37 results on '"Nicolas Illy"'
Search Results
2. Thiolactone chemistry, a versatile platform for macromolecular engineering
- Author
-
Nicolas Illy and Emma Mongkhoun
- Subjects
Polymers and Plastics ,Organic Chemistry ,Bioengineering ,Biochemistry - Abstract
This review covers the extensive use of γ-thiolactone chemistry as a versatile and powerful tool for macromolecular engineering and the preparation of various polymer architectures, such as functional, alternating, or sequence-controlled (co)polymers.
- Published
- 2022
- Full Text
- View/download PDF
3. Engineering of ion permeable planar membranes and polymersomes based on β-cyclodextrin-cored star copolymers
- Author
-
Haiqin Du, Sandra Kalem, Cécile Huin, Nicolas Illy, Guillaume Tresset, Fernando Carlos Giacomelli, and Philippe Guégan
- Subjects
Biomaterials ,Colloid and Surface Chemistry ,Polymers ,beta-Cyclodextrins ,Molecular Conformation ,Hydrophobic and Hydrophilic Interactions ,Micelles ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Abstract
For polymersome-based nanoreactor purposes, we herein present the synthesis and characterization of well-defined star amphiphilic copolymers composed of a beta-cyclodextrin (βCD) core and seven poly(butylene oxide)-block-polyglycidol (PBO-PGL) arms per side (βCD-(PBO-PGL)
- Published
- 2022
4. Bio-based poly(ester- alt -thioether)s synthesized by organo-catalyzed ring-opening copolymerizations of eugenol-based epoxides and N -acetyl homocysteine thiolactone
- Author
-
Sylvain Caillol, Nicolas Illy, Philippe Guégan, Matthieu Bouzaid, Baptiste Quienne, Simon Le Luyer, Chimie des polymères (LCP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
chemistry.chemical_classification ,Vanillin ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Pollution ,Aldehyde ,0104 chemical sciences ,biobased polymers ,chemistry.chemical_compound ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Thioether ,Polymerization ,Benzyl alcohol ,Polymer chemistry ,Copolymer ,Thiolactone ,Environmental Chemistry ,[CHIM]Chemical Sciences ,0210 nano-technology - Abstract
International audience; The anionic alternating ring-opening copolymerizations of three bio-based aromatic monomers, eugenol glycidyl ether (EGE), dihydroeugenol glycidyl ether (DEGE) and vanilin glycidyl ether (VGE), were carried out with renewable N-acetyl homocysteine thiolactone (NHTL) using benzyl alcohol and 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) as initiating system. This polymerization is a rare example of eugenol-based monomers used to synthesize linear polyesters. Alternating poly(ester-alt-thioether)s are obtained with number-average molar masses M n ranging from 1.1 to 10.8 kg mol-1 and dispersities as low as 1.20. The copolymer structures were carefully characterized by 1 H, 13 C, COSY, HSQC, 1 H-15 N NMR. It was found that the alternate copolymers were obtained selectively under different monomer feed ratios. In addition, the use of EGE and VGE monomers allows the preparation of multi-functional poly(ester-alt-thioether) respectively bearing allyl or aldehyde groups in each repeating unit. The copolymers display only clear glass transition temperatures higher than ambient temperature. This alternating copolymerization method offers a new chemical pathway for the valorization of bio-based aromatic compounds and expand the scope of renewable polyesters.
- Published
- 2021
- Full Text
- View/download PDF
5. An alternative approach to create N-substituted cyclic dipeptides
- Author
-
Nicolas Illy, Özgül Tezgel, Philippe Guégan, Sylvie Noinville, Véronique Bennevault, Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université d'Évry-Val-d'Essonne (UEVE), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE18-0015,VINP,monopDNA-Nanoparticules Virus-Inspirées pour transfert de gènes.(2017)
- Subjects
chemistry.chemical_classification ,Polymers and Plastics ,Peptidomimetic ,Organic Chemistry ,Bioengineering ,Peptide ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Combinatorial chemistry ,0104 chemical sciences ,chemistry.chemical_compound ,Monomer ,chemistry ,Polymerization ,Nucleophile ,[CHIM]Chemical Sciences ,Lewis acids and bases ,0210 nano-technology ,Isomerization ,Phosphazene - Abstract
International audience; N-Modified peptide backbones are promising peptidomimetics which offer several advantages in terms of improved biological activity and stability. They further allow the development of novel functional materials. However, the synthesis of N-substituted peptides is very challenging with the existing methods, particularly the synthesis of peptides with larger N-substituents. In this work, we are introducing a new method to create N-polyether substituted cyclic dipeptides via anionic ring-opening polymerization (AROP). Four different cyclic dipeptides with different hydrophobic functional groups were selected to create N-substituted cyclic dipeptides. Backbone amides –NH– were deprotonated with phosphazene bases to form nucleophilic initiators. Furthermore, the effect of different phosphazene bases (tBuP4 and tBuP2) and of the addition of a Lewis acid (i-Bu3Al) was studied in detail towards creating N-polyether-cyclic dipeptides bearing either hydrophobic poly(butylene oxide) chains, or hydrophilic linear polyglycidol chains, thanks to the polymerization of 1,2-epoxybutane and the polymerization followed by the deprotection of t-butyl glycidyl ether monomers, respectively. Moreover, we have demonstrated the possibility of avoiding the isomerization of cyclic dipeptides during the synthesis of N-substituted analogues depending on the synthetic approach.
- Published
- 2019
- Full Text
- View/download PDF
6. Alternating copolymerization of bio-based N-acetylhomocysteine thiolactone and epoxides
- Author
-
Valentin Puchelle, Simon Le Luyer, Philippe Guégan, Nicolas Illy, Chimie des polymères (LCP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), and Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,Anionic ring-opening polymerization ,General Physics and Astronomy ,Epoxide ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Thioether ,Polythioether ,Alternating copolymerization ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Moiety ,Molar mass ,Organic Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Bio-based γ-thiolactone ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Benzyl alcohol ,0210 nano-technology ,Glass transition - Abstract
International audience; The anionic ring-opening polymerizations (AROP) of bio-based N-acetyl homocysteine thiolactone (NHTL) and different epoxides were carried out using benzyl alcohol and 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) as initiating system. This polymerization is a rare example of AROP in the presence of an acidic moiety (acetamido group). Well-defined alternating poly(ester-alt-sulfide)s are obtained with number-average molar masses Mn ranging from 1.7 to 13.0 kg mol−1 and dispersities as low as 1.14. The presence of one acetamido function in the lateral group on each repeating unit of the copolymers derived from NHTL results in very significant increases (up to 94 °C) of the glass transition temperature Tg compared to similar poly(ester-alt-sulfide) derived from petro-based γ-butyrothiolactone (BTL). These functional poly(NHTL-alt-epoxide)s are valuable structures with numerous potential applications due to the presence in each repeating unit of one cleavable ester group and one redox-sensitive thioether group.
- Published
- 2021
- Full Text
- View/download PDF
7. Functional Poly(ester- alt -sulfide)s Synthesized by Organo-Catalyzed Anionic Ring-Opening Alternating Copolymerization of Oxiranes and γ-Thiobutyrolactones
- Author
-
Philippe Guégan, Laura Garnotel, Mathias Destarac, Mélanie Girardot, Léa Levesque, Valentin Puchelle, Yannick Latreyte, Olivier Coutelier, Nicolas Illy, Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Interactions moléculaires et réactivité chimique et photochimique (IMRCP), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), P3R - Polymères de Précision par Procédés Radicalaires (P3R), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT), Chimie des polymères (LCP), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris- Chimie ParisTech-PSL (ENSCP)-ESPCI ParisTech-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Laboratoire Matériaux Polymères aux Interfaces (MPI), Université d'Évry-Val-d'Essonne (UEVE), Institut de Chimie et des Matériaux Paris-Est (ICMPE), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)
- Subjects
Polymers and Plastics ,Sulfide ,γthiobutyrolactone ,Allyl glycidyl ether ,polysulfide ,02 engineering and technology ,010402 general chemistry ,Ring (chemistry) ,01 natural sciences ,Catalysis ,Inorganic Chemistry ,epoxides ,Reaction temperature ,alternating copolymerization ,Polymer chemistry ,Materials Chemistry ,Copolymer ,[CHIM]Chemical Sciences ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Organic Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Glycidyl ether ,0104 chemical sciences ,chemistry ,anionic ring-opening polymerization ,0210 nano-technology ,Transesterification reaction - Abstract
The copolymerization of tert-butyl glycidyl ether (tBuGE), allyl glycidyl ether (AGE), ethoxyethyl glycidyl ether (EEGE) and 1,2-epoxybutane (BO) with γ-thiobutyrolactone was investigated using ben...
- Published
- 2020
- Full Text
- View/download PDF
8. Temperature‐Sensitive Amphiphilic Non‐Ionic Triblock Copolymers for Enhanced In Vivo Skeletal Muscle Transfection
- Author
-
Pierre Lehn, Philippe Guégan, Tristan Montier, Jérôme Mathe, Nicolas Illy, Bazoly Rasolonjatovo, Cécile Huin, Patrick Midoux, Bruno Pitard, Véronique Bennevault, Thomas Haudebourg, Tony Le Gall, Hervé Cheradame, Laboratoire Analyse, Modélisation et Matériaux pour la Biologie et l'Environnement (LAMBE - UMR 8587), Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Génétique, génomique fonctionnelle et biotechnologies (UMR 1078) (GGB), EFS-Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Brestois Santé Agro Matière (IBSAM), Université de Brest (UBO), Host-Pathogen Interactions in the Regulation of Immune Responses (CRCINA-ÉQUIPE 5), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut Brestois Santé Agro Matière (IBSAM), Université de Brest (UBO)-Université de Brest (UBO)-EFS-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), and HAL-SU, Gestionnaire
- Subjects
[CHIM.POLY] Chemical Sciences/Polymers ,Phase transition ,Polymers and Plastics ,poly(2‐methyl‐2‐oxazoline) ,in vivo transfection ,Bioengineering ,02 engineering and technology ,Transfection ,010402 general chemistry ,01 natural sciences ,Lower critical solution temperature ,Biomaterials ,Mice ,In vivo ,LCST ,Amphiphile ,Materials Chemistry ,Copolymer ,medicine ,Animals ,skeletal muscle ,Muscle, Skeletal ,Lipid bilayer ,Chemistry ,Skeletal muscle ,DNA ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,medicine.anatomical_structure ,[CHIM.POLY]Chemical Sciences/Polymers ,Biophysics ,amphiphilic copolymers ,Female ,0210 nano-technology ,Plasmids ,Biotechnology - Abstract
International audience; It is reported that low concentration of amphiphilic triblock copolymers of pMeOx‐b‐pTHF‐b‐pMeOx structure (TBCPs) improves gene expression in skeletal muscle upon intramuscular co‐injection with plasmid DNA. Physicochemical studies carried out to understand the involved mechanism show that a phase transition of TBCPs under their unimer state is induced when the temperature is elevated from 25 to 37 °C, the body temperature. Several lines of evidences suggest that TBCP insertion in a lipid bilayer causes enough lipid bilayer destabilization and even pore formation, a phenomenon heightened during the phase transition of TBCPs. Interestingly, this property allows DNA translocation across the lipid bilayer model. Overall, the results indicate that TBCPs exhibiting a phase transition at the body temperature is promising to favor in vivo pDNA translocation in skeletal muscle cells for gene therapy applications.
- Published
- 2020
- Full Text
- View/download PDF
9. Polymérisation de monomères époxide promue par la base phosphazène tBuP4 : une étude cinétique comparative
- Author
-
Philippe Guégan, Nicolas Illy, Haiqin Du, Valentin Puchelle, Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,Allyl glycidyl ether ,Organic Chemistry ,Kinetics ,Epoxide ,Bioengineering ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,0104 chemical sciences ,chemistry.chemical_compound ,Monomer ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Benzyl alcohol ,Polymer chemistry ,Reactivity (chemistry) ,Lewis acids and bases ,0210 nano-technology - Abstract
The kinetics of the anionic ring-opening polymerizations (AROP) of epoxide monomers, 1,2-epoxybutane (BO), 1,2-epoxypropane (PO), tert-butyl glycidyl ether (tBuGE), allyl glycidyl ether (AGE), benzyl glycidyl ether (BnGE), and ethoxyethyl glycidyl ether (EEGE), was investigated using benzyl alcohol/tBuP4 as the initiating system. All the polymerizations proceed in a controlled manner following a first order kinetics with respect to the monomer. The influence of the side chains borne by the oxirane ring was evidenced. Propagating centers derived from epoxide bearing heretoatom-containing side chains display higher reactivities and propagation rates. A reactivity scale has been established and is as follows, kp,BnGE > kp,AGE > kp,EEGE ≫ kp,tBuGE ≈ kp,PO > kp,BO. Using BO as the model monomer and different initiator concentrations, the nature of the propagating species has been identified as ion pairs. The influence of a Lewis acid addition on the monomer reactivities and on the control of the polymerization was also investigated. In the presence of triisobutylaluminum (iBu3Al), polymerization kinetics was faster but led to a broadening of the molar mass distributions. The monomer reactivity scale was also strongly modified with kp,PO > kp,BO > kp,EEGE ≈ kp,AGE > kp,BnGE ≈ kp,tBuGE. The polymerizations of PO, BO and tBuGE follow zero order kinetics which is not the case for the other oxirane monomers.
- Published
- 2020
- Full Text
- View/download PDF
10. Preliminary investigations on a simple polyelectrolyte derived from (CH 2 CH 2 C(COOH) 2 ) n : Unexpected solubility-insolubility pattern controlled selectively by the nature of the alkali counterion
- Author
-
Noha Elhalawany, Jacques Penelle, Blandine Brissault, Claire Négrell, Nicolas Illy, Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), and National Research Centre - NRC (EGYPT)
- Subjects
Polymers and Plastics ,Inorganic chemistry ,02 engineering and technology ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,chemistry.chemical_compound ,Polyelectrolyte interactions with alkali ions ,Polymer chemistry ,Materials Chemistry ,Molecule ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Carboxylate ,Solubility ,chemistry.chemical_classification ,Precipitation (chemistry) ,Organic Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Alkali metal ,Polyelectrolytes ,Polyelectrolyte ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,Malonate ,chemistry ,Counterion ,0210 nano-technology - Abstract
International audience; Monodisperse samples of alkali poly(trimethylene-1,1-dicarboxylate) polyelectrolytes of (CH2CH2C(COO(-))2)n structure and of low to moderate molecular weights have been synthesized and characterized. These polymers are densely and evenly decorated by carboxylate groups, with the anionic moieties extending symmetrically in transverse directions on every third carbon alongside the backbone. In sharp contrast to other polyelectrolytes, they easily precipitate with sodium and potassium ions in water. The precipitation is selective, the solubility varying with the nature of the alkali cation in the order: Li+ > K+ > Na+. Precipitation is fast and reversible, the solubility-insolubility transition being rapidly crossed in both directions when the proper alkali ion is added in excess to the solution/sus- pension. Experimental investigations (WAXS, FTIR) on the precipitated polymer and DFT theoretical calculations on model 1:1 complexes of malonate subunits with alkali cations have been carried out in order to cast some light on the above phenomena. In addition, a model molecule (CH3C(COOH)2CH2CH2C(COOH)2CH3) has been prepared, supporting the structure of the obtained polyelectrolyte as well as the formation of specific structures at half-deprotonation of the poly(carboxylic acid).
- Published
- 2017
- Full Text
- View/download PDF
11. Phosphazene/triisobutylaluminum-promoted anionic ring-opening polymerization of 1,2-epoxybutane initiated by secondary carbamates
- Author
-
Philippe Guégan, Nicolas Illy, L Hassouna, Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,Bulk polymerization ,Chemistry ,Organic Chemistry ,Bioengineering ,Chain transfer ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Biochemistry ,Ring-opening polymerization ,0104 chemical sciences ,Deprotonation ,Chain-growth polymerization ,Polymerization ,Polymer chemistry ,[CHIM]Chemical Sciences ,Molar mass distribution ,0210 nano-technology ,Ionic polymerization - Abstract
International audience; Attempts to use a carbamate-phosphazene base as the initiating system for the polymerization of 1,2-epoxybutane was unsuccessful. As a matter of fact, carbamate deprotonation by phosphazene bases led to their fast decomposition generating alkoxide anions which initiate the polymerization rather than carbamate anions. Conversely, in the presence of triisobutylaluminum – a Lewis acid – the in situ generation of an anionic initiator X− obtained by the deprotonation of the tBuP4 phosphazene base was tested as a possible way to initiate the polymerization of 1,2-epoxybutane. Particular attention was given to the detection of eventual transfer or side-reactions according to the carbamate : triisobutylaluminum : phosphazene base ratio, to the solvent dielectric constant and to the number of P[double bond, length as m-dash]N– units in the phosphazene base. The reaction was performed with a stoichiometric ratio (1 : 1 : 1) of carbamate : triisobutylaluminum : tBuP2, which gave the best results. Under these conditions, the initiation of the polymerization by the carbamate anion was quantitative; no transfer reactions have been observed and the polymerization proceeded in a controlled manner to afford amide end-capped poly(butylene oxide) with a narrow molar mass distribution and expected molar masses.
- Published
- 2017
- Full Text
- View/download PDF
12. Synthesis and Solid-State Properties of PolyC3 (Co)polymers Containing (CH2−CH2−C(COOR)2) Repeat Units with Densely Packed Fluorocarbon Lateral Chains
- Author
-
Sylvie Boileau, Alina V. Maryasevskaya, Denis V. Anokhin, Deogratias Urayeneza, Dimitri A. Ivanov, Blandine Brissault, Laurent Michely, Jacques Penelle, Nicolas Illy, Egor A. Bersenev, Penelle, Jacques, Chimie des polymères (LCP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Moscow Institute of Physics and Technology [Moscow] (MIPT), Lomonosov Moscow State University (MSU), Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Kolmogorov, Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), and Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE)
- Subjects
[CHIM.POLY] Chemical Sciences/Polymers ,Materials science ,Polymers and Plastics ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Inorganic Chemistry ,Differential scanning calorimetry ,Materials Chemistry ,Copolymer ,Side chain ,Fluorocarbon ,semicrystalline and liquid crystalline polymers ,chemistry.chemical_classification ,Organic Chemistry ,polymer synthesis ,Fluorinated polymers ,Polymer ,021001 nanoscience & nanotechnology ,3. Good health ,0104 chemical sciences ,X-ray diffraction ,self-associating side-chains in polymers ,Crystallography ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,chemistry ,X-ray crystallography ,structure-property relationships in the solid-state ,0210 nano-technology ,Carbon - Abstract
International audience; The synthesis and structural characterization of linear PolyC3 polymers containing trimethylene-1,1-dicarboxylate structural repeat units with C6F13 and C8F17 fluorinated side chains is described for the first time, and their properties were compared with the traditional polyvinyl structures thatdisplay the fluorinated chain on every second rather than on every third carbon alongside the backbone. Homopolymers as well as statistical and block copolymers with n-propyl and/or allyl trimethylene-1,1-dicarboxylate blocks have been obtained from PolyC3 precursors containing diallyl trimethylene-1,1-dicarboxylate units, by reacting C6F13−C2H4−SH and C8F17−C2H4−SH thiols with the allyl groups using a thiol−ene post- polymerization modification reaction. Solid-state properties have been investigated by differential scanning calorimetry for all of the (co)polymers and by small-angle X-ray scattering/wide-angle X-ray scattering for the C8F17 homopolymer at several temperatures. The structure of the homopolymer consistently shows a coexistence of two smectic phases at room temperature, which can be identified as SmB and SmC. This coexistence is assumed to arise from the fact that the distances between carboxylic oxygens bonded to the same carbon are very close to the ones between the neighboring carboxylic oxygens alongside the backbone, resulting in two possible ways of packing the pendant fluoroalkyl chains arranged in a hexatic order.
- Published
- 2019
- Full Text
- View/download PDF
13. pH‐Sensitive Poly(ethylene glycol)/Poly(ethoxyethyl glycidyl ether) Block Copolymers: Synthesis, Characterization, Encapsulation, and Delivery of a Hydrophobic Drug
- Author
-
Michèle Salmain, Nicolas Illy, Philippe Guégan, Vincent Corcé, Vincent Molinié, Jéril Degrouard, Mélanie Labourel, Guillaume Tresset, Jeremy M. Zimbron, Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Polymers and Plastics ,curcumin encapsulation ,02 engineering and technology ,amphiphilic polyether ,010402 general chemistry ,01 natural sciences ,Micelle ,chemistry.chemical_compound ,Amphiphile ,Polymer chemistry ,Materials Chemistry ,Copolymer ,Physical and Theoretical Chemistry ,Solubility ,anionic-ring opening polymerization ,Aqueous solution ,Organic Chemistry ,self-assembly ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,3. Good health ,[CHIM.POLY]Chemical Sciences/Polymers ,[SDV.SP.PG]Life Sciences [q-bio]/Pharmaceutical sciences/Galenic pharmacology ,chemistry ,Polymerization ,pH-sensitive copolymer ,Curcumin ,0210 nano-technology ,Ethylene glycol - Abstract
International audience; Curcumin is a natural polyphenolic compound known for its numerous pharmacological properties. However, its low water solubility and instability at neutral pH are serious drawbacks preventing its use as an oral drug. Well‐defined amphiphilic poly(ethylene glycol)‐block‐poly(ethoxyethyl glycidyl ether) (PEG‐b‐PEEGE) block copolymers carrying acid‐labile acetal groups are synthesized by anionic ring‐opening polymerization and investigated as potential pH‐sensitive nano‐carriers for delivery of curcumin to cancer cells. The nanoparticles, resulting from copolymer self‐assembly in aqueous media, are characterized by dynamic light scattering and cryo‐transmission electron microscopy. The nanoparticles’ stabilities are evaluated in three different phosphate buffers (pH = 7.2, 6.4, and 5.3). The stability decreases at lower pH and a complete disappearance of the nanoparticles is noticed after 4 days at pH 5.3. Curcumin is encapsulated in hydrophobic core of mPEG40‐b‐PEEGE25 nanoparticles allowing significant enhancements of curcumin solubility in water and lifetime at neutral pH. In vitro curcumin release is studied at different pH by UV‐spectroscopy and high‐performance liquid chromatography (HPLC). The cytotoxicity of curcumin and curcumin encapsulated in micelles is evaluated by cell viability 3‐(4,5‐Dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2H‐tetrazolium bromide (MTT) assay on MDA‐MB‐231 human breast cancer cells
- Published
- 2019
- Full Text
- View/download PDF
14. β-Cyclodextrin-Based Star Amphiphilic Copolymers: Synthesis, Characterization, and Evaluation as Artificial Channels
- Author
-
Cécile Huin, Véronique Bennevault, Philippe Guégan, Nicolas Illy, Ibrahima Faye, Chimie des polymères (LCP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), and Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,[PHYS]Physics [physics] ,Polymers and Plastics ,Cyclodextrin ,Organic Chemistry ,02 engineering and technology ,Star (graph theory) ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Characterization (materials science) ,Anionic addition polymerization ,chemistry ,Polymer chemistry ,Materials Chemistry ,[CHIM]Chemical Sciences ,Physical and Theoretical Chemistry ,0210 nano-technology ,Amphiphilic copolymer - Abstract
International audience; 14‐arm amphiphilic star copolymers are synthesized according to different strategies. First, the anionic ring polymerization of 1,2‐butylene oxide (BO) initiated by per(2‐O‐methyl‐3,6‐di‐O‐(3‐hydroxypropyl))‐β‐CD (β‐CD’OH14) and catalyzed by t‐BuP4 in DMF is investigated. Analyses by NMR and SEC show the well‐defined structure of the star β‐CD’‐PBO14. To obtain a 14‐arm poly(butylene oxide‐b‐ethylene oxide) star, a Huisgen cycloaddition between an α‐methoxy‐ω‐azidopoly(ethylene oxide) and the β‐CD’‐PBO14,whose end‐chains are beforehand alkyne‐functionalized, is performed. In parallel, 14‐arm star copolymers composed of butylene oxide‐b‐glycidol arms are successfully synthesized by the anionic polymerization of ethoxyethylglycidyl ether (EEGE) initiated by β‐CD’‐PBO14 with t‐BuP4. The deprotection of EEGE units is then performed to provide the polyglycidol blocks. These amphiphilic star polymers are evaluated as artificial channels in lipid bilayers. The effect of changing a PEO block by a polyglycidol block on the insertion properties of these artificial channels is discussed.
- Published
- 2019
- Full Text
- View/download PDF
15. Modification of proline‐based 2,5‐diketopiperazines by anionic ring‐opening polymerization
- Author
-
Philippe Guégan, Nicolas Illy, Haiqin Du, Özgül Tezgel, Valentin Puchelle, Chimie des polymères (LCP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Parisien de Chimie Moléculaire (IPCM), Chimie Moléculaire de Paris Centre (FR 2769), Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Chimie Moléculaire de Paris Centre (FR 2769), and Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,Chemistry ,polyethers ,Organic Chemistry ,02 engineering and technology ,ring‐opening polymerization ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ring-opening polymerization ,0104 chemical sciences ,anionic polymerization ,Anionic addition polymerization ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymer chemistry ,Materials Chemistry ,peptides ,Proline ,0210 nano-technology ,Diketopiperazines - Abstract
International audience; 2,5‐Diketopiperazines (DKPs) are the smallest cyclic dipeptides found in nature with various attractive properties. In this study, we have demonstrated the successful modification of proline‐based DKPs using anionic ring‐opening polymerization (AROP) as a direct approach. Four different proline‐based DKPs with various side chains and increasing steric hindrance were used as initiating species for the polymerization of 1,2‐epoxybutane or ethoxyethyl glycidyl ether in the presence of t‐BuP4 phosphazene base. The addition of a Lewis acid, tri‐isobutyl aluminum, to the reaction mixture strongly decreased the occurrence of side reactions. Impact of the DKP side‐chain functionalities on molar mass control and dispersity was successfully evidenced.
- Published
- 2019
- Full Text
- View/download PDF
16. Anionic ring-opening polymerization of N -glycidylphthalimide: Combination of phosphazene base and activated monomer mechanism
- Author
-
Özgül Tezgel, Nicolas Illy, Philippe Guégan, Somasoudrame Rassou, Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), and Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Ring-opening polymerization ,epoxy ,Phthalimide ,chemistry.chemical_compound ,Polymer chemistry ,Materials Chemistry ,Lewis acids and bases ,Ring Opening Polymerization ,Molar mass ,Anionic polymerization ,living polymerization ,Organic Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Monomer ,Anionic addition polymerization ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Living polymerization ,0210 nano-technology ,Phosphazene bases - Abstract
International audience; Anionic ring‐opening polymerization of glycidyl phthalimide, initiated with alcohol–phosphazene base systems and based on monomer activation with a Lewis acid (iBu3Al), has been studied. No propagation occurred for initiator: iBu3Al ratios less or equal to 1:3. For larger Lewis acid amounts, the first anionic ring‐opening polymerizations of glycidyl phthalimide were observed. Polymers were carefully characterized by NMR, MALDI‐TOF mass spectrometry, and size exclusion chromatography and particular attention was given to the detection of eventual transfer or side‐reactions. However, polymer precipitation and transfer reaction to aluminum derivative were detrimental to monomer conversion, polymerization control, and limited polymer chain molar masses. The influence of reaction temperature and solvent on polymer precipitation and transfer reactions was studied and reaction conditions have been optimized leading to afford end‐capped poly(glycidyl phthalimide) with narrow molar mass distributions.
- Published
- 2018
- Full Text
- View/download PDF
17. Phosphazene-Promoted Metal-Free Ring-Opening Polymerization of 1,2-Epoxybutane Initiated by Secondary Amides
- Author
-
Philippe Guégan, Caroline Bray, Nicolas Illy, Sylvie Noinville, Laetitia Dentzer, Institut Parisien de Chimie Moléculaire (IPCM), Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Chimie des polymères (LCP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Parisien de Chimie Moléculaire (IPCM), Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,Bulk polymerization ,Chemistry ,Organic Chemistry ,Cationic polymerization ,Chain transfer ,Ring-opening polymerization ,Inorganic Chemistry ,Chain-growth polymerization ,Polymerization ,Polymer chemistry ,Materials Chemistry ,[CHIM]Chemical Sciences ,Reversible addition−fragmentation chain-transfer polymerization ,Ionic polymerization ,ComputingMilieux_MISCELLANEOUS - Abstract
The in situ generation of an anionic initiator X– obtained by the deprotonation of various secondary amides with tBuP4 phosphazene base was tested as possible way to initiate the polymerization of 1,2-epoxybutane. The initiation efficiency of different amide-containing molecules was investigated. Particular attention was given to the detection of eventual transfer or side reactions, especially due to nucleophilic attacks on the initiator moiety at the α-chain end. In all cases, the initiation of the polymerization by the amidate anion was effective. And in most cases, the polymerization proceeded in a controlled manner to afford amide end-capped poly(butylene oxide) with narrow molar mass distribution and expected molar masses.
- Published
- 2015
- Full Text
- View/download PDF
18. New prospects for the synthesis of N-alkyl phosphonate/phosphonic acid-bearing oligo-chitosan
- Author
-
Ghislain David, Rémi Auvergne, Nicolas Illy, Bernard Boutevin, Guillaume Couture, Sylvain Caillol, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
- Subjects
Reaction conditions ,chemistry.chemical_classification ,General Chemical Engineering ,technology, industry, and agriculture ,macromolecular substances ,General Chemistry ,equipment and supplies ,Phosphonate ,carbohydrates (lipids) ,Chitosan ,Hydrolysis ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Organic chemistry ,ComputingMilieux_MISCELLANEOUS ,Alkyl - Abstract
N-phosphonomethylation reactions of oligo-chitosan were performed according to Moedritzer and Kabachnik–Fields conditions. The different Moedritzer reaction conditions used did not allow the phosphonomethylation. On the contrary, the Kabachnik–Fields reactions led to oligo-chitosan methyl phosphonated derivatives. In addition, novel dialkyl phosphoryl oligo-chitosan was synthesized in water at room temperature via epoxy–amine reactions of oligo-chitosan with dialkyl (3-(oxiran-2-ylmethoxy)propyl) phosphonates. This simple and efficient synthetic method provides a new approach for the preparation of phosphonated oligo-chitosan derivatives. Then, the hydrolysis of the phosphonated compounds to generate the phosphonic acid moieties was investigated. The mildest conditions were determined in order to avoid the chitosan backbone degradation. All the products were characterized by 1H and 31P NMR analyses.
- Published
- 2014
- Full Text
- View/download PDF
19. The influence of formulation and processing parameters on the thermal properties of a chitosan-epoxy prepolymer system
- Author
-
Rémi Auvergne, Sylvain Caillol, Nicolas Illy, Bernard Boutevin, Ghislain David, Sofia Benyahya, and Nelly Durand
- Subjects
chemistry.chemical_classification ,Thermogravimetric analysis ,Materials science ,Polymers and Plastics ,Organic Chemistry ,Polymer ,Epoxy ,Solvent ,Chitosan ,chemistry.chemical_compound ,Differential scanning calorimetry ,chemistry ,visual_art ,Materials Chemistry ,visual_art.visual_art_medium ,Composite material ,Prepolymer ,Curing (chemistry) - Abstract
Waterborne epoxy dispersions have been employed effectively for many years in response to environmental regulations aimed at reducing solvent levels in coatings. Very few non-toxic bio-based polyamines have been reported in the literature as curing agents for epoxy-functional waterborne dispersions. Currently to our knowledge the only bio-based amino hardener used to cure a waterborne epoxy prepolymer is ϵ-polylysine. Being one of the rare primary amine-containing polymers of natural origin, chitosan is produced commercially by the deacetylation of chitin. In the work reported here, chitosan and oligochitosan were evaluated as curing agents for diepoxy prepolymers. A solvent-free prepolymer (Epotec) and a waterborne prepolymer dispersion (Epirez) were both used. A crosslinked network was obtained when the reaction was performed with the waterborne epoxy dispersion. The influence of the hardener-to-epoxy prepolymer ratio on the crosslinking density was investigated. The thermal properties of networks were measured using differential scanning calorimetry and thermogravimetric analysis. © 2013 Society of Chemical Industry
- Published
- 2013
- Full Text
- View/download PDF
20. A Chitosan Derivative Containing Both Carboxylic Acid and Quaternary Ammonium Moieties for the Synthesis of Cyclic Carbonates
- Author
-
Ghislain David, Sylvain Caillol, Vincent Besse, Nicolas Illy, and Bernard Boutevin
- Subjects
General Chemical Engineering ,Carboxylic acid ,Carbonates ,Carboxylic Acids ,Ether ,Chemistry Techniques, Synthetic ,010402 general chemistry ,7. Clean energy ,01 natural sciences ,Catalysis ,Chitosan ,chemistry.chemical_compound ,Pressure ,Environmental Chemistry ,Organic chemistry ,General Materials Science ,Ammonium ,Thermal stability ,chemistry.chemical_classification ,010405 organic chemistry ,Temperature ,Carbon Dioxide ,0104 chemical sciences ,Solvent ,Quaternary Ammonium Compounds ,Kinetics ,General Energy ,chemistry ,Yield (chemistry) - Abstract
Chitosan, a renewable feedstock, is modified and used as a catalytic support in the presence of potassium iodide. The system is highly efficient towards the incorporation of carbon dioxide (CO2 ) into epoxides. It demonstrates very good thermal stability and is recyclable more than five times without loss of activity. The optimal reaction conditions were determined using allylglycidyl ether as a model and extended to a wide range of other epoxides. Cyclic carbonates were obtained with very high yield in a few hours under mild conditions (2-7 bar≈0.2-0.7 MPa, 80 °C) and no solvent.
- Published
- 2016
21. Correction: A polymeric membrane permeabilizer displaying densely packed arrays of crown ether lateral substituents
- Author
-
Valessa Barbier, Karol Ondrias, Blandine Brissault, Nicolas Illy, Anna Bertova, Ming Liu, Jacques Penelle, Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), and Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences
- Subjects
chemistry.chemical_classification ,General Chemical Engineering ,Potassium ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,stomatognathic diseases ,Membrane ,[CHIM.POLY]Chemical Sciences/Polymers ,stomatognathic system ,chemistry ,Polymer chemistry ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Polymeric membrane ,0210 nano-technology ,Carbon ,Crown ether ,Macromolecule - Abstract
We report the design, synthesis and evaluation of a novel macromolecular membrane permeabilizer displaying geminally substituted crown-ethers (18-crown-6) on every third carbon alongside the backbone. The polymer has a rather high affinity with potassium as well as permeabilization properties towards K+, Na+ and Ca2+, including single-channel behavior.
- Published
- 2016
- Full Text
- View/download PDF
22. Theory of Lamellar Superstructure from a Mixture of Two Cylindrical PS–PMMA Block Copolymers
- Author
-
Jeffrey D. Vavasour, Mark D. Whitmore, John G. Spiro, Nicolas Illy, and Mitchell A. Winnik
- Subjects
Inorganic Chemistry ,Materials science ,Morphology (linguistics) ,Polymers and Plastics ,Field (physics) ,Organic Chemistry ,Materials Chemistry ,Copolymer ,Lamellar structure ,Composite material ,Superstructure (condensed matter) - Abstract
The goal of this theoretical study was to examine whether formation of a lamellar superstructure was possible when blending relatively low-segregation cylindrical diblock copolymers (PS-b-PMMA) of complementary composition. In the past, these kinds of experiments had only been carried out at high segregation levels. Our numerical self-consistent field (NSCF) simulations provided details of the morphology of the superstructure as well as of the components to be blended. For comparison, we also report our NSCF simulation—giving the same details—of a corresponding experiment with PS–PB copolymers.
- Published
- 2012
- Full Text
- View/download PDF
23. A polymeric membrane permeabilizer displaying densely packed arrays of crown ether lateral substituents
- Author
-
Ming Liu, Anna Bertova, Nicolas Illy, Blandine Brissault, Jacques Penelle, Karol Ondrias, Valessa Barbier, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Institut de Chimie et des Matériaux Paris-Est (ICMPE), and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
[SDV.BBM.BP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biophysics ,[CHIM.POLY]Chemical Sciences/Polymers ,010405 organic chemistry ,General Chemical Engineering ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,General Chemistry ,010402 general chemistry ,01 natural sciences ,0104 chemical sciences - Abstract
Correction available: Liu, M.; Bertova, A.; Illy, N.; Brissault, B.; Penelle, J.; Ondrias, K.; Barbier, V. “Correction - A Polymeric Membrane Permeabilizer Displaying Densely Packed Arrays of Crown Ether Lateral Substituents”, RSC Advances, 2016, 6, 14222 (DOI: 10.1039/C6RA90009g).; International audience; We report the design, synthesis and evaluation of a novel macromolecular membrane permeabilizer displaying geminally substituted crown-ethers (18-crown-6) on every third carbon alongside the backbone. The polymer has a rather high affinity with potassium as well as permeabilization properties towards K+, Na+ and Ca2+, including single-channel behavior.
- Published
- 2012
- Full Text
- View/download PDF
24. Activation in anionic polymerization: Why phosphazene bases are very exciting promoters
- Author
-
Sylvie Boileau and Nicolas Illy
- Subjects
Polymers and Plastics ,Chemistry ,Organic Chemistry ,Surfaces and Interfaces ,Ring-opening polymerization ,chemistry.chemical_compound ,Anionic addition polymerization ,Monomer ,Deprotonation ,Polymerization ,Polymer chemistry ,Materials Chemistry ,Ceramics and Composites ,Ionic polymerization ,Phosphazene ,Living anionic polymerization - Abstract
Recently, nitrogen–phosphorous hybrid organobases such as phosphazene bases (PBs), which possess a remarkably high basicity, have been extensively studied in organic synthesis. Their applications in the domain of anionic polymerization are reviewed. Those non-ionic superbases generate highly reactive anionic species according to two different pathways: firstly by deprotonation of weak acids in which the protonated phosphazene base forms the cation, and secondly by complexation of the lithium cation by the phosphazene base when organolithium compounds are used as initiators. They have been successfully used for the anionic ring-opening polymerization (AROP) of epoxides, cyclosiloxanes, cyclic esters, caprolactam, and very recently cyclopropane-1,1-dicarboxylates, as well as for the anionic polymerization of vinyl monomers such as methacrylates, acrylates, butadiene, and isoprene. Polymerizations with metal-free non-protonated phosphazenium counterions are also reviewed. In all cases, the rates of polymerization are much higher than those observed with metal cations, and similar to the values obtained with cryptated counterions. The use of protonated and non-protonated phosphazenium counterions leads generally to polymers with narrow molecular weight distributions, and well-controlled end groups. Advantages of PBs are discussed, and perspectives in the revisited domain of anionic activation applied to polymer chemistry are presented.
- Published
- 2011
- Full Text
- View/download PDF
25. Control of End Groups in Anionic Polymerizations Using Phosphazene Bases and Protic Precursors As Initiating System (XH-ButP4 Approach): Application to the Ring-Opening Polymerization of Cyclopropane-1,1-Dicarboxylates
- Author
-
Jacques Penelle, Sylvie Boileau, Nicolas Illy, Valessa Barbier, William Buchmann, Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polymers and Plastics ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Chemistry ,Organic Chemistry ,Cationic polymerization ,Chain transfer ,Solution polymerization ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,[CHIM.POLY]Chemical Sciences/Polymers ,Anionic addition polymerization ,Chain-growth polymerization ,Polymerization ,Polymer chemistry ,Materials Chemistry ,Organic chemistry ,0210 nano-technology ,Ionic polymerization ,Living anionic polymerization - Abstract
International audience; A synthetic method involving the in situ generation of an anionic initiator X− obtained by reaction of its conjugate acid precursor XH with ButP4 phosphazene base was tested as a possible way to easily and better control the end groups of polymers derived from the anionic ring-opening polymerization of cyclopropane-1,1-dicarboxylates. Several types of precursors were investigated, including thiols, alcohols, a carbazole, and a malonate. In all but one cases, a living polymerization mechanism could be observed, which was exploited to control the nature of the terminal end groups by reaction of the propagating malonate carbanion R−C(COOPr)2− with alkylating agents. It was also demonstrated that toluene was a much better solvent than the traditional one used in these reactions (THF) as a larger range of available temperatures was available despite an almost identical solvent influence on the polymerization. Exploitation of this feature provided access to higher degrees of polymerization than previously possible.
- Published
- 2010
- Full Text
- View/download PDF
26. Metal-Free Activation in the Anionic Ring-Opening Polymerization of Cyclopropane Derivatives
- Author
-
Valessa Barbier, Nicolas Illy, Sylvie Boileau, and Jacques Penelle
- Subjects
Allyl bromide ,Polymers and Plastics ,Thiophenol ,Organic Chemistry ,Solution polymerization ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,Ring-opening polymerization ,3. Good health ,0104 chemical sciences ,Cyclopropane ,chemistry.chemical_compound ,Malonate ,Anionic addition polymerization ,chemistry ,Polymer chemistry ,Materials Chemistry ,Living polymerization ,0210 nano-technology - Abstract
The successful activation observed when using ButP4 phosphazene base and thiophenol or bisthiols for the anionic ring opening polymerization (ROP) of di-n-propyl cyclopropane-1,1- dicarboxylate is described. Well-defined monofunctional or difunctional polymers with a very narrow molecular weight distribution were obtained through a living process. Quantitative end-capping of the propagating malonate carba- nion was accessible by using either an electro- philic reagent such as allyl bromide or a strong acid such as HCl. Kinetics studies demonstrated a much higher reactivity compared to the conven- tional route using alkali metal thiophenolates.
- Published
- 2009
- Full Text
- View/download PDF
27. Phosphorylation of bio-based compounds: the state of the art
- Author
-
Maxence Fache, Raphaël Ménard, Claire Negrell, Sylvain Caillol, Ghislain David, Nicolas Illy, Institut Parisien de Chimie Moléculaire (IPCM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), and Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Green chemistry ,chemistry.chemical_classification ,Cardanol ,Polymers and Plastics ,business.industry ,Organic Chemistry ,Bio based ,chemistry.chemical_element ,Bioengineering ,Polymer ,7. Clean energy ,Biochemistry ,12. Responsible consumption ,Renewable energy ,chemistry.chemical_compound ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,13. Climate action ,Organic chemistry ,Cellulose ,business ,Carbon ,Renewable resource - Abstract
International audience; Over the last few years, more and more papers have been devoted to phosphorus-containing polymers, mainly due to their fire resistance, excellent chelating and metal-adhesion properties. Nevertheless, sustainability, reduction of environmental impacts and green chemistry are increasingly guiding the development of the next generation of materials. The use of bio-based polymer matrices might allow the reduction of environmental impacts by using renewable carbon and by achieving more easily biodegradable or reusable materials. The aim of this review is to present both fundamental and applied research on the phosphorylation of renewable resources, through reactions on naturally occurring functions, and their use in biobased polymer chemistry and applications. In the first section, different strategies for the introduction of phosphorus-containing functions on organic backbones are described. In the following sections, the main families of chemicals based on renewable resources are covered: namely polysaccharides (cellulose, chitosan, starch, dextran etc.), biophenols (lignins, biobased phenolic compounds, cardanol etc.), triglycerides (oils, glycerol) and hydroxy acid compounds.
- Published
- 2015
- Full Text
- View/download PDF
28. Regioselectively Functionalized Cellulose Derivatives: A Mini Review
- Author
-
Dominik Fenn, Nicolas Illy, Andreas Koschella, and Thomas Heinze
- Subjects
chemistry.chemical_classification ,chemistry.chemical_compound ,Materials science ,Polymers and Plastics ,chemistry ,Organic Chemistry ,Materials Chemistry ,Organic chemistry ,Cellulose derivatives ,Polymer ,Cellulose ,Condensed Matter Physics ,Mini review - Abstract
Summary: The paper reviews recent developments in synthesis and characterization of regioselectively functionalized cellulose derivatives. It demonstrates the importance of protecting groups like triphenylmethyl- and thexyldimethylsilyl (TDMS) ethers in cellulose chemistry. The protected cellulose derivatives can be used for the preparation of 2,3-O-functionalized polymers. Moreover, the TDMS group opens up the synthesis of 3-O-ethers of cellulose that possess interesting properties in terms of structure in solution, water-solubility, and thermoreversible gelation.
- Published
- 2006
- Full Text
- View/download PDF
29. Synthesis, characterization, and ion-complexing properties of polymers displaying densely packed arrays of crown-ethers as lateral substituents
- Author
-
Sandrine Peyrat, Jacques Penelle, Véronique Wintgens, Blandine Brissault, Ming Liu, Valessa Barbier, Nicolas Illy, Institut de Chimie et des Matériaux Paris-Est (ICMPE), and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
- Subjects
chemistry.chemical_classification ,Cation binding ,Polymers and Plastics ,Picrate ,Organic Chemistry ,Isothermal titration calorimetry ,02 engineering and technology ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,chemistry.chemical_compound ,Anionic addition polymerization ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,stomatognathic system ,Polymer chemistry ,Materials Chemistry ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,0210 nano-technology ,Ionic polymerization ,Living anionic polymerization - Abstract
International audience; We report the synthesis and ion-binding properties of four poly(crown-ethers) displaying either one or two crown ethers (15-crown-5 or 18-crown-6) on every third carbon along- side the backbone. The polymers were synthesized by living anionic ring-opening polymerization of disubstituted cyclopropane- 1,1-dicarboxylates monomers. Cation binding of the polychelating polymers and corresponding monomers to Na+ and K+ was evaluated by picrate extraction and isothermal calorimetry titration. This novel family of poly(crown-ethers) demonstrated excellent initial binding of the alkali ions to the polymers, with a higher selectivity for potassium.
- Published
- 2014
- Full Text
- View/download PDF
30. Synthesis and anionic ring-opening polymerization of crown-ether-like macrocyclic dilactones: An alternative route to PEG-containing polyesters and related networks
- Author
-
Ediz Taylan, Jacques Penelle, Valessa Barbier, Sylvie Boileau, Blandine Brissault, Justyna Wojno, Nicolas Illy, Institut de Chimie et des Matériaux Paris-Est (ICMPE), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Boğaziçi University [Istanbul], Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), and Boǧaziçi üniversitesi = Boğaziçi University [Istanbul]
- Subjects
Materials science ,Polymers and Plastics ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Organic Chemistry ,General Physics and Astronomy ,Solution polymerization ,02 engineering and technology ,Polyethylene glycol ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ring-opening polymerization ,0104 chemical sciences ,Polyester ,chemistry.chemical_compound ,Anionic addition polymerization ,Chain-growth polymerization ,[CHIM.POLY]Chemical Sciences/Polymers ,Polymerization ,chemistry ,Polymer chemistry ,Materials Chemistry ,0210 nano-technology ,Ionic polymerization - Abstract
International audience; Linear aliphatic polyesters whose structure is made of short polyethylene glycol (PEG) segments connected along the chain by malonate units were synthesized from two PEG- containing macrolactones: 15,15-dimethyl-1,4,7,10,13-pentaoxacyclohexadecane-14, 16-dione (1) and 5,8,11,14,17-pentaoxaspiro[2,15]octadecane-4,18-dione (2). Anionic ring-opening polymerization conditions using either thiophenolates or a p-nitrophenolate as initiators yielded poly(ether-ester)s of low to moderate molecular weights, with broad molecular weight distributions. When the monomer also contains an activated cyclopro- pane unit of the cyclopropane-1,1-dicarboxylate type (such as in 2) and harsher polymer- ization conditions are used (higher temperatures and bulkier counterions), opening of the cyclopropyl ring can compete with the dilactone polymerization, providing access to cross- linked materials.
- Published
- 2013
- Full Text
- View/download PDF
31. Correction: Phosphorylation of bio-based compounds: the state of the art
- Author
-
Sylvain Caillol, Claire Negrell, Raphaël Ménard, Maxence Fache, Ghislain David, and Nicolas Illy
- Subjects
Polymers and Plastics ,Polymer science ,Computational chemistry ,Chemistry ,Organic Chemistry ,Phosphorylation ,Bio based ,Bioengineering ,Biochemistry - Abstract
Correction for ‘Phosphorylation of bio-based compounds: the state of the art’ by Nicolas Illy, et al., Polym. Chem., 2015, 6, 6257–6291.
- Published
- 2016
- Full Text
- View/download PDF
32. Metal-chelating polymers by anionic ring-opening polymerization and their use in quantitative mass cytometry
- Author
-
Daniel Majonis, Nicolas Illy, Mitchell A. Winnik, Isaac Herrera, and Olga Ornatsky
- Subjects
Cyclopropanes ,Polymers and Plastics ,Bioengineering ,Gadolinium ,Cell Separation ,Ring-opening polymerization ,Mass Spectrometry ,Cyclopropane ,Polymerization ,Biomaterials ,chemistry.chemical_compound ,Antibodies, Monoclonal, Murine-Derived ,Antigens, CD ,Polymer chemistry ,Materials Chemistry ,Polyamines ,Humans ,Dicarboxylic Acids ,Sulfhydryl Compounds ,Furans ,Phosphazene ,Chelating Agents ,chemistry.chemical_classification ,Blood Cells ,Staining and Labeling ,Polymer ,Pentetic Acid ,Flow Cytometry ,Molecular Weight ,End-group ,Dicarboxylic acid ,chemistry ,Molar mass distribution ,Click Chemistry - Abstract
Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd(3+) as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels-Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln(3+) ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.
- Published
- 2012
33. Thiol-ene 'clickable' carbon-chain polymers based on diallyl cyclopropane-1,1-dicarboxylate
- Author
-
Sylvie Boileau, Valessa Barbier, Nicolas Illy, Jacques Penelle, Mitchell A. Winnik, Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Department of Chemistry [University of Toronto], University of Toronto, and Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,Materials science ,Polymers and Plastics ,Double bond ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Organic Chemistry ,02 engineering and technology ,Polymer ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Cyclopropane ,chemistry.chemical_compound ,Anionic addition polymerization ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,Polymer chemistry ,Materials Chemistry ,0210 nano-technology ,Phosphazene ,Ene reaction ,Macromolecule - Abstract
International audience; A novel type of clickable polymers with a very high local density of allyl side groups was developed. These polymers were obtained by the anionic ring-opening (co)polymerization of diallyl cyclopropane- 1,1-dicarboxylate using as an initiating system a protic precursor whose acidebase reaction with the t-BuP4 phosphazene base generated the initiator in situ. The obtained polymers display geminated allyl groups on every third carbon alongside the macromolecular backbone. Homopolymers as well as block and statistical copolymers have been synthesized, with controlled molecular weights and narrow molecular weight distributions. The coupling of mercaptans with the allyl C]C double bonds has been investigated both thermally and photochemically, with the influence of the type of initiation on the efficiency of the polymer modification being discussed in comparison with other “clickable” systems. Further functionalization by several thiols was performed, leading to a range of functional poly(cyclopropane-1,1-dicarboxylate)s.
- Published
- 2012
- Full Text
- View/download PDF
34. Unexpected Interactions of an Alternating Poly(ether-ester) with Artificial and Biological Bilipidic Membranes
- Author
-
Jacques Penelle, Justyna Wojno, Valessa Barbier, Blandine Brissault, Damien Destouches, Nicolas Illy, Laurent Bacri, Loïc Auvray, José Courty, Institut de Chimie et des Matériaux Paris-Est (ICMPE), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Croissance cellulaire, réparation et régénération tissulaires (CRRET), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE - UMR 8587), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Matière et Systèmes Complexes (MSC (UMR_7057)), and Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Polymers and Plastics ,Ether ,010402 general chemistry ,01 natural sciences ,Cyclopropane ,ion transport ,chemistry.chemical_compound ,Polymer chemistry ,Materials Chemistry ,Moiety ,ComputingMilieux_MISCELLANEOUS ,Crown ether ,chemistry.chemical_classification ,010405 organic chemistry ,Organic Chemistry ,Condensed Matter Physics ,0104 chemical sciences ,Membrane ,Monomer ,Anionic addition polymerization ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Polymerization ,poly(ether‐ester) ,cytotoxicity ,pore ,[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] ,bilipidic membrane - Abstract
International audience; The anionic polymerization of a spiro monomer containing both an ester‐activated cyclopropane moiety and a 1,4,7,10,13‐pentaoxacyclohexadecane‐14,16‐dione crown ether bislactone unexpectedly yielded a linear alternating poly(ether‐ester) via the ring‐opening polymerization of the crown ether cycle. Ion conductivity measurements using black lipid membranes as model systems showed that oligomers of this structure are able to permeabilize bilipidic membranes, with single‐ion channel behaviors being observed. Biological assays on fibroblast cells indicated a significant cytotoxicity, probably related to the above permeabilization mechanism.
- Published
- 2010
- Full Text
- View/download PDF
35. Metal-free activation in the anionic ring-opening polymerization of cyclopropane derivatives
- Author
-
Nicolas, Illy, Sylvie, Boileau, Jacques, Penelle, and Valessa, Barbier
- Abstract
The successful activation observed when using Bu(t) P(4) phosphazene base and thiophenol or bisthiols for the anionic ring opening polymerization (ROP) of di-n-propyl cyclopropane-1,1-dicarboxylate is described. Well-defined monofunctional or difunctional polymers with a very narrow molecular weight distribution were obtained through a living process. Quantitative end-capping of the propagating malonate carbanion was accessible by using either an electrophilic reagent such as allyl bromide or a strong acid such as HCl. Kinetics studies demonstrated a much higher reactivity compared to the conventional route using alkali metal thiophenolates.
- Published
- 2009
36. Phosphazene-Promoted Metal-Free Ring-Opening Polymerizationof 1,2-Epoxybutane Initiated by Secondary Amides.
- Author
-
Laetitia Dentzer, Caroline Bray, Sylvie Noinville, Nicolas Illy, and Philippe Guégan
- Published
- 2015
- Full Text
- View/download PDF
37. Control of End Groups in Anionic Polymerizations Using Phosphazene Bases and Protic Precursors As Initiating System (XH-ButP4Approach): Application to the Ring-Opening Polymerization of Cyclopropane-1,1-Dicarboxylates.
- Author
-
Nicolas Illy, Sylvie Boileau, William Buchmann, Jacques Penelle, and Valessa Barbier
- Subjects
- *
ADDITION polymerization , *POLYPHOSPHAZENES , *RING-opening polymerization , *ASYMMETRIC synthesis , *ALKYLATING agents , *THIOLS , *REACTION mechanisms (Chemistry) - Abstract
A synthetic method involving the in situ generation of an anionic initiator Xâobtained by reaction of its conjugate acid precursor XH with ButP4phosphazene base was tested as a possible way to easily and better control the end groups of polymers derived from the anionic ring-opening polymerization of cyclopropane-1,1-dicarboxylates. Several types of precursors were investigated, including thiols, alcohols, a carbazole, and a malonate. In all but one cases, a living polymerization mechanism could be observed, which was exploited to control the nature of the terminal end groups by reaction of the propagating malonate carbanion RâC(COOPr)2âwith alkylating agents. It was also demonstrated that toluene was a much better solvent than the traditional one used in these reactions (THF) as a larger range of available temperatures was available despite an almost identical solvent influence on the polymerization. Exploitation of this feature provided access to higher degrees of polymerization than previously possible. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.