1. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates.
- Author
-
Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O'Connell S, Bock KW, Minai M, Nagata BM, Andersen H, Martinez DR, Noe AT, Douek N, Donaldson MM, Nji NN, Alvarado GS, Edwards DK, Flebbe DR, Lamb E, Doria-Rose NA, Lin BC, Louder MK, O'Dell S, Schmidt SD, Phung E, Chang LA, Yap C, Todd JM, Pessaint L, Van Ry A, Browne S, Greenhouse J, Putman-Taylor T, Strasbaugh A, Campbell TA, Cook A, Dodson A, Steingrebe K, Shi W, Zhang Y, Abiona OM, Wang L, Pegu A, Yang ES, Leung K, Zhou T, Teng IT, Widge A, Gordon I, Novik L, Gillespie RA, Loomis RJ, Moliva JI, Stewart-Jones G, Himansu S, Kong WP, Nason MC, Morabito KM, Ruckwardt TJ, Ledgerwood JE, Gaudinski MR, Kwong PD, Mascola JR, Carfi A, Lewis MG, Baric RS, McDermott A, Moore IN, Sullivan NJ, Roederer M, Seder RA, and Graham BS
- Subjects
- 2019-nCoV Vaccine mRNA-1273, Animals, Antibodies, Neutralizing blood, Antibodies, Viral blood, Betacoronavirus physiology, CD4 Antigens, COVID-19, COVID-19 Vaccines, Coronavirus Infections pathology, Coronavirus Infections therapy, Disease Models, Animal, Dose-Response Relationship, Immunologic, Immunization, Passive, Lung pathology, Lung virology, Macaca mulatta, Pneumonia, Viral pathology, Pneumonia, Viral therapy, SARS-CoV-2, Spike Glycoprotein, Coronavirus, T-Lymphocytes immunology, Viral Load, Viral Vaccines administration & dosage, Virus Replication, COVID-19 Serotherapy, Betacoronavirus immunology, Coronavirus Infections immunology, Coronavirus Infections prevention & control, Pandemics prevention & control, Pneumonia, Viral immunology, Pneumonia, Viral prevention & control, Viral Vaccines immunology
- Abstract
Background: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates., Methods: Nonhuman primates received 10 or 100 μg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens., Results: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID
50 ) geometric mean titers of 501 in the 10-μg dose group and 3481 in the 100-μg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-μg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group., Conclusions: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.)., (Copyright © 2020 Massachusetts Medical Society.)- Published
- 2020
- Full Text
- View/download PDF