This study sought to investigate the impacts of climate change on cereal production in China over the period 1990Q1-2013Q4. Using the Autoregressive Distributed Lag (ARDL) approach, the results showed that CO 2 emissions, average temperature, and temperature variability have a significant negative impact on cereal production in the long run. However, energy consumption, average rainfall, labor force, and cultivated area significantly and positively influenced the production of cereal crops in the long run. Meanwhile, the study observed that rainfall variability has no significant effect on cereal production in the long run. The study again found that in the short run, CO 2 emissions, average temperature, and temperature variability have a significant negative relationship with cereal production. Besides, energy consumption, average rainfall, rainfall variability, labor force, and the cultivated area had a significant positive association with cereal production in the short run. The results of the Granger causality test showed that there exists a unidirectional causality running from CO 2 emissions, energy consumption, and labor force to the production of cereal crops in China. On the contrary, the study found no causality between cultivated area and cereal production. The study suggests that improved cereal crop varieties ought to be developed and introduced to cope with the adverse impacts of climate change in China. This will help to circumvent Huang et al.'s (2017) prediction of a decline in the total food self-sufficiency of China from 94.5% in 2015 to about 91% by 2025.