Ngai H. Chan, Walter S. Kiefer, James T. Keane, Isamu Matsuyama, James G. Williams, Mark A. Wieczorek, Francis Nimmo, G. Jeffrey Taylor, University of Arizona, Department of Earth and Planetary Sciences [Santa Cruz], University of California [Santa Cruz] (UCSC), University of California-University of California, Hawaii Institute of Geophysics and Planetology (HIGP), University of Hawai‘i [Mānoa] (UHM), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Lunar and Planetary Institute [Houston] (LPI), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), and Siemens Healthcare
International audience; The interior structure of the Moon is constrained by its mass, moment of inertia, and k 2 and h 2 tidal Love numbers. We infer the likely radius, density, and (elastic limit) rigidity of all interior layers by solving the inverse problem using these observational constraints assuming spherical symmetry. Our results do not favor the presence of a low rigidity transition layer between a liquid outer core and mantle. If a transition layer exists, its rigidity is constrained to 43 +26 −9 GPa, with a preference for the high rigidity values. Therefore, if a transition layer exists, it is more likely to have a rigidity similar to that of the mantle (∼70 GPa). The total (solid and liquid) core mass fraction relative to the lunar mass is constrained to 0.0098 +0.0066 −0.0094 and 0.0198 +0.0026 −0.0049 for interior structures with and without a transition layer, respectively, narrowing the range of possible giant impact formation scenarios.