16 results on '"O. Le Blanc"'
Search Results
2. Assessment of the GCT prototype's optical system implementation and other key performances for the Cherenkov Telescope Array
- Author
-
Anton Dmytriiev, F. De Frondat, I. Jégouzo, J. M. Huet, D. Horville, Philippe Laporte, A. Zech, O. Le Blanc, J. L. Dournaux, Gilles Buchholtz, L. Dangeon, J. Gironnet, Helene Sol, G. Fasola, Jean-Philippe Amans, Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Galaxies, Etoiles, Physique, Instrumentation (GEPI), PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS), GCT, CTA Consortium, Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
High energy ,Cherenkov Telescope Array ,Astrophysics::High Energy Astrophysical Phenomena ,optics: design ,FOS: Physical sciences ,costs ,IACT ,7. Clean energy ,law.invention ,Telescope ,Observatory ,law ,Wide band ,Cherenkov counter: imaging ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,mirror ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Cherenkov radiation ,activity report ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,showers: atmosphere ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Wide field ,mechanical engineering ,control system ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,performance - Abstract
The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation observatory for Very High Energy (VHE) gamma-ray astronomy. It will be devoted to observations in a wide band of energy, from a few tens of GeV to a few hundreds of TeV with Large, Medium and Small-sized telescopes. The Small-Size Telescopes (SSTs) are dedicated to the highest energy range above a few TeV and up to 300 TeV. GCT is an imaging atmospheric Cherenkov telescope (IACT) proposed for the subarray of about 70 SSTs to be installed on the Southern site of CTA in Chile. The Observatory of Paris and the National Institute for Earth Sciences and Astronomy (INSU/CNRS) have developed the mechanical structure, mirrors (aspherical lightweight aluminium segments) and control system of the GCT. The GCT is based on a Schwarzschild- Couder (S-C) dual-mirror optical design which has the advantages, compared to the current IACTs, to offer a wide field of view (~ 9{\deg}) while decreasing the cost and volume (~ 9 m x 4 m x 6 m for ~ 11 tons) of the telescope structure, as well as the camera. The prototype (pGCT) has been installed at the Meudon's site of the Observatory of Paris and was the first S-C telescope and the first CTA prototype to record VHE events on-sky in November 2015. After three years of intensive testing, pGCT has now been commissioned. This paper is a status report on the complete GCT telescope optical system and the performance it can provide for CTA., Comment: Proceeding of the 36th International Cosmic Ray Conference (ICRC2019), July 24th - August 1st, 2019, Madison, WI, U.S.A
- Published
- 2019
- Full Text
- View/download PDF
3. Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout
- Author
-
Katsuaki Asano, Rodrigo Guedes Lang, M. Cieślar, Nicholas F. H Tothill, Gianpiero Tagliaferri, O. Le Blanc, M. Vazquez Acosta, Nicola Giglietto, S. Mangano, Julien Lefaucheur, Tatsuo Yoshida, D. de Martino, Martin Pohl, A. Shalchi, Y. Renier, B. Biasuzzi, T. B. Humensky, E. Fiandrini, Andreas Quirrenbach, Abelardo Moralejo, Carla Aramo, Vincenzo Rizi, J. Knapp, A. Pagliaro, Andrea Santangelo, Michael Punch, Andreas Specovius, A. M. Lopez, P. Peñil Del Campo, Henry Przybilski, J.-P. Lenain, Agnieszka Slowikowska, Satoshi Fukami, M. H. Grondin, S. Schlenstedt, Marek Nikolajuk, F. Schüssler, Maria Concetta Maccarone, Michael Zacharias, Francesco Giordano, T. Suomijärvi, Lorenzo Amati, J. Becker Tjus, Maxim V. Barkov, H. Prokoph, F.G. Saturni, R. J. White, Nu. Komin, María Isabel Bernardos, M. Orienti, Denis Bastieri, Justin Vandenbroucke, P. Vallania, Diego Falceta-Gonçalves, L. Tibaldo, A. Burtovoi, A. Viana, Takanori Yoshikoshi, Roberto Aloisio, Soebur Razzaque, M. Valentino, P. Da Vela, Pol Bordas, Francesco Longo, N. Otte, V. La Parola, E. O. Angüner, Marco Berton, Elina Lindfors, Salvo Scuderi, Hiroyasu Tajima, M. Prouza, E. Mach, P. Goldoni, C. Alispach, M. I. Martínez, Miroslav Pech, Kai Brügge, G. Vasileiadis, A. Nagai, A. Brill, Dusan Mandat, Geoff Romeo, M. Marculewicz, Cameron B Rulten, Fuyuki Tokanai, Luis Ángel Tejedor, Thomas Lohse, Anderson Caproni, Karol Seweryn, G. Bonnoli, D. Ninci, G. Pareschi, Stefan Kimeswenger, I. Sadeh, Łukasz Stawarz, M. Nöthe, Daniel Mazin, Ruben Alfaro, G. Busetto, Massimo Persic, A. Berti, G. Sironi, Pavel Horvath, Włodek Kluźniak, Pietro Bruno, Petr Travnicek, Daniel Kerszberg, M. Hayashida, Tomasz Szepieniec, A. Rugliancich, Marina Manganaro, Y. Ohtani, Samuel Timothy Spencer, L. Di Venere, S. Karkar, M. Füßling, E. de Oña Wilhelmi, Louis Antonelli, M. Lemoine-Goumard, Benjamin Koch, P.-O. Petrucci, M. de Naurois, Felix Werner, S. Sakurai, J. J. Rodríguez Vázquez, Petr Janecek, L. Dangeon, G. Fontaine, Alison Mitchell, Maria Magdalena González, Francesco Dazzi, Philip Kaaret, Reinaldo Santos-Lima, F. Di Pierro, Tomislav Terzić, Grzegorz Kowal, Stefan Wagner, R. A. Cameron, G. S. Varner, M. Roncadelli, Wystan Benbow, C. Bonavolontà, David Kieda, M. A. Leigui de Oliveira, Ullrich Schwanke, Y. Iwamura, K. Sedlaczek, R. C. Shellard, Q. Feng, David A. Williams, A. De Angelis, T. Nagayoshi, P. Sangiorgi, I. A. Minaya, Etienne Lyard, Juan Abel Barrio, B. De Lotto, S. Nozaki, J. Gironnet, L. Mohrmann, Oscar Blanch, Marcello Giroletti, Jean-Luc Meunier, Valentina Fioretti, S. Masuda, V. Vagelli, Rodolfo Canestrari, L. Freixas Coromina, M. Palatka, T. Di Girolamo, Vincenzo Testa, Tsuguya Naito, J. Becerra González, R. Alves Batista, Samo Stanič, S. D. Vergani, Lorenzo Bellizzi, Catherine Boisson, Olivier Hervet, P. Cumani, Konstancja Satalecka, Stefan Funk, Michele Doro, Pedro L. Luque-Escamilla, P. Romano, E. Fedorova, Carlo Vigorito, M. Zavrtanik, Markus Gaug, Stanislav Stefanik, R. J. García López, F. de Palma, V. Beshley, T.R.N. Ekoume, Enrico Congiu, Pierre Brun, Manuela Mallamaci, Barbara Balmaverde, L. Valore, Gino Tosti, Enrico Cascone, Marek Jamrozy, V. I. Zhdanov, Gavin Rowell, Elisabetta Bissaldi, M. Fiori, M. Capalbi, J. Bregeon, Dario Hrupec, F. Toussenel, R. Paoletti, Fulvio Gianotti, Ayan Acharyya, G. Spengler, P. Majumdar, A.A. Zdziarski, A. López-Oramas, M. Mariotti, Juri Poutanen, G. Ferrand, Paweł Świerk, M. Garczarczyk, S. Rainò, Tsunefumi Mizuno, Diego F. Torres, Ciro Bigongiari, Matteo Cerruti, M. Polo, Csaba Balázs, A. Dmytriiev, T. Gasparetto, D. Dorner, A. W. Chen, Elisa Prandini, Vitalii Sliusar, Helene Sol, Rodolfo Carosi, Jonathan Biteau, Vito Conforti, G. Rodriguez Fernandez, Shanta M. Zimmer, J. M. Paredes, S. Vercellone, Jonathan Granot, Alice Donini, Antonio Stamerra, Jaime Rosado, Michael G. Burton, Bohdan Hnatyk, F. D'Ammando, D. Nosek, M. Heller, Gagik Tovmassian, N. Produit, Petr Schovanek, German Martinez, G. Pühlhofer, S. Fegan, A. Kong, G. Morlino, G. Emery, H.-S. Zechlin, Tomasz Bulik, Antonino D'Ai, Riccardo Rando, Rocco Lico, K. Pfrang, D. Hadasch, R. López-Coto, A. Vollhardt, Pankaj Kushwaha, Petar Temnikov, Emmanuel Moulin, Luca Zampieri, Michiko Ohishi, C. Maggio, V. de Souza, Q. Piel, Marc Ribó, Werner Hofmann, A. Wierzcholska, Luisa Arrabito, Gianpaolo Vettolani, J. Pérez-Romero, Paramita Barai, Sylvain Chaty, N. Parmiggiani, V. Vassiliev, K. Nishijima, D. Cauz, S. Caroff, Giuseppe Leto, J.F. Glicenstein, Maria Ionica, Eva Sciacca, A. Bonardi, Juan Carlos Rodríguez-Ramírez, Marcos Santander, H. Siejkowski, Daniela Maria Ribeiro, Ralph Bird, S. Mićanović, D. Zavrtanik, Carole Mundell, Jan Ebr, Koji Noda, Elisa Bernardini, R. Gnatyk, Pierre Jean, M. Nievas Rosillo, M. López, Olga Sergijenko, R. Walter, Oleh Petruk, M. Del Santo, D. Elsasser, Jakub Juryšek, H. Martínez-Huerta, Andreas Zech, Jose J. Gonzalez, Akira Okumura, M. Iori, A. Ghalumyan, Jacco Vink, David Gascon, Jürgen Knödlseder, Daniel Nieto, R. A. Ong, Sabrina Casanova, B. Khélifi, S. Flis, G. Galanti, H. J. Voelk, Jim Hinton, M. Will, David H. Green, Giuseppe Malaguti, B. Rudak, A. Pe'Er, J. L. Dournaux, Andrea Bulgarelli, Frank M. Rieger, A. Djannati-Ataï, F. De Frondat, Lenka Tomankova, Moritz Hütten, Osvaldo Catalano, Hidetoshi Kubo, Tarek M. Hassan, Tomohiro Inada, Farinaldo S. Queiroz, J. Kushida, Daniel Morcuende, Jose Luis Contreras, F. Salesa Greus, Juan Cortina, Andreu Sanuy, S. Vorobiov, G. Maneva, B. Vallage, N. Maxted, N. Renault-Tinacci, P. Munar, M. Seglar-Arroyo, Fabrizio Tavecchio, Z. Ou, Anatolii Zenin, T. Tam, Miroslav Hrabovsky, G. Ambrosi, Giovanni Bonanno, R. Millul, Anastasia Maria Barbano, T. Grabarczyk, J. Zorn, D. Dominis Prester, R. D. Parsons, Luis H. S. Kadowaki, Elena Amato, M. Lallena Arquillo, I. Oya, Jacek Niemiec, Gianluca Giavitto, Marita Krause, Olaf Reimer, Josep Martí, M. Perri, Maria Chernyakova, Takeshi Nakamori, E. M. de Gouveia Dal Pino, Thomas Murach, P. Cristofari, C. Delgado, Fernando Catalani, G. La Rosa, J. Alfaro, Thomas Armstrong, J. Kocot, Léa Jouvin, Markus Böttcher, Rodrigo Nemmen, J. P. Amans, Utane Sawangwit, Y. Kobayashi, Hidetoshi Sano, D. Jankowsky, Heide Costantini, F. Arqueros, B. Bertucci, Sebastian Diebold, L. P. Taylor, Konstantinos N. Gourgouliatos, A. Fiasson, Miroslav Filipovic, R. Moderski, T. Stolarczyk, B. Patricelli, H. Ashkar, Alessandro Costa, Jonathan Blazek, C. Trichard, M. Vecchi, T. Greenshaw, A. Morselli, V. Vitale, A. M. Brown, S. M. Colak, Lili Yang, C. Díaz, J. Rico, P. Caraveo, S. Loporchio, Orel Gueta, Daniele Gaggero, V. De Caprio, R. Wischnewski, A. Sillanpää, C. J. Todero Peixoto, Takashi Saito, I. Agudo, Yasuo Fukui, Roberto Capuzzo-Dolcetta, F. Cassol, Manuel Meyer, Reiko Orito, G. Umana, M. V. Fonseca, U. Barres de Almeida, Saverio Lombardi, D. della Volpe, Giancarlo Cusumano, M. Ostrowski, T. Montaruli, L. Tosti, Garret Cotter, Konrad Bernlöhr, Reshmi Mukherjee, Fabio Iocco, M. Palatiello, Jonathan S. Lapington, U. Straumann, R. de Cássia dos Anjos, Matteo Balbo, Lab Saha, N. Hiroshima, G. Chiaro, D. Tonev, Ermanno Pietropaolo, Atreyee Sinha, Ministerio de Ciencia e Innovación (España), European Commission, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Research unit Astroparticle Physics, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Acharyya, A., Agudo, I., Anguner, E. O., Alfaro, R., Alfaro, J., Alispach, C., Aloisio, R., Alves Batista, R., Amans, J. -P., Amati, L., Amato, E., Ambrosi, G., Antonelli, L. A., Aramo, C., Armstrong, T., Arqueros, F., Arrabito, L., Asano, K., Ashkar, H., Balazs, C., Balbo, M., Balmaverde, B., Barai, P., Barbano, A., Barkov, M., Barres de Almeida, U., Barrio, J. A., Bastieri, D., Becerra Gonzalez, J., Becker Tjus, J., Bellizzi, L., Benbow, W., Bernardini, E., Bernardos, M. I., Bernlohr, K., Berti, A., Berton, M., Bertucci, B., Beshley, V., Biasuzzi, B., Bigongiari, C., Bird, R., Bissaldi, E., Biteau, J., Blanch, O., Blazek, J., Boisson, C., Bonanno, G., Bonardi, A., Bonavolonta, C., Bonnoli, G., Bordas, P., Bottcher, M., Bregeon, J., Brill, A., Brown, A. M., Brugge, K., Brun, P., Bruno, P., Bulgarelli, A., Bulik, T., Burton, M., Burtovoi, A., Busetto, G., Cameron, R., Canestrari, R., Capalbi, M., Caproni, A., Capuzzo-Dolcetta, R., Caraveo, P., Caroff, S., Carosi, R., Casanova, S., Cascone, E., Cassol, F., Catalani, F., Catalano, O., Cauz, D., Cerruti, M., Chaty, S., Chen, A., Chernyakova, M., Chiaro, G., Cieslar, M., Colak, S. M., Conforti, V., Congiu, E., Contreras, J. L., Cortina, J., Costa, A., Costantini, H., Cotter, G., Cristofari, P., Cumani, P., Cusumano, G., D'Ai, A., D'Ammando, F., Dangeon, L., Da Vela, P., Dazzi, F., De Angelis, A., De Caprio, V., de Cassia dos Anjos, R., De Frondat, F., de Gouveia Dal Pino, E. M., De Lotto, B., De Martino, D., de Naurois, M., de Ona Wilhelmi, E., de Palma, F., de Souza, V., Del Santo, M., Delgado, C., della Volpe, D., Di Girolamo, T., Di Pierro, F., Di Venere, L., Diaz, C., Diebold, S., Djannati-Atai, A., Dmytriiev, A., Dominis Prester, D., Donini, A., Dorner, D., Doro, M., Dournaux, J. -L., Ebr, J., Ekoume, T. R. N., Elsasser, D., Emery, G., Falceta-Goncalves, D., Fedorova, E., Fegan, S., Feng, Q., Ferrand, G., Fiandrini, E., Fiasson, A., Filipovic, M., Fioretti, V., Fiori, M., Flis, S., Fonseca, M. V., Fontaine, G., Freixas Coromina, L., Fukami, S., Fukui, Y., Funk, S., Fussling, M., Gaggero, D., Galanti, G., Garcia Lopez, R. J., Garczarczyk, M., Gascon, D., Gasparetto, T., Gaug, M., Ghalumyan, A., Gianotti, F., Giavitto, G., Giglietto, N., Giordano, F., Giroletti, M., Gironnet, J., Glicenstein, J. -F., Gnatyk, R., Goldoni, P., Gonzalez, J. M., Gonzalez, M. M., Gourgouliatos, K. N., Grabarczyk, T., Granot, J., Green, D., Greenshaw, T., Grondin, M. -H., Gueta, O., Hadasch, D., Hassan, T., Hayashida, M., Heller, M., Hervet, O., Hinton, J., Hiroshima, N., Hnatyk, B., Hofmann, W., Horvath, P., Hrabovsky, M., Hrupec, D., Humensky, T. B., Hutten, M., Inada, T., Iocco, F., Ionica, M., Iori, M., Iwamura, Y., Jamrozy, M., Janecek, P., Jankowsky, D., Jean, P., Jouvin, L., Jurysek, J., Kaaret, P., Kadowaki, L. H. S., Karkar, S., Kerszberg, D., Khelifi, B., Kieda, D., Kimeswenger, S., Kluzniak, W., Knapp, J., Knodlseder, J., Kobayashi, Y., Koch, B., Kocot, J., Komin, N., Kong, A., Kowal, G., Krause, M., Kubo, H., Kushida, J., Kushwaha, P., La Parola, V., La Rosa, G., Lallena Arquillo, M., Lang, R. G., Lapington, J., Le Blanc, O., Lefaucheur, J., Leigui de Oliveira, M. A., Lemoine-Goumard, M., Lenain, J. -P., Leto, G., Lico, R., Lindfors, E., Lohse, T., Lombardi, S., Longo, F., Lopez, A., Lopez, M., Lopez-Oramas, A., Lopez-Coto, R., Loporchio, S., Luque-Escamilla, P. L., Lyard, E., Maccarone, M. C., Mach, E., Maggio, C., Majumdar, P., Malaguti, G., Mallamaci, M., Mandat, D., Maneva, G., Manganaro, M., Mangano, S., Marculewicz, M., Mariotti, M., Marti, J., Martinez, M., Martinez, G., Martinez-Huerta, H., Masuda, S., Maxted, N., Mazin, D., Meunier, J. -L., Meyer, M., Micanovic, S., Millul, R., Minaya, I. A., Mitchell, A., Mizuno, T., Moderski, R., Mohrmann, L., Montaruli, T., Moralejo, A., Morcuende, D., Morlino, G., Morselli, A., Moulin, E., Mukherjee, R., Munar, P., Mundell, C., Murach, T., Nagai, A., Nagayoshi, T., Naito, T., Nakamori, T., Nemmen, R., Niemiec, J., Nieto, D., Nievas Rosillo, M., Nikolajuk, M., Ninci, D., Nishijima, K., Noda, K., Nosek, D., Nothe, M., Nozaki, S., Ohishi, M., Ohtani, Y., Okumura, A., Ong, R. A., Orienti, M., Orito, R., Ostrowski, M., Otte, N., Ou, Z., Oya, I., Pagliaro, A., Palatiello, M., Palatka, M., Paoletti, R., Paredes, J. M., Pareschi, G., Parmiggiani, N., Parsons, R. D., Patricelli, B., Pe'Er, A., Pech, M., Penil Del Campo, P., Perez-Romero, J., Perri, M., Persic, M., Petrucci, P. -O., Petruk, O., Pfrang, K., Piel, Q., Pietropaolo, E., Pohl, M., Polo, M., Poutanen, J., Prandini, E., Produit, N., Prokoph, H., Prouza, M., Przybilski, H., Puhlhofer, G., Punch, M., Queiroz, F., Quirrenbach, A., Raino, S., Rando, R., Razzaque, S., Reimer, O., Renault-Tinacci, N., Renier, Y., Ribeiro, D., Ribo, M., Rico, J., Rieger, F., Rizi, V., Rodriguez Fernandez, G., Rodriguez-Ramirez, J. C., Rodri-guez Vazquez, J. J., Romano, P., Romeo, G., Roncadelli, M., Rosado, J., Rowell, G., Rudak, B., Rugliancich, A., Rulten, C., Sadeh, I., Saha, L., Saito, T., Sakurai, S., Salesa Greus, F., Sangiorgi, P., Sano, H., Santander, M., Santangelo, A., Santos-Lima, R., Sanuy, A., Satalecka, K., Saturni, F. G., Sawangwit, U., Schlenstedt, S., Schovanek, P., Schussler, F., Schwanke, U., Sciacca, E., Scuderi, S., Sedlaczek, K., Seglar-Arroyo, M., Sergijenko, O., Seweryn, K., Shalchi, A., Shellard, R. C., Siejkowski, H., Sillanpaa, A., Sinha, A., Sironi, G., Sliusar, V., Slowikowska, A., Sol, H., Specovius, A., Spencer, S., Spengler, G., Stamerra, A., Stanic, S., Stawarz, L., Stefanik, S., Stolarczyk, T., Straumann, U., Suomijarvi, T., Swierk, P., Szepieniec, T., Tagliaferri, G., Tajima, H., Tam, T., Tavecchio, F., Taylor, L., Tejedor, L. A., Temnikov, P., Terzic, T., Testa, V., Tibaldo, L., Todero Peixoto, C. J., Tokanai, F., Tomankova, L., Tonev, D., Torres, D. F., Tosti, G., Tosti, L., Tothill, N., Toussenel, F., Tovmassian, G., Travnicek, P., Trichard, C., Umana, G., Vagelli, V., Valentino, M., Vallage, B., Vallania, P., Valore, L., Vandenbroucke, J., Varner, G. S., Vasileiadis, G., Vassiliev, V., Vazquez Acosta, M., Vecchi, M., Vercellone, S., Vergani, S., Vettolani, G. P., Viana, A., Vigorito, C. F., Vink, J., Vitale, V., Voelk, H., Vollhardt, A., Vorobiov, S., Wagner, S. J., Walter, R., Werner, F., White, R., Wierzcholska, A., Will, M., Williams, D. A., Wischnewski, R., Yang, L., Yoshida, T., Yoshikoshi, T., Zacharias, M., Zampieri, L., Zavrtanik, M., Zavrtanik, D., Zdziarski, A. A., Zech, A., Zechlin, H., Zenin, A., Zhdanov, V. I., Zimmer, S., Zorn, J., Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Durham University, Glorieta de la Astronomía s/n, Delegación Coyoacán, Pontificia Universidad Católica de Chile, Département de physique nucléaire et corpusculaire, Università degli Studi dell'Aquila and Gran Sasso Science Institute, Universidade de São Paulo (USP), PSL Research University, INAF - Osservatorio di astrofisica e scienza dello spazio di Bologna, INAF - Osservatorio Astrofisico di Arcetri, INFN Sezione di Perugia, Universitá degli Studi di Perugia, INAF - Osservatorio Astronomico di Roma, INFN Sezione di Napoli, University of Oxford, Universidad Complutense de Madrid, CNRS/IN2P3, University of Tokyo, Monash University, University of Geneva, INAF - Osservatorio Astronomico di Brera, Institute of Physical and Chemical Research, Centro Brasileiro de Pesquisas Físicas, INFN Sezione di Padova and Universitá degli Studi di Padova, Universidad de La Laguna, Ruhr-Universität Bochum, Harvard-Smithsonian Center for Astrophysics, Max-Planck-Institut für Kernphysik, INFN Sezione di Torino, Pidstryhach Institute for Applied Problems in Mechanics and Mathematics NASU, Université Paris-Saclay, University of California, INFN Sezione di Bari and Politecnico di Bari, The Barcelona Institute of Science and Technology, Institute of Physics of the Czech Academy of Sciences, INAF - Osservatorio Astrofisico di Catania, Radboud University Nijmegen, Dipartimento di Scienze Fisiche, IEEC-UB, North-West University, Columbia University, TU Dortmund University, University of Warsaw, Armagh Observatory and Planetarium, Stanford University, INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Núcleo de Astrofísica Teórica (NAT/UCS), INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano, INFN Sezione di Pisa, Polish Academy of Sciences, INAF - Osservatorio Astronomico di Capodimonte, INFN Sezione di Trieste and Università degli Studi di Udine, University of the Witwatersrand, Dublin City University, CIEMAT, CPPM, INAF - Istituto di Radioastronomia, Cherenkov Telescope Array Observatory, Universidade Federal do Paraná (UFPR), Université Paris-Saclay), CSIC), Institut d'Estudis Espacials de Catalunya (IEEC), Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona, INFN Sezione di Bari and Università degli Studi di Bari, Universität Tübingen, Obs de Paris, University of Rijeka, Universität Würzburg, LPNHE, Astronomical Observatory of Taras Shevchenko National University of Kyiv, Western Sydney University, INAF - Osservatorio Astronomico di Padova, Deutsches Elektronen-Synchrotron, Nagoya University, University of Amsterdam, Universidad Autónoma de Madrid, INFN Sezione di Trieste and Università degli Studi di Trieste, Universitat Autónoma de Barcelona, Yerevan Physics Institute, Universidad Andrés Bello UNAB, Academic Computer Centre CYFRONET AGH, The Open University of Israel, Max-Planck-Institut für Physik, Oliver Lodge Laboratory, UMR 5797, Konan University, KEK (High Energy Accelerator Research Organization), RCPTM, Josip Juraj Strossmayer University of Osijek, Universidade Estadual Paulista (Unesp), INFN Sezione di Roma, Jagiellonian University, Physikalisches Institut, Université Paul Sabatier, University of Iowa, Leopold-Franzens-Universität, Kyoto University, Tokai University, University of Leicester, Universidade Federal do ABC (UFABC), University of Turku, Humboldt University Berlin, Universidad de Jaén, Saha Institute of Nuclear Physics, Bulgarian Academy of Sciences, Faculty of Physics, University of New South Wales, Universität Zürich, Hiroshima University, INFN Sezione di Roma Tor Vergata, INAF - Istituto di Astrofisica e Planetologia Spaziali (IAPS), University of Bath, Saitama University, Yamanashi-Gakuin University, Yamagata University, Institute of Particle & Nuclear Physics, Tokushima University, Georgia Institute of Technology, Institut de Planétologie et d'Astrophysique de Grenoble, Univ. Savoie Mont Blanc, Universität Potsdam, Linnaeus University, Universität Heidelberg, University of Johannesburg, University of Adelaide, Tuscaloosa, National Astronomical Research Institute of Thailand, Dept of Physics and Astronomy, Nicolaus Copernicus University, University of Nova Gorica, University of Wisconsin, INAF - Osservatorio Astrofisico di Torino, University of Hawai'i at Manoa, Ibaraki University, KVI - Center for Advanced Radiation Technology, University of Utah, USA, GBR, FRA, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Angüner, E. O., Becerra González, J., Bernlöhr, K., Bonavolontá, C., Böttcher, M., Brügge, K., Cieślar, M., D’Aí, A., D’Ammando, F., de Cássia dos Anjos, R., de Oña Wilhelmi, E., Díaz, C., Djannati-Ataï, A., Elsässer, D., Füßling, M., Garcia López, R. J., González, J. M., González, M. M., Hütten, M., Khélifi, B., Kluźniak, W., Knödlseder, J., López, M., López-Coto, R., Martí, J., Martínez, M., Martínez, G., Martínez-Huerta, H., Nikołajuk, M., Nöthe, M., Pe’Er, A., Peñil Del Campo, P., Pérez-Romero, J., Pühlhofer, G., Rainò, S., Ribó, M., Rodrí-guez Vázquez, J. J., Sillanpää, A., Stanič, S., Stawarz, Ł., Świerk, P., Vázquez Acosta, M., GRAPPA (ITFA, IoP, FNWI), and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
Cherenkov Telescope Array ,Astronomy ,Monte Carlo method ,energy resolution ,Monte Carlo simulations ,Cherenkov telescopes ,IACT technique ,gamma rays ,cosmic rays ,01 natural sciences ,7. Clean energy ,law.invention ,Observatory ,law ,site ,Monte Carlo ,010303 astronomy & astrophysics ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,observatory ,Cosmic rays ,Gamma rays ,Astronomy and Astrophysics ,ddc:540 ,Física nuclear ,Monte carlo studies ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,performance ,FÍSICA DE ALTA ENERGIA ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,FOS: Physical sciences ,energy dependence ,Telescope ,Optics ,CTA - Abteilung Hofmann ,0103 physical sciences ,Cherenkov counter: imaging ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Monte Carlo simulation ,Cherenkov radiation ,CTA ,010308 nuclear & particles physics ,business.industry ,sensitivity ,Cosmic ray ,Cherenkov telescope ,gamma ray: VHE ,business ,Energy (signal processing) ,astro-ph.IM - Abstract
The Cherenkov Telescope Array (CTA) is the major next-generation observatory for ground-based very-high-energy gamma-ray astronomy. It will improve the sensitivity of current ground-based instruments by a factor of five to twenty, depending on the energy, greatly improving both their angular and energy resolutions over four decades in energy (from 20 GeV to 300 TeV). This achievement will be possible by using tens of imaging Cherenkov telescopes of three successive sizes. They will be arranged into two arrays, one per hemisphere, located on the La Palma island (Spain) and in Paranal (Chile). We present here the optimised and final telescope arrays for both CTA sites, as well as their foreseen performance, resulting from the analysis of three different large-scale Monte Carlo productions.© 2019, We gratefully acknowledge financial support from the following agencies and organizations: State Committee of Science of Armenia, Armenia; The Australian Research Council, Astronomy Australia Ltd, The University of Adelaide, Australian National University, Monash University, The University of New South Wales, The University of Sydney, Western Sydney University, Australia; Federal Ministry of Science, Research and Economy, and Innsbruck University, Austria; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministry of Science, Technology, Innovations and Communications (MCTIC), Brasil; Ministry of Education and Science, National RI Roadmap Project D01-153/28.08.2018, Bulgaria; The Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency, Canada; CONICYT-Chile grants PFB-06, FB0821, ACT 1406, FONDECYT-Chile grants 3160153, 3150314, 1150411, 1161463, 1170171, Pontificia Universidad Catolica de Chile Vice-Rectory of Research internationalization grant under MINEDUC agreement PUC1566, Chile, Croatian Science Foundation, Rudjer Boskovic Institute, University of Osijek, University of Rijeka, University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia; Ministry of Education, Youth and Sports, MEYS LM2015046, LTT17006 and EU/MEYS CZ.02.1.01/0.0/0.0/16_013/0001403, CZ.02.1.01/0.0/0.0/17_049/0008422, Czech Republic; Ministry of Higher Education and Research, CNRS-INSU and CNRS-IN2P3, CEA-Irfu, ANR, Regional Council Ile-de France, Labex ENIGMASS, OSUG2020, P210 and OCEVU, France; Max Planck Society, BMBF, DESY, Helmholtz Association, Germany; Department of Atomic Energy, Department of Science and Technology, India; Istituto Nazionale di Astrofisica (INAF), Istituto Nazionale di Fisica Nucleare (INFN), MIUR, Istituto Nazionale di Astrofisica (INAF-OABRERA) Grant Fondazione Cariplo/Regione Lombardia ID 2014-1980/RST_ERC, Italy; ICRR, University of Tokyo, JSPS, MEXT, Japan; Netherlands Research School for Astronomy (NOVA), Netherlands Organization for Scientific Research (NWO), Netherlands; University of Oslo, Norway; Ministry of Science and Higher Education, DIR/WK/2017/12, the National Centre for Research and Development and the National Science Centre, UMO-2016/22/M/ST9/00583, Poland; Slovenian Research Agency, Slovenia, grants P1-0031, P1-0385, 10-0033, J1-9146; South African Department of Science and Technology and National Research Foundation through the South African Gamma-Ray Astronomy Programme, South Africa; MINECO National R+D+I, Severo Ochoa, Maria de Maeztu, CDTI, PAIDI, UJA, FPA2017-90566-REDC, Spain; Swedish Research Council, Royal Physiographic Society of Lund, Royal Swedish Academy of Sciences, The Swedish National Infrastructure for Computing (SNIC) at Lunarc (Lund), Sweden; Swiss National Science Foundation (SNSF), Ernest Boninchi Foundation, Switzerland; Durham University, Leverhulme Trust, Liverpool University, University of Leicester, University of Oxford, Royal Society, Science and Technology Facilities Council, UK; U.S. National Science Foundation, U.S.Department of Energy, Argonne National Laboratory, Barnard College, University of California, University of Chicago, Columbia University, Georgia Institute of Technology, Institute for Nuclear and Particle Astrophysics (INPAC-MRPI program), Iowa State University, the Smithsonian Institution, Washington University McDonnell Center for the Space Sciences, The University of Wisconsin and the Wisconsin Alumni Research Foundation, USA. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements no 262053 and no 317446. This project is receiving funding from the European Union's Horizon 2020 research and innovation programs under agreement no 676134.
- Published
- 2019
- Full Text
- View/download PDF
4. Characterisation and Testing of CHEC-M - a camera prototype for the Small-Sized Telescopes of the Cherenkov Telescope Array
- Author
-
L. Sapozhnikov, Paul Clark, H. Prokoph, G. S. Varner, Garret Cotter, A. Balzer, P. Laporte, A. De Franco, Richard Bose, Stefan Funk, Thomas Armstrong, P. Deiml, P. M. Chadwick, H. Schoorlemmer, J. Zorn, S.A. Leach, D. Berge, P. Molyneux, Gavin Rowell, M. Bryan, Jonathan S. Lapington, J. J. Watson, G. Fasola, O. Le Blanc, M. Gebyehu, M. Stephan, Helene Sol, Hiroyasu Tajima, R. J. White, J. Gironnet, J. A. Graham, Peter L. Moore, M. Barcelo, A. Zink, M. Kraus, L. Tibaldo, Akira Okumura, Michael Daniel, L. Dangeon, Jim Hinton, Heide Costantini, T. Greenshaw, A. M. Brown, A. Malouf, D. Ross, Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Observatoire de Paris - Site de Meudon (OBSPM), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Galaxies, Etoiles, Physique, Instrumentation (GEPI), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Photomultiplier ,FOS: Physical sciences ,Photodetector ,01 natural sciences ,7. Clean energy ,Imaging atmospheric Cherenkov telescopes ,law.invention ,Telescope ,Cherenkov telescope array ,Silicon photomultiplier ,Optics ,pixel ,law ,Observatory ,0103 physical sciences ,photomultiplier: silicon ,ddc:530 ,structure ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,mirror ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Instrumentation ,FPGA ,Cherenkov radiation ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,energy: high ,Full-waveform readout ,Pixel ,010308 nuclear & particles physics ,business.industry ,electronics ,integrated circuit ,imaging ,trigger ,radiation: Cherenkov ,Cherenkov Telescope Array ,optics ,observatory ,gamma ray: VHE ,atmosphere ,readout ,Gamma-rays ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Compact High Energy Camera (CHEC) is a camera design for the Small-Sized Telescopes (SSTs; 4 m diameter mirror) of the Cherenkov Telescope Array (CTA). The SSTs are focused on very-high-energy γ -ray detection via atmospheric Cherenkov light detection over a very large area. This implies many individual units and hence cost-effective implementation, as well as shower detection at large impact distance, and hence large field of view (FoV), and efficient image capture in the presence of large time gradients in the shower image detected by the camera. CHEC relies on dual-mirror optics to reduce the plate-scale and make use of 6 × 6 mm 2 pixels, leading to a low-cost ( ∼ 150 k€), compact (0.5 m × 0.5 m), and light ( ∼ 45 kg) camera with 2048 pixels providing a camera FoV of ∼ 9 degrees. The CHEC electronics are based on custom TARGET (TeV array readout with GSa/s sampling and event trigger) application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) sampling incoming signals at a gigasample per second, with flexible camera-level triggering within a single backplane FPGA. CHEC is designed to observe in the γ -ray energy range of 1–300 TeV, and at impact distances up to ∼ 500 m. To accommodate this and provide full flexibility for later data analysis, full waveforms with 96 samples for all 2048 pixels can be read out at rates up to ∼ 900 Hz. The first prototype, CHEC-M, based on multi-anode photomultipliers (MAPMs) as photosensors, was commissioned and characterised in the laboratory and during two measurement campaigns on a telescope structure at the Paris Observatory in Meudon. In this paper, the results and conclusions from the laboratory and on-site testing of CHEC-M are presented. They have provided essential input on the system design and on operational and data analysis procedures for a camera of this type. A second full-camera prototype based on Silicon photomultipliers (SiPMs), addressing the drawbacks of CHEC-M identified during the first prototype phase, has already been built and is currently being commissioned and tested in the laboratory.
- Published
- 2018
- Full Text
- View/download PDF
5. Observing the sky at extremely high energies with CTA: Status of the GCT project
- Author
-
O. Le Blanc, Helene Sol, R. J. White, T. Greenshaw, and Cta Gct project
- Subjects
Physics ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cherenkov Telescope Array ,7. Clean energy ,01 natural sciences ,law.invention ,Telescope ,Sky ,law ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Cherenkov radiation ,media_common - Abstract
The Cherenkov Telescope Array is the main global project of ground-based gamma-ray astronomy for the coming decades. Performance will be significantly improved relative to present instruments, allowing a new insight into the high-energy Universe [1]. The nominal CTA southern array will include a sub-array of seventy 4m telescopes spread over a few square kilometers to study the sky at extremely high energies, with the opening of a new window in the multi-TeV energy range. The Gamma-ray Cherenkov Telescope (GCT) is one of the proposed telescope designs for that sub-array. The GCT prototype recorded its first Cherenkov light on sky in 2015. After an assessment phase in 2016, new observations have been performed successfully in 2017. The GCT collaboration plans to install its first telescopes and cameras on the CTA site in Chile in 2018-2019 and to contribute a number of telescopes to the subsequent CTA production phase.
- Published
- 2017
- Full Text
- View/download PDF
6. Effects of submaximal and supramaximal interval training on determinants of endurance performance in endurance athletes
- Author
-
Samuel J. E. Lucas, Patrice Brassard, Guy Thibault, Damian M. Bailey, O. Le Blanc, and Myriam Paquette
- Subjects
Adult ,Male ,medicine.medical_specialty ,Physical Therapy, Sports Therapy and Rehabilitation ,030204 cardiovascular system & hematology ,Athletic Performance ,High-Intensity Interval Training ,Interval training ,03 medical and health sciences ,Young Adult ,0302 clinical medicine ,Oxygen Consumption ,Endurance training ,Internal medicine ,Exercise performance ,medicine ,Humans ,Orthopedics and Sports Medicine ,Aerobic capacity ,Fatigue ,biology ,business.industry ,Athletes ,VO2 max ,030229 sport sciences ,biology.organism_classification ,Cardiology ,Physical therapy ,Physical Endurance ,business ,High-intensity interval training ,Anaerobic exercise - Abstract
We compared the effects of submaximal and supramaximal cycling interval training on determinants of exercise performance in moderately endurance-trained men. Maximal oxygen consumption (VO2max ), peak power output (Ppeak ), and peak and mean anaerobic power were measured before and after 6 weeks (3 sessions/week) of submaximal (85% maximal aerobic power [MP], HIIT85 , n = 8) or supramaximal (115% MP, HIIT115 , n = 9) interval training to exhaustion in moderately endurance-trained men. High-intensity training volume was 47% lower in HIIT115 vs HIIT85 (304 ± 77 vs 571 ± 200 min; P
- Published
- 2016
7. A CASE OF PRIMARY CARCINOMA OF THE BILE DUCTS, WITH AUTOPSY
- Author
-
B. O. Le Blanc
- Subjects
medicine.medical_specialty ,Evening ,business.industry ,Uterus ,Autopsy ,General Medicine ,Bile Pigments ,Jaundice ,medicine.disease ,Gastroenterology ,Surgery ,Malaise ,medicine.anatomical_structure ,Internal medicine ,medicine ,Carcinoma ,Family history ,medicine.symptom ,business - Abstract
Patient. —Mrs. H. B., aged 71, a rather spare person, active and energetic. History. —The patient had scarcely ever had a day's sickness in her life up to the present illness. The family history was excellent, except that one sister died of carcinoma of the uterus some years previously. The present illness began with malaise, slight jaundice, and an evening rise of temperature, about 100-101 F. This was treated as an ordinary catarrhal jaundice of malarial origin, but the symptoms gradually grew worse. Dr. A. A. Allain, of Bayou Goula, saw the patient at this time and recognized some serious trouble. I first saw her in consultation with him, then together throughout the case. Examination. —The skin was deeply jaundiced. Heart, lungs and kidneys were normal, but analysis revealed an abundance of bile in the urine. Microscopic examination of the urine showed only bile pigments, no blood. Liver dulness was
- Published
- 1907
- Full Text
- View/download PDF
8. Continuous reduction in cerebral oxygenation during endurance exercise in patients with pulmonary arterial hypertension.
- Author
-
Malenfant S, Brassard P, Paquette M, Le Blanc O, Chouinard A, Bonnet S, and Provencher S
- Subjects
- Adult, Female, Hemodynamics, Humans, Male, Middle Aged, Middle Cerebral Artery metabolism, Respiration, Cerebral Cortex blood supply, Cerebral Cortex metabolism, Endurance Training, Oxygen Consumption, Pulmonary Arterial Hypertension metabolism
- Abstract
Background: Patients with pulmonary arterial hypertension (PAH) have lower cerebral blood flow (CBF) and oxygenation compared to healthy sedentary subjects, the latter negatively correlating with exercise capacity during incremental cycling exercise. We hypothesized that patients would also exhibit altered CBF and oxygenation during endurance exercise, which would correlate with endurance time., Methods: Resting and exercise cardiorespiratory parameters, blood velocity in the middle cerebral artery (MCAv; transcranial doppler) and cerebral oxygenation (relative changes in cerebral tissue oxygenation index (ΔcTOI) and cerebral deoxyhemoglobin (ΔcHHb); near-infrared spectroscopy) were continuously monitored in nine PAH patients and 10 healthy-matched controls throughout endurance exercise. Cardiac output (CO), systemic blood pressure (BP) and oxygen saturation (SpO
2 ), ventilatory metrics and end-tidal CO2 pressure (PET CO2 ) were also assessed noninvasively., Results: Despite a lower workload and endurance oxygen consumption, similar CO and systemic BP, ΔcTOI was lower in PAH patients compared to controls (p < .01 for interaction). As expected during exercise, patients were characterized by an altered MCAv response to exercise, a lower PET CO2 and SpO2 , as wells as a higher minute-ventilation/CO2 production ratio ( V ˙ E / V ˙ CO 2 ratio). An uncoupling between changes in MCAv and PET CO2 during the cycling endurance exercise was also progressively apparent in PAH patients, but absent in healthy controls. Both cHHb and ΔcTOI correlated with V ˙ E / V ˙ CO 2 ratio (r = 0.50 and r = -0.52; both p < .05 respectively), but not with endurance time., Conclusion: PAH patients present an abnormal cerebrovascular profile during endurance exercise with a lower cerebral oxygenation that correlate with hyperventilation but not endurance exercise time. These findings complement the physiological characterization of the cerebral vascular responses to exercise in PAH patients., (© 2020 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.)- Published
- 2020
- Full Text
- View/download PDF
9. Implications of habitual endurance and resistance exercise for dynamic cerebral autoregulation.
- Author
-
Perry BG, Cotter JD, Korad S, Lark S, Labrecque L, Brassard P, Paquette M, Le Blanc O, and Lucas SJE
- Subjects
- Adult, Brain blood supply, Brain diagnostic imaging, Cohort Studies, Female, Humans, Male, Resistance Training trends, Ultrasonography, Doppler methods, Ultrasonography, Doppler trends, Brain physiology, Cerebrovascular Circulation physiology, Habits, Homeostasis physiology, Physical Endurance physiology, Resistance Training methods
- Abstract
New Findings: What is the central question of this study? Does habitual resistance and endurance exercise modify dynamic cerebral autoregulation? What is the main finding and its importance? To the authors' knowledge, this is the first study to directly assess dynamic cerebral autoregulation in resistance-trained individuals, and potential differences between exercise training modalities. Forced oscillations in blood pressure were induced by repeated squat-stands, from which dynamic cerebral autoregulation was assessed using transfer function analysis. These data indicate that dynamic cerebral autoregulatory function is largely unaffected by habitual exercise type, and further document the systemic circulatory effects of regular exercise., Abstract: Regular endurance and resistance exercise produce differential but desirable physiological adaptations in both healthy and clinical populations. The chronic effect of these different exercise modalities on cerebral vessels' ability to respond to rapid changes in blood pressure (BP) had not been examined. We examined dynamic cerebral autoregulation (dCA) in 12 resistance-trained (mean ± SD, 25 ± 6 years), 12 endurance-trained (28 ± 9 years) and 12 sedentary (26 ± 6 years) volunteers. The dCA was assessed using transfer function analysis of forced oscillations in BP vs. middle cerebral artery blood velocity (MCAv), induced via repeated squat-stands at 0.05 and 0.10 Hz. Resting BP and MCAv were similar between groups (interaction: both P ≥ 0.544). The partial pressure of end-tidal carbon dioxide ( P ETC O 2 ) was unchanged (P = 0.561) across squat-stand manoeuvres (grouped mean for absolute change +0.6 ± 2.3 mmHg). Gain and normalized gain were similar between groups across all frequencies (both P ≥ 0.261). Phase showed a frequency-specific effect between groups (P = 0.043), tending to be lower in resistance-trained (0.63 ± 0.21 radians) than in endurance-trained (0.90 ± 0.41, P = 0.052) and -untrained (0.85 ± 0.38, P = 0.081) groups at slower frequency (0.05 Hz) oscillations. Squat-stands induced mean arterial pressure perturbations differed between groups (interaction: P = 0.031), with greater changes in the resistance (P < 0.001) and endurance (P = 0.001) groups compared with the sedentary group at 0.05 Hz (56 ± 13 and 49 ± 11 vs. 35 ± 11 mmHg, respectively). The differences persisted at 0.1 Hz between resistance and sedentary groups (49 ± 12 vs. 33 ± 7 mmHg, P < 0.001). These results indicate that dCA remains largely unaltered by habitual endurance and resistance exercise with a trend for phase to be lower in the resistance exercise group at lower fequencies., (© 2019 The Authors. Experimental Physiology © 2019 The Physiological Society.)
- Published
- 2019
- Full Text
- View/download PDF
10. Cardiac remodeling after six weeks of high-intensity interval training to exhaustion in endurance-trained men.
- Author
-
Mahjoub H, Le Blanc O, Paquette M, Imhoff S, Labrecque L, Drapeau A, Poirier P, Bédard É, Pibarot P, and Brassard P
- Subjects
- Adult, Arterial Pressure, Atrial Function, Left, Atrial Remodeling, Echocardiography, Doppler, Heart Rate, Humans, Hypertrophy, Right Ventricular diagnostic imaging, Hypertrophy, Right Ventricular etiology, Male, Muscle Fatigue, Time Factors, Ventricular Dysfunction, Right diagnostic imaging, Ventricular Dysfunction, Right etiology, Ventricular Function, Left, Young Adult, Cardiomegaly, Exercise-Induced, High-Intensity Interval Training, Hypertrophy, Right Ventricular physiopathology, Physical Endurance, Ventricular Dysfunction, Right physiopathology, Ventricular Function, Right, Ventricular Remodeling
- Abstract
High-intensity interval training (HIIT) improves physical performance of endurance athletes, although studies examining its cardiovascular effects are sparse. We evaluated the impact of HIIT on blood pressure, heart rate, and cardiac cavities' size and function in endurance-trained adults. Seventeen endurance-trained men underwent 24-h ambulatory blood pressure monitoring and Doppler echocardiography at baseline and after 6 wk of HIIT. Participants were divided into 2 groups [85% maximal aerobic power (HIIT
85 ), n = 8 and 115% maximal aerobic power (HIIT115 ), n = 9] to compare the impact of different HIIT intensities. Ambulatory blood pressure monitoring and cardiac chambers' size and function were similar between groups at baseline. HIIT reduced heart rate (55 ± 8 vs. 51 ± 7 beats/min; P = 0.003), systolic blood pressure (121 ± 11 vs. 118 ± 9 mmHg; P = 0.01), mean arterial pressure (90 ± 8 vs. 89 ± 6 mmHg; P = 0.03), and pulse pressure (52 ± 6 vs. 49 ± 5 mmHg; P = 0.01) irrespective of training intensity. Left atrium volumes increased after HIIT (maximal: 50 ± 14 vs. 54 ± 14 mL; P = 0.02; minimal: 15 ± 5 vs. 20 ± 8 mL; P = 0.01) in both groups. Right ventricle global longitudinal strain lowered after training in the HIIT85 group only (20 ± 4 vs. 17 ± 3%, P = 0.04). In endurance-trained men, 6 wk of HIIT reduced systolic blood pressure and mean arterial pressure and increased left atrium volumes irrespective of training intensity, whereas submaximal HIIT deteriorated right ventricle systolic function. NEW & NOTEWORTHY The novel findings of this study are that 6 wk of high-intensity interval training increases left atrial volumes irrespective of training intensity (85 or 115% maximal aerobic power), whereas the submaximal training decreases right ventricular systolic function in endurance-trained men. These results may help identify the exercise threshold for potential toxicity of intense exercise training for at-risk individuals and ideal exercise training regimens conferring optimal cardiovascular protection and adapted endurance training for athletes.- Published
- 2019
- Full Text
- View/download PDF
11. Six weeks of high-intensity interval training to exhaustion attenuates dynamic cerebral autoregulation without influencing resting cerebral blood velocity in young fit men.
- Author
-
Drapeau A, Labrecque L, Imhoff S, Paquette M, Le Blanc O, Malenfant S, and Brassard P
- Subjects
- Adult, Arterial Pressure physiology, Blood Pressure physiology, Humans, Male, Middle Cerebral Artery physiology, Oxygen Consumption physiology, Cardiorespiratory Fitness physiology, High-Intensity Interval Training methods, Homeostasis physiology, Physical Endurance physiology
- Abstract
Elevated cardiorespiratory fitness (CRF) is associated with reduced dynamic cerebral autoregulation (dCA), but the impact of exercise training per se on dCA remains equivocal. In addition, resting cerebral blood flow (CBF) and dCA after high-intensity interval training (HIIT) in individuals with already high CRF remains unknown. We examined to what extent 6 weeks of HIIT affect resting CBF and dCA in cardiorespiratory fit men and explored if potential changes are intensity-dependent. Endurance-trained men were assigned to group HIIT
85 (85% of maximal aerobic power, 1-7 min effort bouts, n = 8) and HIIT115 (115% of maximal aerobic power, 30 sec to 1 min effort bouts, n = 9). Training sessions were completed until exhaustion 3 times/week over 6 weeks. Mean arterial pressure (MAP) and middle cerebral artery mean blood velocity (MCAvmean ) were measured continuously at rest and during repeated squat-stands (0.05 and 0.10 Hz). Transfer function analysis (TFA) was used to characterize dCA on driven blood pressure oscillations during repeated squat-stands. Neither training nor intensity had an effect on resting MAP and MCAvmean (both P > 0.05). TFA phase during 0.10 Hz squat-stands decreased after HIIT irrespective of intensity (HIIT85 : 0.77 ± 0.22 vs. 0.67 ± 0.18 radians; HIIT115 : pre: 0.62 ± 0.19 vs. post: 0.59 ± 0.13 radians, time effect P = 0.048). These results suggest that HIIT over 6 weeks have no apparent benefits on resting CBF, but a subtle attenuation in dCA is seen posttraining irrespective of intensity training in endurance-trained men., (© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.)- Published
- 2019
- Full Text
- View/download PDF
12. Dynamic cerebral autoregulation is attenuated in young fit women.
- Author
-
Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Drapeau A, Smirl JD, Bailey DM, and Brassard P
- Subjects
- Adult, Blood Flow Velocity, Blood Pressure physiology, Female, Hemodynamics, Homeostasis, Humans, Male, Random Allocation, Sex Factors, Young Adult, Cerebrovascular Circulation physiology, Hypotension, Orthostatic physiopathology, Middle Cerebral Artery physiopathology, Physical Fitness physiology
- Abstract
Young women exhibit higher prevalence of orthostatic hypotension with presyncopal symptoms compared to men. These symptoms could be influenced by an attenuated ability of the cerebrovasculature to respond to rapid blood pressure (BP) changes [dynamic cerebral autoregulation (dCA)]. The influence of sex on dCA remains unclear. dCA in 11 fit women (25 ± 2 years) and 11 age-matched men (24 ± 1 years) was compared using a multimodal approach including a sit-to-stand (STS) and forced BP oscillations (repeated squat-stand performed at 0.05 and 0.10 Hz). Prevalence of initial orthostatic hypotension (IOH; decrease in systolic ≥ 40 mmHg and/or diastolic BP ≥ 20 mmHg) during the first 15 sec of STS was determined as a functional outcome. In women, the decrease in mean middle cerebral artery blood velocity (MCAv
mean ) following the STS was greater (-20 ± 8 vs. -11 ± 7 cm sec-1 ; P = 0.018) and the onset of the regulatory change (time lapse between the beginning of the STS and the increase in the conductance index (MCAvmean /mean arterial pressure) was delayed (P = 0.007). Transfer function analysis gain during 0.05 Hz squat-stand was ~48% higher in women (6.4 ± 1.3 vs. 3.8 ± 2.3 cm sec-1 mmHg-1 ; P = 0.017). Prevalence of IOH was comparable between groups (women: 4/9 vs. men: 5/9, P = 0.637). These results indicate the cerebrovasculature of fit women has an attenuated ability to react to rapid changes in BP in the face of preserved orthostasis, which could be related to higher resting cerebral blood flow allowing women to better face transient hypotension., (© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.)- Published
- 2019
- Full Text
- View/download PDF
13. Diminished dynamic cerebral autoregulatory capacity with forced oscillations in mean arterial pressure with elevated cardiorespiratory fitness.
- Author
-
Labrecque L, Rahimaly K, Imhoff S, Paquette M, Le Blanc O, Malenfant S, Lucas SJE, Bailey DM, Smirl JD, and Brassard P
- Subjects
- Adult, Athletes, Hemodynamics, Humans, Hypotension, Orthostatic physiopathology, Male, Arterial Pressure, Cardiorespiratory Fitness, Homeostasis, Middle Cerebral Artery physiology
- Abstract
The effect that cardiorespiratory fitness has on the dynamic cerebral autoregulatory capacity during changes in mean arterial pressure (MAP) remains equivocal. Using a multiple-metrics approach, challenging MAP across the spectrum of physiological extremes (i.e., spontaneous through forced MAP oscillations), we characterized dynamic cerebral autoregulatory capacity in 19 male endurance athletes and eight controls via three methods: (1) onset of regulation (i.e., time delay before an increase in middle cerebral artery (MCA) conductance [MCA blood velocity (MCAv)/MAP] and rate of regulation, after transient hypotension induced by sit-to-stand, and transfer function analysis (TFA) of MAP and MCAv responses during (2) spontaneous and (3) forced oscillations (5-min of squat-stand maneuvers performed at 0.05 and 0.10 Hz). Reductions in MAP and mean MCAv (MCAV
mean ) during initial orthostatic stress (0-30 sec after sit-to-stand) and the prevalence of orthostatic hypotension were also determined. Onset of regulation was delayed after sit-to-stand in athletes (3.1 ± 1.7 vs. 1.5 ± 1.0 sec; P = 0.03), but rate of regulation was not different between groups (0.24 ± 0.05 vs. 0.21 ± 0.09 sec-1 ; P = 0.82). While both groups had comparable TFA metrics during spontaneous oscillations, athletes had higher TFA gain during 0.10 Hz squat-stand versus recreational controls ( P = 0.01). Reductions in MAP ( P = 0.15) and MCAVmean ( P = 0.11) during orthostatic stress and the prevalence of initial orthostatic hypotension ( P = 0.65) were comparable between groups. These results indicate an intact ability of the cerebral vasculature to react to spontaneous oscillations but an attenuated capability to counter rapid and large changes in MAP in individuals with elevated cardiorespiratory fitness., (© 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.)- Published
- 2017
- Full Text
- View/download PDF
14. Compromised Cerebrovascular Regulation and Cerebral Oxygenation in Pulmonary Arterial Hypertension.
- Author
-
Malenfant S, Brassard P, Paquette M, Le Blanc O, Chouinard A, Nadeau V, Allan PD, Tzeng YC, Simard S, Bonnet S, and Provencher S
- Subjects
- Adult, Biomarkers blood, Blood Flow Velocity, Case-Control Studies, Chemoreceptor Cells metabolism, Female, Homeostasis, Humans, Hypertension, Pulmonary blood, Hypertension, Pulmonary diagnostic imaging, Male, Middle Aged, Middle Cerebral Artery diagnostic imaging, Models, Cardiovascular, Photoplethysmography, Reflex, Ultrasonography, Doppler, Transcranial, Cerebrovascular Circulation, Exercise Tolerance, Hemodynamics, Hypertension, Pulmonary physiopathology, Middle Cerebral Artery physiopathology, Oxygen blood, Oxygen Consumption
- Abstract
Background: Functional cerebrovascular regulatory mechanisms are important for maintaining constant cerebral blood flow and oxygen supply in heathy individuals and are altered in heart failure. We aim to examine whether pulmonary arterial hypertension (PAH) is associated with abnormal cerebrovascular regulation and lower cerebral oxygenation and their physiological and clinical consequences., Methods and Results: Resting mean flow velocity in the middle cerebral artery mean flow velocity in the middle cerebral artery (MCAv
mean ); transcranial Doppler), cerebral pressure-flow relationship (assessed at rest and during squat-stand maneuvers; analyzed using transfer function analysis), cerebrovascular reactivity to CO2 , and central chemoreflex were assessed in 11 patients with PAH and 11 matched healthy controls. Both groups also completed an incremental ramp exercise protocol until exhaustion, during which MCAvmean , mean arterial pressure, cardiac output (photoplethysmography), end-tidal partial pressure of CO2 , and cerebral oxygenation (near-infrared spectroscopy) were measured. Patients were characterized by a significant decrease in resting MCAvmean ( P <0.01) and higher transfer function gain at rest and during squat-stand maneuvers (both P <0.05). Cerebrovascular reactivity to CO2 was reduced ( P =0.03), whereas central chemoreceptor sensitivity was increased in PAH ( P <0.01), the latter correlating with increased resting ventilation ( R2 =0.47; P <0.05) and the exercise ventilation/CO2 production slope (V˙E/V˙CO2 slope; R2 =0.62; P <0.05) during exercise for patients. Exercise-induced increases in MCAvmean were limited in PAH ( P <0.05). Reduced MCAvmean contributed to impaired cerebral oxygen delivery and oxygenation (both P <0.05), the latter correlating with exercise capacity in patients with PAH ( R2 =0.52; P =0.01)., Conclusions: These findings provide comprehensive evidence for physiologically and clinically relevant impairments in cerebral hemodynamic regulation and oxygenation in PAH., (© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.)- Published
- 2017
- Full Text
- View/download PDF
15. Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men.
- Author
-
Brassard P, Ferland-Dutil H, Smirl JD, Paquette M, Le Blanc O, Malenfant S, and Ainslie PN
- Subjects
- Adult, Aged, Arterial Pressure, Blood Flow Velocity, Healthy Volunteers, Humans, Hypertension physiopathology, Hypotension physiopathology, Male, Middle Aged, Middle Cerebral Artery physiology, Reference Values, Ultrasonography, Doppler, Transcranial, Young Adult, Blood Pressure physiology, Cerebrovascular Circulation physiology
- Abstract
The cerebrovasculature is more efficient at compensating for pharmacologically induced transient hypertension versus transient hypotension. Whether this phenomenon exists during nonpharmacologically induced hypertension and hypotension is currently unknown. We compared the percent change in mean velocity in the middle cerebral artery (MCAvmean) per percent change in mean arterial pressure (MAP) (%ΔMCAVmean/%ΔMAP) during transient hypertension and hypotension induced during squat-stand maneuvers performed at 0.05 Hz (20-s cycles) and 0.10 Hz (10-s cycles) in 58 male volunteers. %ΔMCAvmean/%ΔMAP was attenuated by 25% ( P = 0.03, 0.05 Hz) and 47% ( P < 0.0001, 0.10 Hz) during transient hypertension versus hypotension. Thus, these findings indicate that the brain in healthy men is better adapted to compensate for physiologically relevant transient hypertension than hypotension. NEW & NOTEWORTHY The novel finding of this study is that the change in middle cerebral artery mean flow velocity is attenuated during hypertension compared with hypotension physiologically induced by oscillations in blood pressure in men. These results support that the human brain is more effective at compensating for transient hypertension than hypotension., (Copyright © 2017 the American Physiological Society.)
- Published
- 2017
- Full Text
- View/download PDF
16. Effects of submaximal and supramaximal interval training on determinants of endurance performance in endurance athletes.
- Author
-
Paquette M, Le Blanc O, Lucas SJ, Thibault G, Bailey DM, and Brassard P
- Subjects
- Adult, Fatigue, Humans, Male, Young Adult, Athletes, Athletic Performance physiology, High-Intensity Interval Training methods, Oxygen Consumption, Physical Endurance physiology
- Abstract
We compared the effects of submaximal and supramaximal cycling interval training on determinants of exercise performance in moderately endurance-trained men. Maximal oxygen consumption (VO
2max ), peak power output (Ppeak ), and peak and mean anaerobic power were measured before and after 6 weeks (3 sessions/week) of submaximal (85% maximal aerobic power [MP], HIIT85 , n = 8) or supramaximal (115% MP, HIIT115 , n = 9) interval training to exhaustion in moderately endurance-trained men. High-intensity training volume was 47% lower in HIIT115 vs HIIT85 (304 ± 77 vs 571 ± 200 min; P < 0.01). Exercise training was generally associated with increased VO2max (HIIT85 : +3.3 ± 3.1 mL/kg/min; HIIT115 : +3.3 ± 3.6 ml/kg/min; Time effect P = 0.002; Group effect: P = 0.95), Ppeak (HIIT85 : +18 ± 9 W; HIIT115 : +16 ± 27 W; Time effect P = 0.045; Group effect: P = 0.49), and mean anaerobic power (HIIT85 : +0.42 ± 0.69 W/kg; HIIT115 : +0.55 ± 0.65 W/kg; Time effect P = 0.01; Group effect: P = 0.18). Six weeks of submaximal and supramaximal interval training performed to exhaustion seems to equally improve VO2max and anaerobic power in endurance-trained men, despite half the accumulated time spent at the target intensity., (© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.