Physics
- Subjects
Physics ,business.industry ,Transition edge sensors ,Detector ,Bolometer ,Imaging spectrometer ,Field of view ,Infra-red bolometers ,Spica ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,law.invention ,Optics ,law ,Optical testing ,Calibration ,Low-temperature detectors ,General Materials Science ,Dilution refrigerator ,Transition edge sensor ,business - Abstract
We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI’s three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2′×2′ field of view with spectral information over the wavelength range 34–210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors (NEP∼2×10−19 W/ $\sqrt{\mathrm{Hz}}$ ), with correspondingly low saturation powers (∼5 fW), to take advantage of SPICA’s cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3–30 K) and hot (∼300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.
- Published
- 2014
35. Coated dielectric lenses for applications in high purity THz electromagnetic wave polarization detection
- Author
-
Peter Charles Hargrave, Giorgio Savini, R. V. Sudiwala, M. van der Vorst, Neil Trappe, Niall Tynan, P. A. R. Ade, Ian Walker, Stig B. Sorensen, and Marcin Gradziel
- Subjects
Physics ,Terahertz radiation ,business.industry ,Cosmic microwave background ,Polarimetry ,Dielectric ,engineering.material ,law.invention ,Lens (optics) ,Optics ,Coating ,law ,Electromagnetic wave polarization ,engineering ,Optoelectronics ,Satellite ,business - Abstract
A comprehensive test programme has been implemented to enable the consideration of large refractive components with coating layers in the design of future satellite-based cosmic microwave background polarimetry missions. This requires understanding of systematic effects to an unprecedented level of precision, and validation of modelling tools and manufacturing techniques. We present the details of this study, and key results of the material and lens testing programme.
- Published
- 2013
- Full Text
- View/download PDF
36. Efficient horn antennas for next-generation terahertz and millimeter-wave space telescopes
- Author
-
C. Bracken, Anthony Murphy, Darragh McCarthy, Marcin Gradziel, Stephen Doherty, Neil Trappe, and Créidhe O'Sullivan
- Subjects
Physics ,Terahertz radiation ,business.industry ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,law.invention ,symbols.namesake ,Horn antenna ,Optics ,Observational astronomy ,law ,Extremely high frequency ,symbols ,Planck ,business ,Waveguide - Abstract
Astronomical observations in the far-infrared are critical for investigation of cosmic microwave background (CMB) radiation and the formation and evolution of planets, stars and galaxies. In the case of space telescope receivers a strong heritage exists for corrugated horn antenna feeds to couple the far-infrared signals to the detectors mounted in a waveguide or cavity structure. Such antenna feeds have been utilized, for example, in the Planck satellite in both single-mode channels for the observation of the CMB and the multi-mode channels optimized for the detection of foreground sources. Looking to the demands of the future space missions, it is clear that the development of new technology solutions for the optimization and simplification of horn antenna structures will be required for large arrays. Horn antennas will continue to offer excellent control of beam and polarization properties for CMB polarisation experiments satisfying stringent requirements on low sidelobe levels, symmetry and low cross polarization in large arrays. Similarly for mid infrared systems multi-mode waveguide structures will give high throughput to reach the required sensitivities. In this paper we present a computationally efficient approach for modelling and optimising horn characteristics. We investigate smooth-walled profiled horns that have a performance equivalent to that of the corrugated horns traditionally used for CMB measurements. We discuss the horn optimisation process and the algorithms available to maximise performance of a merit parameter such as low cross polarisation or high Gaussicity.
- Published
- 2013
- Full Text
- View/download PDF
37. Ultra-low-noise transition edge sensors for the SAFARI L-band on SPICA
- Author
-
Dorota Glowacka, J. A. Murphy, Créidhe O'Sullivan, Philip Daniel Mauskopf, Brian Jackson, Neil Trappe, R. A. Hijmering, Douglas Griffin, Marcel L. Ridder, Stafford Withington, J. R. Gao, Dmitry Morozov, Pourya Khosropanah, and David J. Goldie
- Subjects
Physics ,Optics ,Spectrometer ,business.industry ,Detector ,Impedance matching ,Optical power ,Transition edge sensor ,business ,Phonon noise ,Order of magnitude ,Dark current - Abstract
The Far-Infrared Fourier transform spectrometer instrument SAFARI-SPICA which will operate with cooled optics in a low-background space environment requires ultra-sensitive detector arrays with high optical coupling efficiencies over extremely wide bandwidths. In earlier papers we described the design, fabrication and performance of ultra-low-noise Transition Edge Sensors (TESs) operated close to 100mk having dark Noise Equivalent Powers (NEPs) of order 4 × 10−19W/√Hz close to the phonon noise limit and an improvement of two orders of magnitude over TESs for ground-based applications. Here we describe the design, fabrication and testing of 388-element arrays of MoAu TESs integrated with far-infrared absorbers and optical coupling structures in a geometry appropriate for the SAFARI L-band (110 − 210 μm). The measured performance shows intrinsic response time τ ~ 11ms and saturation powers of order 10 fW, and a dark noise equivalent powers of order 7 × 10−19W/√Hz. The 100 × 100μm2 MoAu TESs have transition temperatures of order 110mK and are coupled to 320×320μm2 thin-film β-phase Ta absorbers to provide impedance matching to the incoming fields. We describe results of dark tests (i.e without optical power) to determine intrinsic pixel characteristics and their uniformity, and measurements of the optical performance of representative pixels operated with flat back-shorts coupled to pyramidal horn arrays. The measured and modeled optical efficiency is dominated by the 95Ω sheet resistance of the Ta absorbers, indicating a clear route to achieve the required performance in these ultra-sensitive detectors.
- Published
- 2012
- Full Text
- View/download PDF
38. TES arrays for the short wavelength band of the SAFARI instrument on SPICA
- Author
-
Marcel L. Ridder, Créidhe O'Sullivan, Neil Trappe, Philip Daniel Mauskopf, G. de Lange, Brian Jackson, R. A. Hijmering, Pourya Khosropanah, Dmitry Morozov, Michael D. Audley, Anna Murphy, J. R. Gao, Douglas Griffin, Dorota Glowacka, David J. Goldie, and Stafford Withington
- Subjects
Physics ,Silicon ,business.industry ,Bolometer ,Detector ,chemistry.chemical_element ,Spica ,law.invention ,Telescope ,chemistry.chemical_compound ,Wavelength ,Optics ,chemistry ,Silicon nitride ,law ,Transition edge sensor ,business - Abstract
SPICA is an infra-red (IR) telescope with a cryogenically cooled mirror (~5K) with three instruments on board, one of which is SAFARI that is an imaging Fourier Transform Spectrometer (FTS) with three bands covering the wavelength of 34-210 μm. We develop transition edge sensors (TES) array for short wavelength band (34-60 μm) of SAFARI. These are based on superconducting Ti/Au bilayer as TES bolometers with a Tc of about 105 mK and thin Ta film as IR absorbers on suspended silicon nitride (SiN) membranes. These membranes are supported by long and narrow SiN legs that act as weak thermal links between the TES and the bath. Previously an electrical noise equivalent power (NEP) of 4×10-19 W/√Hz was achieved for a single pixel of such detectors. As an intermediate step toward a full-size SAFARI array (43×43), we fabricated several 8×9 detector arrays. Here we describe the design and the outcome of the dark and optical tests of several of these devices. We achieved high yield (
- Published
- 2012
- Full Text
- View/download PDF
39. Optical modeling of waveguide coupled TES detectors towards the SAFARI instrument for SPICA
- Author
-
Stafford Withington, David J. Goldie, Douglas Griffin, P. Mauskopf, Brian Jackson, Marcel L. Ridder, Dorota Glowacka, Pourya Khosropanah, Neil Trappe, C. Bracken, Créidhe O'Sullivan, R. A. Hijmering, Dmitry Morozov, Anna Murphy, J. R. Gao, and Stephen Doherty
- Subjects
Pixel ,Physics::Instrumentation and Detectors ,business.industry ,Computer science ,Modal analysis ,Detector ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spica ,Radiation ,Space exploration ,law.invention ,Wavelength ,Modal ,Optics ,Far infrared ,law ,Transition edge sensor ,business ,Waveguide - Abstract
The next generation of space missions targeting far-infrared wavelengths will require large-format arrays of extremely sensitive detectors. The development of Transition Edge Sensor (TES) array technology is being developed for future Far-Infrared (FIR) space applications such as the SAFARI instrument for SPICA where low-noise and high sensitivity is required to achieve ambitious science goals. In this paper we describe a modal analysis of multi-moded horn antennas feeding integrating cavities housing TES detectors with superconducting film absorbers. In high sensitivity TES detector technology the ability to control the electromagnetic and thermo-mechanical environment of the detector is critical. Simulating and understanding optical behaviour of such detectors at far IR wavelengths is difficult and requires development of existing analysis tools. The proposed modal approach offers a computationally efficient technique to describe the partial coherent response of the full pixel in terms of optical efficiency and power leakage between pixels. Initial wok carried out as part of an ESA technical research project on optical analysis is described and a prototype SAFARI pixel design is analyzed where the optical coupling between the incoming field and the pixel containing horn, cavity with an air gap, and thin absorber layer are all included in the model to allow a comprehensive optical characterization. The modal approach described is based on the mode matching technique where the horn and cavity are described in the traditional way while a technique to include the absorber was developed. Radiation leakage between pixels is also included making this a powerful analysis tool.
- Published
- 2012
- Full Text
- View/download PDF
40. New developments in waveguide mode-matching techniques for far- infrared astronomy
- Author
-
T. Peacocke, Neil Trappe, Créidhe O'Sullivan, Stephen Doherty, C. Bracken, and J. Anthony Murphy
- Subjects
Coupling ,Physics ,business.industry ,Stray light ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Single-mode optical fiber ,Physics::Optics ,Far-infrared astronomy ,law.invention ,Optics ,law ,Horn (acoustic) ,business ,Waveguide - Abstract
New developments in waveguide mode matching techniques are considered, in particular the efficient modeling of waveguide cavity coupled detectors. This approach is useful in far-infrared astronomical instrumentation and cosmic microwave background experiments in which bolometers feeding horn antennas or Winston cones are often employed for high sensitivity, good control of stray light and well behaved beam patterns. While such systems can, in theory, be modeled using full wave FEM techniques it would be desirable, especially for large structures in terms of the wavelength, to exploit more efficient mode matching techniques, particularly for initial design optimization. This would also be especially useful for cavities feeding partially coherent multi-mode horns or Winston cones. The mode matching approach also allows for straightforward modeling of the complete coupling structure including the horn, waveguide cavity and absorbing layer of the bolometer, thus marking a significant advance in the ability to predict the optical efficiencies of cavity coupled bolometers. We consider typical single mode and multi-mode examples that illustrate the power of the technique.
- Published
- 2012
- Full Text
- View/download PDF
41. The SPICA-SAFARI Detector System: TES Detector Arrays with Frequency Division Multiplexed SQUID Readout
- Author
-
H. van Weers, P. Mauskopf, R. den Hartog, Stafford Withington, L. Ravera, Jian-Rong Gao, Mikko Kiviranta, G. de Lange, B. J. van Leeuwen, Jörn Beyer, Brian Jackson, J. van der Kuur, Claudio Macculi, Neil Trappe, Alain Cros, Douglas Griffin, P. A. J. de Korte, and M. P. Bruijn
- Subjects
TELESCOPE ,superconducting devices ,Experimental Physics ,Physics::Instrumentation and Detectors ,frequency-division multiplexing ,Spica ,Astrophysics ,system-level design ,Multiplexing ,law.invention ,Telescope ,Optics ,law ,Electrical and Electronic Engineering ,Astrophysics::Galaxy Astrophysics ,MISSION ,Physics ,Radiation ,business.industry ,Bolometer ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,SQUID ,Cardinal point ,Transition edge sensor ,business ,bolometers - Abstract
The SAFARI instrument is a far-infrared imaging Fourier transform spectrometer for JAXA's SPICA mission. Taking advantage of the low emission of SPICA's 5 K telescope, SAFARI will provide sky background-limited, Nyquist-sampled spectroscopic imaging of a 2 ' × 2 ' field-of-view over 34-210 μm, creating significant new possibilities for far-infrared astronomy. SAFARI's aggressive science goals drive the development of a unique detector system combining large-format Transition Edge Sensor arrays and frequency division multiplexed SQUID readout with a high 160x multiplexing factor. The detectors and their cold readout electronics are packaged into 3 focal plane arrays that will be integrated into SAFARI's focal plane unit. Here we present the preliminary system design and current development status of the SAFARI detector system.
- Published
- 2012
- Full Text
- View/download PDF
42. Efficient modeling of detectors for far-IR astronomy
- Author
-
C. Bracken, Neil Trappe, J. Anthony Murphy, Créidhe O'Sullivan, and Stephen Doherty
- Subjects
Physics ,Detector ,Astronomy - Published
- 2011
- Full Text
- View/download PDF
43. Efficient design of THz security systems
- Author
-
David R. White, Neil Trappe, and Demian Tinkiel
- Subjects
Information privacy ,Airport security ,Optical imaging ,Software ,Optical diffraction ,Terahertz radiation ,Frequency band ,Computer science ,business.industry ,Telecommunications ,business - Abstract
The Terahertz (THz) frequency band has traditionally been of interest for the past 30 years in astronomy. However, recent advancements in technology in this band have sparked interest in other applications such as security. The THz frequency band is specially suited to this task, given that it has the penetration aspects of higher frequencies without the harmful ionizing effects. Although the area of airport security systems has seen new developments in hardware and commercial products, it is still largely underdeveloped in terms of efficient software. There are two potential considerations for efficiency in this area: personal privacy and detection speed. Both are addressed in our research.
- Published
- 2011
- Full Text
- View/download PDF
44. Modelling of horn antennas and detector cavities for the SAFARI instrument at THz frequencies
- Author
-
Neil Trappe, Créidhe O'Sullivan, Douglas Griffin, Philip Daniel Mauskopf, David J. Goldie, Jin Zhang, G. Curran, Stafford Withington, Stephen Doherty, Marcel L. Ridder, J. A. Murphy, D. Glowaka, M. Brujin, J. R. Gao, M. Ferlot, Pourya Khosropanah, and B. M. Swinyard
- Subjects
Physics ,Waveguide (electromagnetism) ,Optics ,Terahertz radiation ,business.industry ,Horn (acoustic) ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Finite-difference time-domain method ,Ray tracing (graphics) ,Antenna (radio) ,business ,Microwave - Abstract
Future Far-IR space telescopes, such as the SAFARI instrument of the proposed JAXA/ESA SPICA mission, will use horn antennas to couple to cavity bolometers to achieve high levels of sensitivity for Mid-IR astronomy. In the case of the SAFARI instrument the bolometric detectors susceptibility to currents coupling into the detector system and dissipating power within the bolometers is a particular concern of the class of detector technology considered.1 The simulation of such structures can prove challenging. At THz frequencies ray tracing no longer proves completely accurate for these partially coherent large electrical structures, which also present significant computational difficulties for the more generic EM approaches applied at longer microwave wavelengths. The Finite Difference Time Domain method and other similar commercially viable approaches result in excessive computational requirements, especially when a large number of modes propagate. Work being carried out at NUI-Maynooth is utilising a mode matching approach to the simulation of such devices. This approach is based on the already proven waveguide mode scattering code "Scatter"2 developed at NUI-Maynooth, which is a piece of mode matching code that operates by cascading a Smatrice while conserving power at each waveguide junction. This paper outlines various approaches to simulating such Antenna Horns and Cavities at THz frequencies, focusing primarily on the waveguide modal Scatter approach. Recently the code has been adapted to incorporate a rectangular waveguide basis mode set instead of the already established circular basis set.
- Published
- 2011
- Full Text
- View/download PDF
45. Applications of holography in the millimeter-wave and terahertz region
- Author
-
D. McCarthy, P. McLaughlin, Neil Trappe, R. Mahon, I. McAuley, and J. A. Murphy
- Subjects
Physics ,business.industry ,Terahertz radiation ,Electromagnetic spectrum ,Holography ,Physics::Optics ,Near and far field ,law.invention ,Optics ,law ,Reference beam ,Phase center ,Raster scan ,business ,Phase retrieval - Abstract
In this paper we report on the improvements in holographic techniques developed for applications in the millimeter-wave and terahertz range of the electromagnetic spectrum. An experimental arrangement, adapted from off-axis near-field holography at visible wavelengths, was employed that utilizes a raster scanning detector to record the holograms digitally. The object and reference fields were based on the beams from a pair of radiating antennas fed by a single coherent source via a cross-guide coupler. Using phase retrieval methods, the recorded holographic interference pattern can be used to determine the effective phase centers of radiating feed antennas, including non standard radiators such as planar lens antennas. By numerically propagating the recovered object beam back to the source plane the object beam in the vicinity of the waist (the effective phase center) can be recovered. Among the issues investigated was improvement in the accuracy of the phase retrieval process by taking account of the non-perfect reference beam. The technique has also been applied to the investigation of increased co-polarisation levels in the scattering of radiation from surface features of dielectric materials on millimeter-wave radiation.
- Published
- 2011
- Full Text
- View/download PDF
46. Herschel observations of EXtra-Ordinary Sources (HEXOS) : Methanol as a probe of physical conditions in Orion KL
- Author
-
Holger S. P. Müller, Thomas G. Phillips, Marie-Lise Dubernet, H. Gupta, Pierrick Martin, Cecilia Ceccarelli, J. Stutzki, S. Wang, Karl M. Menten, Patrick W. Morris, David A. Neufeld, P. F. Goldsmith, Peter Schilke, J. A. Murphy, Emmanuel Caux, F. F. S. van der Tak, F. Daniel, Stephan Schlemmer, J. R. Goicoechea, E. A. Bergin, H. W. Yorke, Maryvonne Gerin, Sheng-Li Qin, Charlotte Vastel, W. D. Langer, J. C. Pearson, G. A. Blake, Thomas F. Giesen, T. A. Bell, Shanshan Yu, Martin Emprechtinger, Gary J. Melnick, Sébastien Maret, C. Comito, Volker Ossenkopf, M. Perault, José Cernicharo, William B. Latter, Jonas Zmuidzinas, D. C. Lis, S. D. Lord, D. Johnstone, Neil Trappe, P. J. Encrenaz, Nathan R. Crockett, Eric Herbst, Rene Plume, C. Joblin, Department of Astronomy [Ann Arbor], University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Cahill Center for Astronomy and Astrophysics, California Institute of Technology (CALTECH), Max Planck Institute for Radio Astronomy, I. Physikalisches Institut [Köln], Universität zu Köln, Division of Geological and Planetary Sciences [Pasadena], Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique (LPMAA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Columbus], Ohio State University [Columbus] (OSU), NRC Herzberg Institute of Astrophysics, National Research Council of Canada (NRC), Infrared Processing and Analysis Center (IPAC), Canadian Institute for Theoretical Astrophysics (CITA), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, Max-Planck-Institut für Radioastronomie (MPIFR), National University of Ireland Maynooth (Maynooth University), Department of Physics and Astronomy [Baltimore], Johns Hopkins University (JHU), SRON Netherlands Institute for Space Research (SRON), Department of Physics and Astronomy [Calgary], University of Calgary, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC), California Institute of Technology (CALTECH)-NASA, Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Smithsonian Institution-Harvard University [Cambridge], Astronomy, Universität zu Köln = University of Cologne, Harvard University-Smithsonian Institution, Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany, Univ Cologne, Inst Phys 1, Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France, Centre Etud Spatiale Rayonnements Toulouse, CNRS INSU, UMR 5187, F-31028 Toulouse 4, France, UMR 5187 Toulouse, Observ Grenoble, Astrophys Lab, F-38041 Grenoble 9, France, Université Joseph Fourier - Grenoble 1 (UJF), Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain, Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid, École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Ohio State Univ, Dept Phys, Columbus, OH 43210 USA, Ohio State Univ, Dept Astron & Chem, Columbus, OH 43210 USA, Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7 Canada, Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA, CALTECH, Ctr Infrared Proc & Anal, Pasadena, Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8 Canada, Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, Laboratoire de Didactique André Revuz (LDAR (EA_4434)), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Université de Cergy Pontoise (UCP), and Université Paris-Seine-Université Paris-Seine-Université Paris Diderot - Paris 7 (UPD7)-Université d'Artois (UA)
- Subjects
Experimental Physics ,DATABASE ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,High velocity ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,LINE ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,7. Clean energy ,ISM: abundances ,STAR-FORMATION ,REGION ,chemistry.chemical_compound ,0103 physical sciences ,Thermal ,TOOL ,010303 astronomy & astrophysics ,MILLIMETER ,ComputingMilieux_MISCELLANEOUS ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,Range (particle radiation) ,Line-of-sight ,010304 chemical physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Resolution (electron density) ,Astronomy and Astrophysics ,Ridge (differential geometry) ,ISM: molecules ,Stars ,chemistry ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,MOLECULAR CLOUDS ,Methanol ,SUBMILLIMETER ,EMISSION ,HIFI - Abstract
We have examined methanol emission from Orion KL with of the {\em Herschel}/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated $\Delta$J$=$0, K$=-4\rightarrow$-3, v$_t$$=$0 Q branch, and includes 25 E-type and 2 A-type transitions. The 1061 GHz methanol band (observed in HIFI band 4b) is dominated by the $\Delta$J$=$0, K$=7\rightarrow$6, v$_t$$=$0 Q branch transitions which are mostly blended. We have used the isolated E-type v$_t$$=$0 methanol transitions to explore the physical conditions in the molecular gas. With HIFI's high velocity resolution, the methanol emission contributed by different spatial components along the line of sight toward Orion KL (hot core, low velocity flow, and compact ridge) can be distinguished and studied separately. The isolated transitions detected in these bands cover a broad energy range (upper state energy ranging from 80 K to 900 K), which provides a unique probe of the thermal structure in each spatial component. The observations further show that the compact ridge is externally heated. These observations demonstrate the power of methanol lines as probes of the physical conditions in warm regions in close proximity to young stars., Comment: 8 pages, 9 figures, accepted for publication in Astronomy & Astrophysics
- Published
- 2011
- Full Text
- View/download PDF
47. Detection of OH+ and H2O+ towards Orion KL
- Author
-
Maryvonne Gerin, G. A. Blake, J. Stutzki, Shanshan Yu, S. Wang, Paul Hartogh, D. Johnstone, Thomas F. Giesen, Goutam Chattopadhyay, M. Perault, José Cernicharo, Ryszard Szczerba, Rudolf Schieder, Fabien Daniel, S. D. Lord, Jonas Zmuidzinas, Rafael Bachiller, Nathan R. Crockett, Alexandre Karpov, Neal R. Erickson, William B. Latter, John Gill, N. Harada, C. Joblin, P. Zaal, Marie-Lise Dubernet, Erich Schlecht, David A. Neufeld, P. F. Goldsmith, J. A. Murphy, René Liseau, Eric Herbst, C. Comito, Neil Trappe, H. Gupta, E. A. Bergin, A. C. A. Boogert, D. C. Lis, J. R. Goicoechea, Michael Olberg, Jacob Kooi, Jean-Michel Krieg, Frank Maiwald, W. Baechtold, Laurent Pagani, H. W. Yorke, T. A. Bell, F. F. S. van der Tak, Peter Schilke, Martin Emprechtinger, Cecilia Ceccarelli, Volker Ossenkopf, Stephan Schlemmer, Bengt Larsson, Paul B. Rimmer, W. D. Langer, P. J. Encrenaz, R. H. Lin, S.-L. Qin, N. Honingh, J. C. Pearson, Pierrick Martin, M. Salez, S. Cabrit, Emmanuel Caux, Thomas G. Phillips, Karl M. Menten, Sébastien Maret, Rene Plume, Patrick W. Morris, M. C. Diez-Gonzalez, Jesús Martín-Pintado, L. Nordh, Lorene Samoska, R. Güsten, Holger S. P. Müller, Charlotte Vastel, E. Falgarone, Gary J. Melnick, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Ohio State university Departement of Physic, Colombus, Ohio State University [Columbus] (OSU), Ohio State university Departement of Astronomy, Colombus, Ohio State university Departement of Chemistry, Colombus, foreign laboratories (FL), CERN [Genève], Ohio State Univ, Dept Phys, Columbus, OH 43210 USA, Ohio State Univ, Dept Astron & Chem, Columbus, OH 43210 USA, Ohio State University Dept Chemistry, Department of Astronomy [Ann Arbor], University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Millimeter-Wave Electronics Laboratory [ETH Zürich] (MWE), Department of Information Technology and Electrical Engineering [Zürich] (D-ITET), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), CNRS INSU, UMR 5187, F-31028 Toulouse 4, France, UMR 5187 Toulouse, Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Max Planck Institute for Radio Astronomy, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Laboratoire de Radioastronomie (LRA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Cahill Center for Astronomy and Astrophysics, California Institute of Technology (CALTECH), Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, BC V9E 2E7 Canada, Natl Res Council Canada, Herzberg Inst Astrophys, Victoria, Laboratoire de Modélisation Multi-échelles des Combustibles (LM2C), Service d'Etudes de Simulation du Comportement du combustibles (SESC), Département d'Etudes des Combustibles (DEC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Département d'Etudes des Combustibles (DEC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Max-Planck-Institut für Radioastronomie (MPIFR), Infrared Processing and Analysis Center (IPAC), Onsala Space Observatory, Chalmers University of Technology [Göteborg], Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), SRON Netherlands Institute for Space Research (SRON), Department of Physics and Astronomy [Calgary], University of Calgary, I. Physikalisches Institut [Köln], Universität zu Köln = University of Cologne, Laboratoire de Didactique André Revuz (LDAR (EA_4434)), Université d'Artois (UA)-Université Paris Diderot - Paris 7 (UPD7)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Kapteyn Astronomical Institute [Groningen], University of Groningen [Groningen], Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, A.M.Obukhov Institute of Atmospheric Physics (IAP), Russian Academy of Sciences [Moscow] (RAS), Harvard University [Cambridge]-Smithsonian Institution, Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France, Centre Etud Spatiale Rayonnements Toulouse, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA, CALTECH, Ctr Infrared Proc & Anal, Pasadena, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Universität zu Köln, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université Paris Diderot - Paris 7 (UPD7)-Université d'Artois (UA), Max-Planck-Institut für Sonnensystemforschung (MPS), Department of Physics [Columbus], Department of Astronomy [Columbus], Department chemistry and Biochemistry [Columbus], Department of Physics and Astronomy [Baltimore], Johns Hopkins University (JHU), Smithsonian Institution-Harvard University [Cambridge], Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Instituto Nacional de Técnica Aeroespacial (INTA), Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Observatorio de Yebes, Instituto Geografico Nacional (IGN), Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique (LPMAA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid 28850, Spain, Ctr Astrobiol CSIC INTA, Lab Astrofis Mol, Madrid, Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), CEA-Direction de l'Energie Nucléaire (CEA-DEN), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CEA-Direction de l'Energie Nucléaire (CEA-DEN), Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany, Univ Cologne, Inst Phys 1, and Astronomy
- Subjects
[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,HERSCHEL OBSERVATIONS ,Analytical chemistry ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,FOS: Physical sciences ,LINE ,Astrophysics ,LASER MAGNETIC-RESONANCE ,7. Clean energy ,01 natural sciences ,ISM: abundances ,outflows ,Ion ,STAR-FORMATION ,REGION ,NEBULA ,Ionization ,0103 physical sciences ,Absorption (logic) ,010306 general physics ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Physics ,SPECTROSCOPY ,astrochemistry ,Astronomy and Astrophysics ,INTERSTELLAR H3O+ ,Astrophysics - Astrophysics of Galaxies ,DIFFUSE CLOUDS ,molecular processes ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,13. Climate action ,Space and Planetary Science ,COMET-KOHOUTEK ,Astrophysics of Galaxies (astro-ph.GA) ,stars: winds ,submillimeter: ISM ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Order of magnitude ,line: identification - Abstract
We report observations of the reactive molecular ions OH$^+$, H$_2$O$^+$, and H$_3$O$^+$ towards Orion KL with Herschel/HIFI. All three $N=1-0$ fine-structure transitions of OH$^+$ at 909, 971, and 1033GHz and both fine-structure components of the doublet {\it ortho}-H$_2$O$^+$ $1_{11}-0_{00}$ transition at 1115 and 1139GHz were detected; an upper limit was obtained for H$_3$O$^+$. OH$^+$ and H$_2$O$^+$ are observed purely in absorption, showing a narrow component at the source velocity of 9 kms$^{-1}$, and a broad blueshifted absorption similar to that reported recently for HF and {\it para}-H$_{2}^{18}$O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH$^+$ and H$_2$O$^+$ for the 9 km s$^{-1}$ component of $9 \pm 3 \times 10^{12}$cm$^{-2}$ and $7 \pm 2 \times 10^{12}$cm$^{-2}$, and those in the outflow of $1.9 \pm 0.7 \times 10^{13}$cm$^{-2}$ and $1.0 \pm 0.3 \times 10^{13}$cm$^{-2}$. Upper limits of $2.4\times 10^{12}$cm$^{-2}$ and $8.7\times 10^{12}$cm$^{-2}$ were derived for the column densities of {\it ortho} and {\it para}-H$_3$O$^+$ from transitions near 985 and 1657GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate., 5 pages, 1 figure. Accepted to and to be published in the Herschel HIFI special issue of A\&A Letters
- Published
- 2010
- Full Text
- View/download PDF
48. A modal approach to the modeling of rectangular detector horns and cavities at THz frequencies
- Author
-
Neil Trappe, Creidhe OaSullivan, Anthony Murphy, and Stephen Doherty
- Subjects
Physics ,Terahertz radiation ,business.industry ,Modal analysis ,Detector ,Bolometer ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,law.invention ,Horn antenna ,Optics ,Modal ,law ,Sensitivity (control systems) ,business ,Astrophysics::Galaxy Astrophysics ,Mode matching - Abstract
Far-IR space telescopes use horn antenna coupled bolometers for achieving high levels of sensitivity. Unfortunately at THz frequencies large cavity coupled horns prove significantly challenging to simulate accurately. This paper will outline alternative simulation concepts for such problems.
- Published
- 2010
- Full Text
- View/download PDF
49. Efficient optical modelling for far-infrared astronomical instrumentation
- Author
-
Créidhe O'Sullivan, T. Peacocke, Stafford Withington, Neil Trappe, J. Anthony Murphy, and Marcin Gradziel
- Subjects
Physics ,business.industry ,Modal analysis ,Detector ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Physical optics ,law.invention ,Atomic, molecular, and optical physics ,Telescope ,Modal ,Optics ,law ,Electronic engineering ,Deconvolution ,business ,Image restoration - Abstract
Efficient optical modelling in the far infrared is challenging because of the dominance of diffraction effects in typical astronomical instruments. With the development of the next generation of array imagers and multi-moded feed systems the necessity for computational efficiency has become critical to ensure an optimised design, comprehensive system and telescope analysis and image deconvolution. A multi-technique capability is necessary to simulate both efficiently and accurately the propagation of the signal collected by the telescope through the quasi-optical beam guide and feed structures using an appropriate combination of modelling tools, seamlessly passing from one regime to the next from detector to sky. Physical optics for example, although computationally intensive, is useful tool when detailed telescope beam analysis is required, particularly for providing cross-polarisation information. Modal analysis is often appropriate for modelling beam guide structures while analysing the detector feed coupling may rely on a more complete electromagnetic analysis because of the small sizes involved and the use of waveguide and planar structures. Image recovery ideally requires a deconvolution technique based on a modal approach and precise knowledge of the beams on the sky. In this paper we report on our work in the continued development of such appropriate techniques with the particular goal of prototyping powerful efficient computational tools for imaging arrays and partially coherent systems. In the presentation, we will discuss these issues and present examples from real instrumentation.
- Published
- 2010
- Full Text
- View/download PDF
50. Herschel observations of extra-ordinary sources: Detection of Hydrogen Fluoride in absorption towards Orion~KL
- Author
-
T. A. Bell, E. A. Bergin, J. A. Murphy, Martin Emprechtinger, A. C. A. Boogert, S. D. Lord, Alexandre Karpov, D. C. Lis, P. J. Encrenaz, Neil Trappe, Cecilia Ceccarelli, Gary J. Melnick, S.-L. Qin, Rene Plume, D. Johnstone, Marie-Lise Dubernet, N. Honingh, H. W. Yorke, M. Perault, José Cernicharo, R. Güsten, Paul Hartogh, J. R. Goicoechea, Charlotte Vastel, Jean-Michel Krieg, W. D. Latter, Pierrick Martin, J. Stutzki, Jacob Kooi, Thomas G. Phillips, Emmanuel Caux, Holger S. P. Müller, Sébastien Maret, J. C. Pearson, C. Joblin, Karl M. Menten, Maryvonne Gerin, Rudolf Schieder, Jonas Zmuidzinas, Nathan R. Crockett, Eric Herbst, Fabien Daniel, F. F. S. van der Tak, G. A. Blake, Shanshan Yu, David A. Neufeld, P. F. Goldsmith, Volker Ossenkopf, Patrick W. Morris, Thomas F. Giesen, C. Comito, S. Wang, Peter Schilke, Stephan Schlemmer, W. D. Langer, Astronomy, Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Faure, Alexandre
- Subjects
Experimental Physics ,Hydrogen ,FOS: Physical sciences ,Rotational transition ,chemistry.chemical_element ,Astrophysics ,01 natural sciences ,ISM: abundances ,chemistry.chemical_compound ,0103 physical sciences ,Absorption (electromagnetic radiation) ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Line-of-sight ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Hydrogen fluoride ,Astrophysics - Astrophysics of Galaxies ,Redshift ,ISM: molecules ,3. Good health ,chemistry ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Fluorine ,submillimeter: ISM ,Outflow - Abstract
We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules ("weeds"), the HF spectrum shows a P-Cygni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 x 10^13 cm^-2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ~1.6 x 10^-10 for the HF abundance relative to hydrogen nuclei, corresponding to 0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J=2--1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 x 10^-9 derived by Neufeld et al. (2010) for cold, foreground clouds on the line of sight towards G10.6-0.4., 5 pages, 3 figures, paper to be published in the Herschel special issue of A&A letters
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.