1. Novel role of Rac-Mid1 signaling in medial cerebellar development
- Author
-
Ivan de Curtis, Mizuho Sakahara, Hirofumi Sakaguchi, Yuzuru Ninoyu, Takehiko Ueyama, Masaaki Kohta, Yoshitaka Hishikawa, Atsu Aiba, Takashi Nakamura, Eiji Kohmura, Hiroshi Kiyonari, Narantsog Choijookhuu, Yasuo Hisa, Naoaki Saito, Nakamura, T, Ueyama, T, Ninoyu, Y, Sakaguchi, H, Choijookhuu, N, Hishikawa, Y, Kiyonari, H, Kohta, M, Sakahara, M, DE CURTIS, Ivanmatteo, Kohmura, E, Hisa, Y, Aiba, A, and Saito, N.
- Subjects
0301 basic medicine ,Cerebellar granule neurons ,Cerebellum ,Neurogenesis ,Organogenesis ,Ubiquitin-Protein Ligases ,Rac3 ,RAC1 ,mTORC1 ,Mechanistic Target of Rapamycin Complex 1 ,Biology ,Mice ,03 medical and health sciences ,FLOX ,medicine ,Animals ,Humans ,Molecular Biology ,Midline 1 ,Cells, Cultured ,Mice, Knockout ,TOR Serine-Threonine Kinases ,Granule (cell biology) ,Proteins ,Cell Differentiation ,Anatomy ,rac GTP-Binding Proteins ,Cell biology ,Rac ,HEK293 Cells ,030104 developmental biology ,medicine.anatomical_structure ,Apoptosis ,Multiprotein Complexes ,biology.protein ,NeuN ,Signal Transduction ,Developmental Biology ,Opitz G/BBB syndrome - Abstract
Rac signaling impacts a relatively large number of downstream targets; however, few studies have established an association between Rac pathways and pathological conditions. In the present study, we generated mice with double knockout of Rac1 and Rac3 (Atoh1-Cre;Rac1(flox/flox);Rac3(-/-)) in cerebellar granule neurons (CGNs). We observed impaired tangential migration at E16.5, as well as numerous apoptotic CGNs at the deepest layer of the external granule layer (EGL) in the medial cerebellum of Atoh1-Cre; Rac1(flox/flox);Rac3(-/-) mice at P8. Atoh1-Cre;Rac1(flox/flox);Rac3(-/-) CGNs differentiated normally until expression of p27(kip1) and NeuN in the deep EGL at P5. Primary CGNs and cerebellar microexplants from Atoh1-Cre;Rac1(flox/flox);Rac3(-/-) mice exhibited impaired neuritogenesis, which was more apparent in Map2-positive dendrites. Such findings suggest that impaired tangential migration and final differentiation of CGNs have resulted in decreased cerebellum size and agenesis of the medial internal granule layer, respectively. Furthermore, Rac depleted/deleted cells exhibited decreased levels of Mid1 and impaired mTORC1 signaling. Mid1 depletion in CGNs produced mild impairments in neuritogenesis and reductions in mTORC1 signaling. Thus, a novel Rac-signaling pathway (Rac1Mid1-mTORC1) may be involved in medial cerebellar development.
- Published
- 2017