75 results on '"O. Wendt"'
Search Results
2. ENTWICKLUNG UND ETABLIERUNG EINER MAP - MESSKETTE
- Author
-
O. Wendt, E. Mothes, and I. Ast
- Subjects
Materials science ,Action (philosophy) ,Electrode ,Biomedical Engineering ,Neuroscience - Published
- 2002
- Full Text
- View/download PDF
3. Different Types of Aortic Stenosis and Simulation of their Morphological-Hydrodynamic Interdependence - in Vitro Study with Allografts and Stenotic Valve Models
- Author
-
M Pohl, R Meyer, M. O. Wendt, R Kühnel, and N K Talukder
- Subjects
Materials science ,Flow (psychology) ,030232 urology & nephrology ,Biomedical Engineering ,Pulsatile flow ,Medicine (miscellaneous) ,Bioengineering ,Valve opening ,General Medicine ,030204 cardiovascular system & hematology ,medicine.disease ,Biomaterials ,Transplantation ,03 medical and health sciences ,Stenosis ,0302 clinical medicine ,Aortic valve stenosis ,medicine ,In vitro study ,Animal species ,Biomedical engineering - Abstract
Biological valves display a dependence of valve resistance and valve area on flow and a phase shift between systolic flow through the valves and pressure difference across the valves. The pressure-flow relations of stenosed valves raise questions about the “best measure of stenosis”. There is a need for quantitative evaluation of the hydrodynamic performance of homografts and allografts. In the present paper, we report on in vitro studies of the hydrodynamic behavior of homografts from human donors, allografts from different animal species as well as three valve models. Valve model I was designed to simulate flow-dependence of valve area, valve model II was designed to simulate restricted valve opening independent of flow, and valve model III was designed to simulate a flow-dependent movement of valve root in flow direction. Among other aspects, the effect of increased viscosity of the test fluid on the pressure difference and the effects of water absorption by valve tissue on valve characteristics were investigated. The results of the present studies clearly indicate that any biological valve may be modelled as a serial connection of a model I type valve and a model II type valve. From the results, the dependence of the characteristic pressure-flow relationship of a valve on valve size and valve distensibility can be clearly seen and the clinical significance of the characteristic coefficients of the pressure-flow relationship of a valve can be elucidated. Further, it was shown that the characteristic phase shift between flow and pressure difference displayed by biological valves is due to their movable valve plane similar to that of valve model III.
- Published
- 2001
- Full Text
- View/download PDF
4. Schnittgeschwindigkeiten und Biopsieerfolg unterschiedlicher Stanzbiopsieinstrumente
- Author
-
Roland Felix, T. C. Lüth, C. Siewert, Ulrich Boenick, and O. Wendt
- Subjects
Gynecology ,medicine.medical_specialty ,business.industry ,medicine ,Radiology, Nuclear Medicine and imaging ,Biomedical equipment ,business - Abstract
Fragestellung. Das Ziel der vorliegenden Untersuchungen war die Darstellung der Korrelation zwischen den erreichbaren Schnittgeschwindigkeiten sowie dem Biopsieerfolg fur verschiedene Stanzbiopsieinstrumente in Abhangigkeit von der Schnitttiefe und Gewebeart. Methodik. Es sind die dynamischen Schneideigenschaften von 5 Stanzbiopsienadeln mit bewegter Ausenkanule in Luft und Gewebe gemessen worden. Ein Inkrementalstreifen wurde an der Ausenkanule befestigt und wahrend der Schneidphase die Bewegung durch einen photooptischen Sensor verfolgt und uber eine spezielle Messeinrichtung ausgewertet. Die Bewertungskriterien des Biopsieerfolges sind das absolute Gewicht der gesicherten Gewebeprobe sowie das relative Gewicht bezogen auf die Grose des Probenreservoirs im Stilett. Ergebnisse. Es wurde eine klare Korrelation zwischen Schnittgeschwindigkeit, Gewebeeigenschaften und Biopsieerfolg insbesondere fur festere Gewebearten registriert. Schlussfolgerung. Die fur eine erfolgreiche Stanzbiopsie erforderliche Schnittgeschwindigkeit betragt zwischen 8 und 12 m/s. Geringere Stanzgeschwindigkeiten konnen durch hochqualitative Nadelausfuhrungen kompensiert werden.
- Published
- 2001
- Full Text
- View/download PDF
5. The Effects of the Use of Piezoelectric Motors in a 1.5-Tesla High-Field Magnetic Resonance Imaging System (MRI) - Effekte von piezoelektrischen Motoren in einem 1,5-Tesla-Hochfeld-Magnetresonanztomographen (MRT)
- Author
-
J. Oellinger, O. Wendt, Roland Felix, T. C. Lüth, and Ulrich Boenick
- Subjects
Physics ,Noise ,Quality (physics) ,Planar Imaging ,Nuclear magnetic resonance ,Interference (communication) ,Image quality ,Acoustics ,Biomedical Engineering ,Spin echo ,Focus (optics) ,Magnetic field - Abstract
Purpose: This paper presents the results of an experimental investigation with two different rotatory piezomotors in a closed 1.5 Tesla high-field MRI. The focus of the investigation was on testing the functionality of these motors within the MRI and to determining the image interference they caused. Materials and Methods: To obtain a differentiated estimate of the interference the motors were tested in both the passive (turned off, i.e. without current flow) and active (turned on, i.e. with current flow) state during MRI scanning. Three different types of sequences were used for the test: Spin-Echo (SE), Gradient-Echo (GE) and Echo-Planar Imaging (EPI). A plastic container filled with a gadolinium-manganese solution was used for representation of the artefacts. The motors investigated were placed parallel to the container at predetermined distances during the experiment. Results and Conclusions: The results show that the motors investigated suffered no functional limitations in the magnetic field of the MRI but, depending on the type of motor, the measurement distance and the state of the motor, the motors had different effects on the sequence images. A motor in the off-state placed immediately next to the object to be measured mainly causes artefacts because of its material properties. If, on the other hand, the piezomotor is in the on-state images with strong noise result when the motor is immediately next to the object being measured. The images regain their normal quality when the motor is approximately, at a distance of 1 m from the object being investigated. Driving the motor inside the MRI, therefore, is only to be recommended during the pauses in scanning: this delivers artefact-free images if minimal, motor-specific distances are kept to. With regard to the three different types of sequences it was determined that the SE sequence was the least sensitive and the EPI sequence the most sensitive to disturbance. The GE sequence showed only minimal differences to the SE sequence with regard to signal-to-noise ratios. Since it requires considerably shorter scan-times it can be considered to be the most effective type of sequence under these conditions.
- Published
- 2000
- Full Text
- View/download PDF
6. Charakterisierung der mechanischen In-vitro-Hämolyse und -Subhämolyse - Characterization of Mechanical in vitro Hemolysis and Subhemolysis
- Author
-
M. O. Wendt, S. Pelzer, and M. Pohl
- Subjects
medicine.diagnostic_test ,Chemistry ,Biomedical Engineering ,Erythrocyte fragility ,Hematocrit ,medicine.disease ,Hemolysis ,In vitro ,In vivo ,Mechanical stability ,medicine ,Biophysics ,Animal species ,Dimensionless quantity - Abstract
Blood damaging effects of artificial perfusion devices such as assist devices, heart valve prostheses, for example, must be evaluated in vitro before being used in the clinical setting. For this purpose, mainly animal blood has been used, and a number of associated problems are currently being discussed. Differences in the use of the term hemolysis--meaning breakdown of erythrocytes or increased plasma hemoglobin, result in incompatibility among different authors. In addition, subhemolytic damage and its quantification has not been investigated to any extent. Another problem are the differences in the mechanical fragility of erythrocytes from different animal species, and the question of transferability to the in vivo situation. Furthermore, the variability of mechanical stability within a given species is often greater than the differences between one species and another. International efforts are now being made to standardize haemolytic test conditions and the present study is meant as a contribution to this. In the first part we describe an extension of our LYSE number model. Characteristically, the model uses dimensionless similarity numbers, LY and MY, thus making the results obtained under different test conditions comparable with one another. The LY number reflects the breakdown of cells (decreasing hematocrit), the MY number an increase in plasma hemoglobin. Differences between LY and MY are an indication of subhemolytic events.
- Published
- 2000
- Full Text
- View/download PDF
7. 1H and 31P NMR Characterisation of a Double Breast Coil for Spectroscopic Measurements and Imaging - Charakteristik einer neu entwickelten Mammadoppelspule für die NMR Spektroskopie 1H31P) und Bildgebung
- Author
-
O. Wendt, Roland Felix, H. Wieder, Ulrich Boenick, C. Siewert, J. Oellinger, T. C. Lüth, M. Hentschel, and N. Hosten
- Subjects
Materials science ,Nuclear magnetic resonance ,Proton ,Electromagnetic coil ,Biomedical Engineering ,Response control ,Double frequency ,Spectroscopy ,Excitation - Abstract
For the first time a double turn breast coil has been described which can be used for 1 H imaging, 1 H spectroscopy and 31 P spectroscopy. The paper describes basic technical features of the coil, coil design, B 1 field/excitation field distribution for 1 H and 31 P, sensitivity, and feasibility for 31 P spectroscopic in vivo studies. The main advantage of the double frequency tuneable coil is that 1 H imaging for tumor localization and 31 P spectroscopy for response control can be done without an additional repositioning of the patient.
- Published
- 1999
- Full Text
- View/download PDF
8. Effekte von para- und diamagnetischen Materialien in einem 1,5-Tesla-Hochfeld-Magnetresonanztomographen (MRT) - Effects by Paramagnetic and Diamagnetic Materials in a 1.5-Tesla Highfield Magnetic Resonance Imaging System (MRI)
- Author
-
M. Dorsch, O. Wendt, C. Siewert, Roland Felix, Ulrich Boenick, I. C. Park, H. Oellinger, and T. C. Lüth
- Subjects
Materials science ,medicine.diagnostic_test ,Biomedical Engineering ,Magnetic resonance imaging ,Imaging phantom ,Sagittal plane ,Paramagnetism ,Transverse plane ,Nuclear magnetic resonance ,medicine.anatomical_structure ,Interference (communication) ,medicine ,Diamagnetism ,High field - Abstract
This article shows the results of an experimental investigation of the interference by paramagnetic and diamagnetic materials on imaging in a closed 1.5 Tesla high field magnetic resonance imaging system (MRI). For different types of sequences (SE, GE, EPI) the effects of metal and non-metal profiles in producing artefacts were investigated. A phantom (plastic trunk) filled with Gd-Mn-solution was used for representation of the artefacts. The materials analysed were placed parallel to the phantom at predetermined distances. The images were obtained in transverse and sagittal planes and analysed with respect to the resulting artefacts. The results show that aluminum and polymer profiles produce the weakest artefacts, even when the material is positioned close to the phantom. A comparison of the sequence types shows that the SE-sequence has a low sensitivity to artefacts, despite the great profile variation in size and shape. The SE-sequence accordingly showed a higher imaging stability as compared with the GE- and EPI-sequences. Steel and copper produced the strongest artefacts. The examination was begun after an intensive study of the literature (Internet, Medline, Meditec). So far have been few publications on this subject.
- Published
- 1998
- Full Text
- View/download PDF
9. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider
- Author
-
U. Cornett, C. Adloff, M. A. Thomson, M. Reinecke, J. Fleury, S. Callier, D. David, Jose Repond, O. Wendt, N. Feege, E. Calvo Alamillo, Andrew White, Kiyotomo Kawagoe, D. Trojand, Y. Mikami, N. Wattimena, H. Li, Frank Simon, P. Cornebise, F. Fehr, B. Lutz, P. Eckert, D. R. Ward, M. C. Fouz, J-Y. Hostachy, Jiang Li, Ivan Marchesini, K. Francis, M. Terwort, P. D. Dauncey, L. Raux, Wei Shen, H. Ch Schultz-Coulon, E. Norbeck, Johannes Haller, S. Richter, A.S. Dyshkant, P. A. Smirnov, H. Ghazlane, Ph. Doublet, Vaclav Vrba, Jong-Sung Yu, J. Samson, V. Morgunov, E. Baldolemar, V. Boudry, K. Gadow, Erika Garutti, Daniel Jeans, Manqi Ruan, G. Falley, Anne-Marie Magnan, N. K. Watson, M. Faucci Giannelli, S. Lu, S. Karstensen, F. Krivan, P. Göttlicher, C. Günter, P. Mora de Freitas, M. Sosebee, F. Salvatore, F. Dulucq, G. C. Blazey, B. Belhorma, F. Wicek, Ch. de la Taille, S. V. Morozov, Yasar Onel, J. Bonis, Petr Sicho, Driss Benchekroun, Imad Baptiste Laktineh, L. Morin, N. T. Meyer, C. Kiesling, Y. Khoulaki, M. Reinhard, G. Musat, S. Manen, A. Tadday, Michal Marcisovsky, Lei Xia, A. I. Lucaci-Timoce, A. Vargas-Trevino, Abdeslam Hoummada, J. Zálešák, N. Seguin-Moreau, F. Sefkow, Francois Richard, R. Pöschl, S. Uozumi, Burak Bilki, A. Frey, H. Videau, G. Martin-Chassard, C. Cârloganu, Rainer Stamen, A. Kaplan, J. Puerta-Pelayo, B. Bouquet, L. Royer, J. Smith, M. Benyamna, Georgios Mavromanolakis, W. Yan, V. Zutshi, J. C. Brient, Riccardo Fabbri, S. T. Park, V. Bartsch, M. Anduze, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), CALICE, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Particle physics ,High energy particle ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Integrated circuit ,01 natural sciences ,Noise (electronics) ,law.invention ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Optics ,Application-specific integrated circuit ,law ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,ddc:530 ,Electronics ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,010306 general physics ,Collider ,Instrumentation ,Physics ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Calorimeter ,High Energy Physics::Experiment ,business - Abstract
Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of fake signals is smaller than 1 × 10 − 5 for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.
- Published
- 2011
- Full Text
- View/download PDF
10. Electromagnetic response of a highly granular hadronic calorimeter
- Author
-
The CALICE collaboration, C Adloff, J Blaha, J -J Blaising, C Drancourt, A Espargilière, R Gaglione, N Geffroy, Y Karyotakis, J Prast, G Vouters, K Francis, J Repond, J Smith, L Xia, E Baldolemar, J Li, S T Park, M Sosebee, A P White, J Yu, Y Mikami, N K Watson, T Goto, G Mavromanolakis, M A Thomson, D R Ward, W Yan, D Benchekroun, A Hoummada, Y Khoulaki, M Benyamna, C Cârloganu, F Fehr, P Gay, S Manen, L Royer, G C Blazey, A Dyshkant, J G R Lima, V Zutshi, J -Y Hostachy, L Morin, U Cornett, D David, R Fabbri, G Falley, K Gadow, E Garutti, P Göttlicher, C Günter, S Karstensen, F Krivan, A -I Lucaci-Timoce, S Lu, B Lutz, I Marchesini, N Meyer, S Morozov, V Morgunov, M Reinecke, F Sefkow, P Smirnov, M Terwort, A Vargas-Trevino, N Wattimena, O Wendt, N Feege, J Haller, S Richter, J Samson, P Eckert, A Kaplan, H -Ch Schultz-Coulon, W Shen, R Stamen, A Tadday, B Bilki, E Norbeck, Y Onel, G W Wilson, K Kawagoe, S Uozumi, J A Ballin, P D Dauncey, A -M Magnan, H S Yilmaz, O Zorba, V Bartsch, M Postranecky, M Warren, M Wing, F Salvatore, E Calvo Alamillo, M -C Fouz, J Puerta-Pelayo, V Balagura, B Bobchenko, M Chadeeva, M Danilov, A Epifantsev, O Markin, R Mizuk, E Novikov, V Rusinov, E Tarkovsky, V Kozlov, Y Soloviev, P Buzhan, B Dolgoshein, A Ilyin, V Kantserov, V Kaplin, A Karakash, E Popova, S Smirnov, A Frey, C Kiesling, K Seidel, F Simon, C Soldner, L Weuste, J Bonis, B Bouquet, S Callier, P Cornebise, Ph Doublet, F Dulucq, M Faucci Giannelli, J Fleury, G Guilhem, H Li, G Martin-Chassard, F Richard, Ch de la Taille, R Pöschl, L Raux, N Seguin-Moreau, F Wicek, M Anduze, V Boudry, J-C Brient, D Jeans, P Mora de Freitas, G Musat, M Reinhard, M Ruan, H Videau, B Bulanek, J Zacek, J Cvach, P Gallus, M Havranek, M Janata, J Kvasnicka, D Lednicky, M Marcisovsky, I Polak, J Popule, L Tomasek, M Tomasek, P Ruzicka, P Sicho, J Smolik, V Vrba, J Zalesak, B Belhorma, H Ghazlane, K Kotera, M Nishiyama, T Takeshita, S Tozuka, T Buanes, G Eigen, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), CALICE, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,International Linear Collider ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Scintillator ,01 natural sciences ,7. Clean energy ,Optics ,Silicon photomultiplier ,0103 physical sciences ,Calibration ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,010306 general physics ,Instrumentation ,Mathematical Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Calorimeter ,High Energy Physics::Experiment ,business ,Beam (structure) - Abstract
The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described.
- Published
- 2011
- Full Text
- View/download PDF
11. Study of the interactions of pions in the CALICE silicon-tungsten calorimeter prototype
- Author
-
The CALICE collaboration, C Adloff, Y Karyotakis, J Repond, J Yu, G Eigen, Y Mikami, N K Watson, J A Wilson, T Goto, G Mavromanolakis, M A Thomson, D R Ward, W Yan, D Benchekroun, A Hoummada, Y Khoulaki, J Apostolakis, A Ribon, V Uzhinskiy, M Benyamna, C Cârloganu, F Fehr, P Gay, G C Blazey, D Chakraborty, A Dyshkant, K Francis, D Hedin, J G Lima, V Zutshi, J -Y Hostachy, K Krastev, L Morin, N D'Ascenzo, U Cornett, D David, R Fabbri, G Falley, K Gadow, E Garutti, P Göttlicher, T Jung, S Karstensen, A -I Lucaci-Timoce, B Lutz, N Meyer, V Morgunov, M Reinecke, F Sefkow, P Smirnov, A Vargas-Trevino, N Wattimena, O Wendt, N Feege, M Groll, J Haller, R -D Heuer, S Morozov, S Richter, J Samson, A Kaplan, H -Ch Schultz-Coulon, W Shen, A Tadday, B Bilki, E Norbeck, Y Onel, E J Kim, G Kim, D-W Kim, K Lee, S C Lee, K Kawagoe, Y Tamura, P D Dauncey, A -M Magnan, H Yilmaz, O Zorba, V Bartsch, M Postranecky, M Warren, M Wing, M G Green, F Salvatore, M Bedjidian, R Kieffer, I Laktineh, M -C Fouz, D S Bailey, R J Barlow, M Kelly, R J Thompson, M Danilov, E Tarkovsky, N Baranova, D Karmanov, M Korolev, M Merkin, A Voronin, A Frey, S Lu, K Seidel, F Simon, C Soldner, L Weuste, J Bonis, B Bouquet, S Callier, P Cornebise, Ph Doublet, M Faucci Giannelli, J Fleury, H Li, G Martin-Chassard, F Richard, Ch de la Taille, R Poeschl, L Raux, N Seguin-Moreau, F Wicek, M Anduze, V Boudry, J-C Brient, G Gaycken, D Jeans, P Mora de Freitas, G Musat, M Reinhard, A Rougé, M Ruan, J-Ch Vanel, H Videau, K-H Park, J Zacek, J Cvach, P Gallus, M Havranek, M Janata, M Marcisovsky, I Polak, J Popule, L Tomasek, M Tomasek, P Ruzicka, P Sicho, J Smolik, V Vrba, J Zalesak, B Belhorma, M Belmir, S W Nam, I H Park, J Yang, J -S Chai, J -T Kim, G -B Kim, J Kang, Y -J Kwon, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), CALICE, Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Monte Carlo method ,Hadron ,FOS: Physical sciences ,Electron ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Pion ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,CALICE ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,ddc:610 ,Detectors and Experimental Techniques ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Mathematical Physics ,Physics ,Large Hadron Collider ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Physics::Accelerator Physics ,High Energy Physics::Experiment - Abstract
A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte Carlo tools available for the design of a full-sized detector. The interactions of pions in the Si-W calorimeter are therefore confronted with the predictions of various physical models implemented in the GEANT4 simulation framework. A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte Carlo tools available for the design of a full-sized detector. The interactions of pions in the Si-W calorimeter are therefore confronted with the predictions of various physical models implemented in the GEANT4 simulation framework.
- Published
- 2010
- Full Text
- View/download PDF
12. Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype
- Author
-
The CALICE collaboration, C Adloff, Y Karyotakis, J Repond, A Brandt, H Brown, K De, C Medina, J Smith, J Li, M Sosebee, A White, J Yu, T Buanes, G Eigen, Y Mikami, O Miller, N K Watson, J A Wilson, T Goto, G Mavromanolakis, M A Thomson, D R Ward, W Yan, D Benchekroun, A Hoummada, Y Khoulaki, M Oreglia, M Benyamna, C Cârloganu, P Gay, J Ha, G C Blazey, D Chakraborty, A Dyshkant, K Francis, D Hedin, G Lima, V Zutshi, V A Babkin, S N Bazylev, Yu I Fedotov, V M Slepnev, I A Tiapkin, S V Volgin, J -Y Hostachy, L Morin, N D'Ascenzo, U Cornett, D David, R Fabbri, G Falley, N Feege, K Gadow, E Garutti, P Göttlicher, T Jung, S Karstensen, V Korbel, A -I Lucaci-Timoce, B Lutz, N Meyer, V Morgunov, M Reinecke, S Schätzel, S Schmidt, F Sefkow, P Smirnov, A Vargas-Trevino, N Wattimena, O Wendt, M Groll, R -D Heuer, S Richter, J Samson, A Kaplan, H -Ch Schultz-Coulon, W Shen, A Tadday, B Bilki, E Norbeck, Y Onel, E J Kim, G Kim, D-W Kim, K Lee, S C Lee, K Kawagoe, Y Tamura, J A Ballin, P D Dauncey, A -M Magnan, H Yilmaz, O Zorba, V Bartsch, M Postranecky, M Warren, M Wing, M Faucci Giannelli, M G Green, F Salvatore, R Kieffer, I Laktineh, M C Fouz, D S Bailey, R J Barlow, R J Thompson, M Batouritski, O Dvornikov, Yu Shulhevich, N Shumeiko, A Solin, P Starovoitov, V Tchekhovski, A Terletski, B Bobchenko, M Chadeeva, M Danilov, O Markin, R Mizuk, E Novikov, V Rusinov, E Tarkovsky, V Andreev, N Kirikova, A Komar, V Kozlov, Y Soloviev, A Terkulov, P Buzhan, B Dolgoshein, A Ilyin, V Kantserov, V Kaplin, A Karakash, E Popova, S Smirnov, N Baranova, E Boos, L Gladilin, D Karmanov, M Korolev, M Merkin, A Savin, A Voronin, A Topkar, A Frey, C Kiesling, S Lu, K Prothmann, K Seidel, F Simon, C Soldner, L Weuste, B Bouquet, S Callier, P Cornebise, F Dulucq, J Fleury, H Li, G Martin-Chassard, F Richard, Ch de la Taille, R Poeschl, L Raux, M Ruan, N Seguin-Moreau, F Wicek, M Anduze, V Boudry, J-C Brient, G Gaycken, R Cornat, D Jeans, P Mora de Freitas, G Musat, M Reinhard, A Rougé, J-Ch Vanel, H Videau, K-H Park, J Zacek, J Cvach, P Gallus, M Havranek, M Janata, J Kvasnicka, M Marcisovsky, I Polak, J Popule, L Tomasek, M Tomasek, P Ruzicka, P Sicho, J Smolik, V Vrba, J Zalesak, Yu Arestov, V Ammosov, B Chuiko, V Gapienko, Y Gilitski, V Koreshev, A Semak, Yu Sviridov, V Zaets, B Belhorma, M Belmir, A Baird, R N Halsall, S W Nam, I H Park, J Yang, J -S Chai, J -T Kim, G -B Kim, Y Kim, J Kang, Y -J Kwon, I Kim, T Lee, J Park, J Sung, S Itoh, K Kotera, M Nishiyama, T Takeshita, S Weber, C Zeitnitz, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), CALICE, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Hadron ,FOS: Physical sciences ,Scintillator ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Optics ,0103 physical sciences ,Calibration ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,CALICE ,ddc:610 ,Fermilab ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Detectors and Experimental Techniques ,010306 general physics ,Instrumentation ,Mathematical Physics ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,business.industry ,DESY ,Instrumentation and Detectors (physics.ins-det) ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,business - Abstract
An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab., Comment: 36 pages, 32 figures
- Published
- 2010
- Full Text
- View/download PDF
13. Working on an historical dictionary: the Swedish academy dictionary project
- Author
-
P Stille and B-O Wendt
- Subjects
Linguistics and Language ,Language and Linguistics - Published
- 2010
- Full Text
- View/download PDF
14. In Vitro Hemolysis by Mechanical Heart Valve Prostheses with Tilting Disc
- Author
-
Lerche D, M. O. Wendt, S. Pratsch, and M. Pohl
- Subjects
Lysis ,Artificial heart valve ,Chemistry ,030232 urology & nephrology ,Biomedical Engineering ,Medicine (miscellaneous) ,Bioengineering ,General Medicine ,030204 cardiovascular system & hematology ,medicine.disease ,medicine.disease_cause ,Hemolytic Process ,Hemolysis ,In vitro ,Mechanical heart-valve ,Biomaterials ,03 medical and health sciences ,Red blood cell ,0302 clinical medicine ,medicine.anatomical_structure ,medicine ,Hemoglobin ,Biomedical engineering - Abstract
Hemolytic and subhemolytic blood damage by mechanical heart valve prostheses have been observed in both clinical and in vitro investigations. A direct comparison between these studies is not possible. Nevertheless the transfer of some in vitro results to the behaviour of the valve in situ may be performed considering the similarity principle. This requires the use of dimensionless similarity numbers such as the plasma's hemoglobin concentration (PHb) or others, instead of dimensioned parameters. To evaluate the in vitro hemolysis of valve prosthesis a test chamber filled with human banked blood was used. An artificial ventricle ensuring an oscillatory flow through the valve was also used. The rise of PHb was evaluated in terms of a similarity number, called the lysis number. This number describes the probability of destroying a single red blood cell participating once in the hemolytic process under consideration. The lysis number, a Björk-Shiley valve (TAD 29), was found to be in the order of 2 × 10−4. From this, the survival time of erythrocytes in patients with an artificial heart valve was estimated. It was found to be in the order of 20 d of T50 Cr in agreement with clinical results
- Published
- 1992
- Full Text
- View/download PDF
15. Response of the CALICE Si-W electromagnetic calorimeter physics prototype to electrons
- Author
-
Ch. de la Taille, N. T. Meyer, T. Jung, I. H. Park, Y. Karyotakis, K. Francis, J. Zalesak, C. Cârloganu, H. Videau, O. Miller, F. Salvatore, Djamel Eddine Boumediene, C. M. Hawkes, M. Faucci Giannelli, Shih-Chang Lee, M. Belmir, E. Norbeck, Y. J. Kwon, Dev P. Chakraborty, J. Popule, O. Wendt, M. Krim, M. Postranecky, A. A. Voronin, G. C. Blazey, J. Zacek, S. Richter, Kyong Sei Lee, P. Mora e Freitas, V. Morgunov, Riccardo Fabbri, M. Bedjidian, N. Brun, R. Poeschl, Ki-Hyeon Park, Erika Garutti, Francois Richard, S. Lu, D. David, D-W. Kim, H. Yilmaz, G. Falley, G. Lima, F. Wicek, Petr Gallus, J. Cvach, Michal Marcisovsky, B. Lutz, C. Adloff, M. Tomášek, Geun-Bum Kim, B. Belhorma, A. Frey, D. S. Bailey, Jose Repond, A. Tadday, L. Raux, R. J. Barlow, Driss Benchekroun, Johannes Haller, A. I. Lucaci-Timoce, Abdeslam Hoummada, F. Morisseau, P. Ruzicka, P. A. Smirnov, Vaclav Vrba, Petr Sicho, V. Korbel, I. Polak, A. Kaplan, A. Vargas-Trevino, M. Janata, Imad Baptiste Laktineh, N. I. Baek, K. Prothmann, Goetz Gaycken, J. Smolik, P. D. Dauncey, J.Ch. Vanel, E. Tarkovsky, A.S. Dyshkant, N. Seguin-Moreau, Jong-Sung Yu, W. Yan, J. Fleury, J-Y. Hostachy, G. Mavromanolakis, Yasar Onel, M. Merkin, Burak Bilki, M. Reinecke, J. C. Brient, M. Anduze, D. A. Bowerman, R. D. Heuer, Kiyotomo Kawagoe, J. H. Kang, Nicola D'Ascenzo, P. Göttlicher, M. Reinhard, F. Sefkow, Y. Tamura, Miroslav Havranek, D. Karmanov, U. Cornett, M. Groll, B. Bouquet, N. Baranova, Frank Simon, Hui Li, M. A. Thomson, E.J. Kim, G. Musat, M. Korolev, J T Kim, J. A. Wilson, G. Eigen, J. Samson, M R M Warren, N. K. Watson, V. Zutshi, Vincent Boudry, R. Kieffer, Jong-Seo Chai, Y. Mikami, S. W. Nam, R. J. Thompson, Anne-Marie Magnan, D. R. Ward, M. G. Green, K. Gadow, O. Zorba, M. Wing, S. Karstensen, L. Morin, N. Wattimena, V. Bartsch, M. Benyamna, S. Callier, T. Goto, P. Cornebise, D. Hedin, Michael Kelly, Wei Shen, H. Ch Schultz-Coulon, L. Tomášek, A. Rougé, N. Feege, M. Danilov, J. Yang, Manqi Ruan, Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), CALICE, Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Silicon detector ,International Linear Collider ,Physics::Instrumentation and Detectors ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,Electron ,01 natural sciences ,7. Clean energy ,Nuclear physics ,Electromagnetic calorimeter ,0103 physical sciences ,CALICE ,ddc:530 ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,Nuclear Experiment ,physics.ins-det ,Instrumentation ,Physics ,Large Hadron Collider ,010308 nuclear & particles physics ,Detector ,Linearity ,Instrumentation and Detectors (physics.ins-det) ,3. Good health ,Semiconductor detector ,ILC ,Electron reconstruction ,13. Climate action ,Cathode ray ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,High Energy Physics::Experiment - Abstract
A prototype Silicon-Tungsten electromagnetic calorimeter (ECAL) for an International Linear Collider (ILC) detector was installed and tested during summer and autumn 2006 at CERN. The detector had 6480 silicon pads of dimension 1x1 cm^2. Data were collected with electron beams in the energy range 6 to 45 GeV. The analysis described in this paper focuses on electromagnetic shower reconstruction and characterises the ECAL response to electrons in terms of energy resolution and linearity. The detector is linear to within approximately the 1% level and has a relative energy resolution of (16.6 +- 0.1)/ \sqrt{E(GeV}) + 1.1 +- 0.1 (%). The spatial uniformity and the time stability of the ECAL are also addressed., 21 pages, 17 figs
- Published
- 2009
- Full Text
- View/download PDF
16. Dreidimensionale Sichtbarmachung stationärer Strömungen hinter künstlichen Herzklappen - Three-dimensional Visualization of Stationary Flows behind Heart Valve Prostheses
- Author
-
E. Stosslein, W Meier, M Pohl, and M O Wendt
- Subjects
Jet (fluid) ,Artificial heart valve ,Turbulence ,Instrumentation ,Flow (psychology) ,Biomedical Engineering ,Shear stress ,medicine ,Mechanics ,medicine.disease_cause ,Geology ,Visualization ,Backflow - Abstract
The visualization and quantitative analysis of flow offers a possibility for the hydrodynamic characterization of artificial heart valves. Different types of valves can be compared if velocity profile and the turbulent shear stress caused by the prosthesis are known. The tracer technique was selected, since it permits visualization also of turbulent flow through the valve. With the aid of a simple optical device the three-dimensional flow pattern behind the valve is determinable. The main features of the method are: The regions of interest can easily be identified. Velocity profiles can be determined and shear stress and turbulence intensities estimated. The experimental setup is simple, calibration is not necessary, and it can be used for turbulent flows. The method can be used only with transparent fluids and vessels; measurements in blood are not possible. Because of the large number of measuring points required the method is very time-consuming. The use of an automatic picture analyzing system would make it possible to increase the number of pictures processed, and thus increase resolution. The velocity profile of a three-finger-valve, the TAD 29, was established at a distance of 20 mm from the ring, and compared with known profiles from the literature. The valve has an opening angle of 70 degrees. All typical regions for the flow of an artificial heart valve, such as jet, stagnation gone, backflow and turbulence were demonstrated.
- Published
- 1991
- Full Text
- View/download PDF
17. Hydrodynamischer In-vitro-Vergleich einer neuen künstlichen Herzklappe mit der Björk-Shiley-Klappe (Standard) - Hydrodynamic In-vitro Comparison of a New Artificial Heart Valve with the Björk-Shiley Valve (Standard)
- Author
-
M. Pohl, M. O. Wendt, and D. Lerche
- Subjects
Pressure drop ,Materials science ,Artificial heart valve ,Turbulence ,Biomedical Engineering ,Pulsatile flow ,Mechanics ,medicine.disease_cause ,Bjork–Shiley valve ,Vortex ,symbols.namesake ,Viscosity ,symbols ,medicine ,Doppler effect - Abstract
Measurements performed to compare a newly developed tilting disc valve with the Bjork-Shiley valve included velocity profiles downstream of the heart valves, valve-induced flow turbulence and pressure drop across the opened valves. The velocity profiles measured with pulsed Doppler ultrasound are similar, although they do not permit a quantitative comparison of the valves. The interpretation of the 90 degrees-component of Doppler signals as a measure of the turbulence permits a quantitative comparison without the need for extensive measurements. However, only large vortices are recorded, so that our turbulent shear stresses are lower than these reported in the literature. The pressure drop across the opened valve is a measure of the energy loss, and important parameters for the valve can be derived from it. The pressure drop is dependent on the test conditions, and is therefore not a characteristic constant of the valve. The transformation of the power law Q = C delta P beta into a relation between Re- and Eu-number gives a nondimensional similarity number that is characteristic for tilting disc valves. Its verification requires more investigations, involving variation of valve size and the viscosity of the test fluid.
- Published
- 1991
- Full Text
- View/download PDF
18. [Developing and establishing a monophasic action potential electrode]
- Author
-
E, Mothes, I, Ast, and O, Wendt
- Subjects
Electrocardiography ,Swine ,Heart Ventricles ,Cardiac Pacing, Artificial ,Animals ,Arrhythmias, Cardiac ,Signal Processing, Computer-Assisted ,Electrodes, Implanted - Published
- 2002
19. Different types of aortic stenosis and simulation of their morphological-hydrodynamic interdependence--in vitro study with allografts and stenotic valve models
- Author
-
M, Pohl, R, Meyer, R, Kühnel, N K, Talukder, and M O, Wendt
- Subjects
Models, Structural ,Swine ,Heart Valve Prosthesis ,Pulsatile Flow ,Models, Cardiovascular ,Animals ,Transplantation, Homologous ,Aortic Valve Stenosis ,Sensitivity and Specificity ,Blood Flow Velocity - Abstract
Biological valves display a dependence of valve resistance and valve area on flow and a phase shift between systolic flow through the valves and pressure difference across the valves. The pressure-flow relations of stenosed valves raise questions about the "best measure of stenosis". There is a need for quantitative evaluation of the hydrodynamic performance of homografts and allografts. In the present paper, we report on in vitro studies of the hydrodynamic behavior of homografts from human donors, allografts from different animal species as well as three valve models. Valve model I was designed to simulate flow-dependence of valve area, valve model II was designed to simulate restricted valve opening independent of flow, and valve model III was designed to simulate a flow-dependent movement of valve root in flow direction. Among other aspects, the effect of increased viscosity of the test fluid on the pressure difference and the effects of water absorption by valve tissue on valve characteristics were investigated. The results of the present studies clearly indicate that any biological valve may be modelled as a serial connection of a model I type valve and a model II type valve. From the results, the dependence of the characteristic pressure-flow relationship of a valve on valve size and valve distensibility can be clearly seen and the clinical significance of the characteristic coefficients of the pressure-flow relationship of a valve can be elucidated. Further, it was shown that the characteristic phase shift between flow and pressure difference displayed by biological valves is due to their movable valve plane similar to that of valve model III.
- Published
- 2002
20. [Model fluids of blood for in vitro testing of artificial heart valves]
- Author
-
M, Pohl, M O, Wendt, B, Koch, R, Kühnel, O, Samba, and G, Vlastos
- Subjects
Heart Valve Prosthesis Implantation ,Heart Rate ,Regional Blood Flow ,Heart Valve Prosthesis ,Acrylic Resins ,Models, Cardiovascular ,Humans ,Equipment Design ,Heart-Assist Devices ,Blood Physiological Phenomena ,Rheology - Abstract
The increasing development and implantation of artificial organs subject to perfusion with human blood once implanted (grafts, heart-valve prostheses and assist systems) require extensive testing of hydrodynamic performance in mock circulation models. As human blood ist not always available in the necessary quantities, different fluids (water, saline or glycerine solutions) are employed for measurements of flow characteristics. However, these model fluids do not possess the non-Newtonian rheological properties of blood. In addition, they do not allow estimation of possible blood damage. Aqueous solutions of high molecular weight polyacrylamides (PAA) have rheological properties similar to blood, displaying also molecular degradation due to shear stress in the flow. Therefore, they were used as model fluid for blood. Different model solutions were compared to blood with regard to their influence on characteristic flow parameters of mechanical heart valves. Likewise, the shear damage of erythrocytes could be compared to flow-induced polymer degradation. It was shown that PAA solutions in definite concentrations are suitable models for blood, not only in terms of non-Newtonian rheology, but also in terms of estimation of hemolytic potential of artificial heart valves.
- Published
- 2001
21. [Cutting speeds and success of biopsy with different punch biopsy instruments]
- Author
-
O, Wendt, C, Siewert, T, Lüth, R, Felix, and U, Boenick
- Subjects
Liver ,Swine ,Biopsy, Needle ,Animals ,Cattle ,Equipment Design ,Kidney ,Muscle, Skeletal ,Chickens - Abstract
The goal of our investigations was the verification of the relationship between the reachable cutting speed and the biopsy success for different large-core needle biopsy devices in dependence of the cutting depth as well as different kinds of tissue.We measured the dynamic cutting properties of five large-core needle devices with moveable outer needles in air and different tissues. An incremental stripe had been attached on to the outer needle and was moved through a photooptical sensor during the cutting phase. For the valuation of the biopsy success we compared the absolute weight respectively the volume of the tissue probes as well as the relative weight in relation to the size of the sample chambers within the inner trocars.A clear correlation between the cutting speed, the tissue properties and the biopsy success had been registered, especially for more solid tissues.For a successful large-core needle biopsy a cutting speed of 8 to 12 metres per second is essential. To compensate slower needle movements high quality requirements for the surface, geometry and edge have to be fulfilled.
- Published
- 2001
22. Mechanical degradation of polyacrylamide solutions as a model for flow induced blood damage in artificial organs
- Author
-
M, Pohl, M O, Wendt, B, Koch, and G A, Vlastos
- Subjects
Erythrocyte Aggregation ,Viscosity ,Acrylic Resins ,In Vitro Techniques ,Hemolysis ,Models, Biological ,Elasticity ,Blood Substitutes ,Regional Blood Flow ,Animals ,Humans ,Cattle ,Artificial Organs ,Stress, Mechanical - Abstract
Human or animal blood is normally used as a test fluid for the in vitro evaluation of hemolysis by artificial organs. However, blood has some disadvantages (large biological variability and problems with cleaning the devices). For that reason, we searched for a reproducible technical fluid with blood-like flow characteristics that exhibits similar shear depending destruction. In this study, a direct comparison between erythrocyte damage of bovine blood and shear-induced degradation of polyacrylamide solution is given. A uniform shear field was applied to the fluids using a shear device with a plate-plate geometry. It was shown that similarities exist between erythrocytes disaggregation and breakdown of super molecular structures in polymer solutions, caused by mechanical stress. In both cases steady low shear viscositity was diminished and the elastic component of complex viscosity of blood and polymer solutions has been reduced. There is a correlation between shear-induced hemolysis of bovine blood and mechanical polymer-degradation, which depends on the applied shear stresses.
- Published
- 2001
23. The effects of the use of piezoelectric motors in a 1.5-Tesla high-field magnetic resonance imaging system (MRI)
- Author
-
O, Wendt, J, Oellinger, T C, Lüth, R, Felix, and U, Boenick
- Subjects
Equipment Failure Analysis ,Electric Power Supplies ,Echo-Planar Imaging ,Phantoms, Imaging ,Humans ,Artifacts ,Magnetic Resonance Imaging ,Sensitivity and Specificity - Abstract
This paper presents the results of an experimental investigation with two different rotatory piezomotors in a closed 1.5 Tesla high-field MRI. The focus of the investigation was on testing the functionality of these motors within the MRI and to determining the image interference they caused.To obtain a differentiated estimate of the interference the motors were tested in both the passive (turned off, i.e. without current flow) and active (turned on, i.e. with current flow) state during MRI scanning. Three different types of sequences were used for the test: Spin-Echo (SE), Gradient-Echo (GE) and Echo-Planar Imaging (EPI). A plastic container filled with a gadolinium-manganese solution was used for representation of the artefacts. The motors investigated were placed parallel to the container at predetermined distances during the experiment.The results show that the motors investigated suffered no functional limitations in the magnetic field of the MRI but, depending on the type of motor, the measurement distance and the state of the motor, the motors had different effects on the sequence images. A motor in the off-state placed immediately next to the object to be measured mainly causes artefacts because of its material properties. If, on the other hand, the piezomotor is in the on-state images with strong noise result when the motor is immediately next to the object being measured. The images regain their normal quality when the motor is approximately at a distance of 1 m from the object being investigated. Driving the motor inside the MRI, therefore, is only to be recommended during the pauses in scanning: this delivers artefact-free images if minimal, motor-specific distances are kept to. With regard to the three different types of sequences it was determined that the SE sequence was the least sensitive and the EPI sequence the most sensitive to disturbance. The GE sequence showed only minimal differences to the SE sequence with regard to signal-to-noise ratios. Since it requires considerably shorter scan-times it can be considered to be the most effective type of sequence under these conditions.
- Published
- 2000
24. Computersimulation zur Verifizierung und Präsentation eines automatisch gesteuerten Mamma-Biopsiesystems
- Author
-
O. Wendt, Ulrich Boenick, J. Oellinger, and M. Dorsch
- Subjects
MRT ,Biomedical Engineering ,ddc:610 ,Animation ,610 Medizin und Gesundheit ,Simulation - Abstract
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich., This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively., Die computerunterstützte Simulations- und Animationstechnik ist ein allgemein anerkanntes Hilfsmittel bei der Planung und Realisierung von technischen Systemen. Der Schwerpunkt des Simulations- und Animationseinsatzes lag ursprünglich nur auf der Planungsabsicherung. Zunehmend wird die Simulation und Animation durchgängig in allen Phasen des Planungs- und Realisierungsprozesses genutzt. In einem Forschungsprojekt wurde eine neuartige automatisch gesteuerte Einrichtung zur präzisen Navigation medizinischer Instrumente innerhalb von MRTomographen, insbesondere zur histologischen Sicherung von Kleintumoren, entwickelt. Die gesamte Einrichtung läßt sich gemeinsam mit einem Patienten im Untersuchungsbereich eines MR-Tomographen positionieren. Mittels einer SD-Simulation wie auch Animation konnte eine Überprüfung und Optimierung des komplexen Gesamtsystems, d.h. der einzelnen Systemkomponenten und deren kinematischen Bewegungsabläufe erfolgen. Desweiteren wurde damit eine Grundlage für die Erstellung einer Präsentationsvorlage realisiert, um der Öffentlichkeit die einzelnen Ablaufvorgänge einfach und plausibel darzustellen und zukünftige Anwender in dieses System schnell einzuweisen.
- Published
- 2000
25. Anwendung von piezoelektrischen Motoren in einem 1,5-Tesla Hochfeld-MR-Tomographen
- Author
-
O. Wendt and Ulrich Boenick
- Subjects
Biomedical Engineering ,ddc:610 - Abstract
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich. This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. Besteht die Aufgabe, präzise und automatisch gesteuerte Einrichtungen für die MR-Tomographie (MRT) zu entwickeln, so läßt sich eine störungsfreie Schnittbilddarstellung auch nur mit MR-kompatiblen Komponenten erreichen. Diesbezüglich haben Untersuchungen gezeigt, daß insbesondere Materialien mit geringen magnetischen Suszeptibilitäten und elektrischen Leitfähigkeiten hierfür geeignet sind. Sollen elektromotorische Antriebskonzepte für die Automatisierung verwendet werden, so lassen sich konventionelle Elektromotoren, aufgrund ihrer im allgemeinen hohen ferromagnetischen Materialanteile und magnetfeldabhängigen Funktionsweise, nicht anwenden. Erhebliche Kraftwirkungen, Magnetfeld-Homogenitätsstörungen und funktionelle Beeinträchtigungen des Motors können die Folge sein. Auf der Suche nach alternativen MR-kompatiblen elektrischen Antriebslösungen fanden sich neuartige Motorkonzepte, sogenannte "Piezomotoren". Diese Motoren können ohne Ferromagnetika, Spulen- und Magnetsysteme ausgeführt und betrieben werden. Da die Auswirkungen dieser Motoren auf die Schnittbildqualität nicht bekannt waren, wurden zwei Piezomotoren unterschiedlicher Bauart im MRT-Isozentrum untersucht.
- Published
- 2000
26. PROGRAMMIERUNG EINES NAVIGATIONSSYSTEMS FÜR DIE KERNSPINTOMOGRAPHISCHE MAMMADIAGNOSTIK
- Author
-
O. Wendt, J. Oellinger, Ulrich Boenick, and Kolja Kuhnlenz
- Subjects
Biomedical Engineering - Published
- 2009
- Full Text
- View/download PDF
27. 1H and 31P NMR characterisation of a double breast coil for spectroscopic measurements and imaging
- Author
-
M, Hentschel, J, Oellinger, C, Siewert, H, Wieder, N, Hosten, O, Wendt, T, Lüth, U, Boenick, and R, Felix
- Subjects
Magnetic Resonance Spectroscopy ,Evaluation Studies as Topic ,Phantoms, Imaging ,Humans ,Breast Neoplasms ,Female ,Magnetic Resonance Imaging ,Follow-Up Studies - Abstract
For the first time a double turn breast coil has been described which can be used for 1H imaging, 1H spectroscopy and 31P spectroscopy. The paper describes basic technical features of the coil, coil design, B1 field/excitation field distribution for 1H and 31P, sensitivity, and feasibility for 31P spectroscopic in vivo studies. The main advantage of the double frequency tuneable coil is that 1H imaging for tumor localization and 31P spectroscopy for response control can be done without an additional repositioning of the patient.
- Published
- 1999
28. [Effects of para- and diamagnetic materials in a 1.5 Tesla high field magnetic resonance tomography system]
- Author
-
H, Oellinger, O, Wendt, C, Siewert, I C, Park, M, Dorsch, T C, Lüth, R, Felix, and U, Boenick
- Subjects
Equipment Failure Analysis ,Magnetics ,Metals ,Phantoms, Imaging ,Humans ,Artifacts ,Magnetic Resonance Imaging - Abstract
This article shows the results of an experimental investigation of the interference by paramagnetic and diamagnetic materials on imaging in a closed 1.5 Tesla high field magnetic resonance imaging system (MRI). For different types of sequences (SE, GE, EPI) the effects of metal and non-metal profiles in producing artefacts were investigated. A phantom (plastic trunk) filled with Gd-Mn-solution was used for representation of the artefacts. The materials analysed were placed parallel to the phantom at predetermined distances. The images were obtained in transverse and sagittal planes and analysed with respect to the resulting artefacts. The results show that aluminum and polymer profiles produce the weakest artefacts, even when the material is positioned close to the phantom. A comparison of the sequence types shows that the SE-sequence has a low sensitivity to artefacts, despite the great profile variation in size and shape. The SE-sequence accordingly showed a higher imaging stability as compared with the GE- and EPI-sequences. Steel and copper produced the strongest artefacts. The examination was begun after an intensive study of the literature (Internet, Medline, Meditec). So far have been few publications on this subject.
- Published
- 1998
29. [Assessment of catheter drive and measurement collection in a coronary vessel model for the PTCA catheter]
- Author
-
M, Kraft, O, Wendt, W, Rutsch, and U, Boenick
- Subjects
Coronary Circulation ,Calibration ,Models, Cardiovascular ,Humans ,Signal Processing, Computer-Assisted ,Equipment Design ,Angioplasty, Balloon, Coronary ,Biomechanical Phenomena - Published
- 1997
30. In vitro testing of artificial heart valves: comparison between Newtonian and non-Newtonian fluids
- Author
-
Sabine Werner, D. Lerche, Brigitte Koch, Manfred Pohl, and Max O. Wendt
- Subjects
Glycerol ,Materials science ,Biomedical Engineering ,Acrylic Resins ,Medicine (miscellaneous) ,Bioengineering ,Blood Pressure ,In Vitro Techniques ,Models, Biological ,Viscoelasticity ,Biomaterials ,Rheology ,Coronary Circulation ,medicine ,Newtonian fluid ,Humans ,Computer Simulation ,Heart valve ,Drug Carriers ,Viscosity ,Annulus (oil well) ,Polysaccharides, Bacterial ,Water ,Stroke Volume ,General Medicine ,Mechanics ,Apparent viscosity ,Blood Physiological Phenomena ,Non-Newtonian fluid ,Shear rate ,medicine.anatomical_structure ,Heart Valve Prosthesis ,Biomedical engineering - Abstract
The in vitro testing of artificial heart valves is often performed with simple fluids like glycerol solutions. Blood, however, is a non-Newtonian fluid with a complex viscoelastic behavior, and different flow fields in comparable geometries may result. Therefore, we used different polymer solutions (Polyacrylamid, Xanthan gum) with blood-like rheological properties as well as various Newtonian fluids (water, glycerol solutions) in our heart valve test device. Hydrodynamic parameters of Bjork-Shiley heart valves with a tissue annulus diameter (TAD) of 21-29 mm were investigated under aortic flow conditions. Major results can be summarized as follows. The mean systolic pressure differences depend on the model fluids tested. Closing time and closing volume are not influenced by the rheological behavior of fluids. These parameters depend on TAD and the pressure differences across the valve. In contrast, rheological behavior has a pronounced influence upon leakage flow and leakage volume, respectively. Results show furthermore that the apparent viscosity data as a function of shear rate are not sufficient to characterize the rheological fluid behavior relevant to hydrodynamic parameters of the heart valves investigated. Therefore, similarity in the yield curves of non-Newtonian test fluids mimicing blood is only a pre-requisite for a suitable test fluid. More information about the viscous and elastic component of the fluid viscosity is required, especially in geometries where a complex flow field exists as in the case of leakage flow.
- Published
- 1996
31. [Differentiated evaluation of heart valve stenosis by expanded Bernoulli equation--in vitro studies of model stenoses]
- Author
-
M O, Wendt, M, Pohl, S, Werner, R, Kühnel, and D, Toppel
- Subjects
Bioprosthesis ,Hemodynamics ,Models, Cardiovascular ,Blood Pressure ,Aortic Valve Stenosis ,Blood Viscosity ,Prosthesis Design ,Aortic Valve ,Heart Valve Prosthesis ,Humans ,Mitral Valve ,Mitral Valve Stenosis ,Computer Simulation ,Blood Flow Velocity - Abstract
A suitable measure for the hydrodynamic assessment of heart valve stenoses must be independent of flow and should correspond to the morphology of the stenoses. The "effective orifice area" according to Gorlin does not fulfil this requirement, generally, because it is constant only under special conditions. This suggests the development of a multidimensional stenosis model. The idea for doing so is based on hydrodynamic evaluation of different elementary stenosis types in comparison with a valve that behaves like Gorlin's theory. The Bernoulli equation can than be expanded definitely and one gets a set of unknown stenosis parameters corresponding to the elementary stenoses. The clinical relevance of these must be evaluated by morphological evidence and by similarity of the flow-pressure drop characteristics as compared to real heart valve stenoses. A suitable reference valve is the Björk-Shiley valve. This valve was combined with evident elastic and stiff obstacles to opening with the result of flow-pressure drop characteristics similar to biological valves written in terms of flow q: [formula: see text] where q and q2 are mean flow and mean square flow through the valve, respectively. Empirical results reported in the literature can be explained as special cases of the stenosis model as demonstrated by examples. The proposed equation can be interpreted in physically founded terms in contrast with an empirical one. It gives rise to a differentiated evaluation of heart valve stenosis by orifice area (c2), elastic properties of shape and material (c1) and pre-stress (c0) independent on flow. The model can be extended step by step as required.
- Published
- 1995
32. [Mechanical hemolysis caused by artificial organs--comparison of in vitro hemolysis studies and their application to in vivo conditions]
- Author
-
M O, Wendt, M, Pohl, and D, Lerche
- Subjects
Extracorporeal Circulation ,Heart Valve Prosthesis ,Erythrocyte Count ,Hemoglobinometry ,Models, Cardiovascular ,Humans ,Erythropoiesis ,Erythrocyte Aging ,Heart, Artificial ,Heart-Assist Devices ,Hemolysis - Abstract
Changes of plasma concentration are often used for in vitro characterisation of the hemolytic potency of artificial organs and apparatus. Different indices of hemolysis are derived from Hb concentration, which, in general, depend on experimental conditions and cannot be compared quantitatively or used to describe the in vivo damage. In this paper we propose a similarity number called "lysis number" that is independent of experimental conditions. It describes the probability for a single blood cell to be completely destroyed in a single pass through the corresponding artificial assist system. The concept is based on the steps: 1. Definition of "lysis number" as an index of hemolytic performance of artificial organs or implants. 2. Description of more complex hemolytic damaging processes (different hemolytic steps) that may be in series or parallel and definition of an effective lysis number. 3. Experimental in vitro estimation of each of the processes in consecutive steps. 4. Calculation of total hemolysis of the complex system using the linkage rules. 5. Application to in vivo by an appropriate differential equation in RBC mas taking into account mechanically-induced hemolysis rate, survival time of normal RBC and erythropoetic generation rate.
- Published
- 1994
33. [Testing the hydrodynamic properties of heart valve prostheses with a new test apparatus]
- Author
-
S, Werner, M O, Wendt, K, Schichl, M, Pohl, and B, Koch
- Subjects
Aortic Valve ,Heart Valve Prosthesis ,Hemodynamics ,Models, Cardiovascular ,Humans ,Mitral Valve ,Blood Pressure ,Computer Simulation ,Signal Processing, Computer-Assisted ,Prosthesis Design ,Prosthesis Failure - Abstract
A new test apparatus for the testing of artificial heart valves makes it possible to realize both physiological flow through the valve during the flow period, and physiological pressure differences across the artificial valve during the closing phase, both for aortic and mitral valve positions, with freely selectable stroke volume and heart frequency. The major hydraulic parameters of the valve are measured directly (pressure drop, closing volume and closing time, leakage volume) or are calculated (e. g. energy loss). In association with the demonstration of the suitability of the HKP+ test apparatus for the measurement of hydraulic parameters in accordance with ISO 5840, the hydraulic properties of various types and sizes of valve with respect to pressure drop (resistance), together with their closing behaviour and leakage flow, are described for different fluids, and the correlations shown.
- Published
- 1994
34. EIN NEUARTIGES ANTRIEBS- UND VERSTELLSYSTEM ZUR SICHEREN PLAZIERUNG VON BIOPSIENADELN IM MAMMAGEWEBE
- Author
-
O. Wendt, Ulrich Boenick, and G. Grimm
- Subjects
Biomedical Engineering ,ddc:610 - Abstract
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich. This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. In der Diagnostik des Mammakarzinoms werden die Mammographie und Sonographie vor allem durch die hochauflösende Magnetresonanztomographic unterstützt [2|. Ist für die weitere Diagnostik oder Therapieplanung eine Mammabiopsie indiziert, sollte sie durch das bildgebende Verfahren gestützt werden, das die Läsion am besten darstellt [1]. Durch die technische Weiterentwicklung der o.g. bildgebenden Verfahren gelingt es jetzt immer besser auch Tumoren von wenigen Millimetern im Durchmesser darzustellen [3]. Leider hat sich die Treffsicherheit der Biopsiesysteme nicht parallel dazu entwickelt, so dass eine geschlossene MRgeführte Biopsie erst ab einer Tumorgröße von 10mm durchgeführt werden sollte [4]. Gefördert durch die Deutsche Krebshilfe wurde am Institut für Mikrotechnik und Medizintechnik der Technischen Universität Berlin in enger Zusammenarbeit mit Kliniken der Charite Berlin ein neuartiges Biopsiesystem für histologische Untersuchungen von Mammatumoren im Frühstadium (< 5 mm) entwickelt, das eine vollautomatische Mammabiopsie direkt im Isozentrum eines Kernspintomographen ermöglicht, Die Steuerung und Überwachung der automatisierten Biopsie erfolgt durch einen Steuercomputer, der über Lichtwellenleiter mit dem Biopsiesystem verbunden ist. Für dieses Biopsiesystem wird ein Antriebs- und Verstellsystem vorgestellt, das eine stufenlose Einstellung der Eindringtiefe der Biopsienadcl in das Marnmagewebe und den Vorschub des Schussapparates auf einen halben Millimeter genau ermöglicht.
- Published
- 2001
- Full Text
- View/download PDF
35. In vitro hemolysis by mechanical heart valve prostheses with tilting disc
- Author
-
M O, Wendt, M, Pohl, S, Pratsch, and D, Lerche
- Subjects
Hemoglobins ,Hematocrit ,Heart Valve Prosthesis ,Prohibitins ,Humans ,Erythrocyte Aging ,In Vitro Techniques ,Hemolysis - Abstract
Hemolytic and subhemolytic blood damage by mechanical heart valve prostheses have been observed in both clinical and in vitro investigations. A direct comparison between these studies is not possible. Nevertheless the transfer of some in vitro results to the behaviour of the valve in situ may be performed considering the similarity principle. This requires the use of dimensionless similarity numbers such as the plasma's hemoglobin concentration (PHb) or others, instead of dimensioned parameters. To evaluate the in vitro hemolysis of valve prosthesis a test chamber filled with human banked blood was used. An artificial ventricle ensuring an oscillatory flow through the valve was also used. The rise of PHb was evaluated in terms of a similarity number, called the lysis number. This number describes the probability of destroying a single red blood cell participating once in the hemolytic process under consideration. The lysis number, a Björk-Shiley valve (TAD 29), was found to be in the order of 2 x 10(-4). From this, the survival time of erythrocytes in patients with an artificial heart valve was estimated. It was found to be in the order of 20 d of T50 Cr in agreement with clinical results.
- Published
- 1992
36. BIOPSIEEINRICHTUNG ZUR HISTOLOGISCHEN SICHERUNG VON KLEINSTTUMOREN IN DER MR-MAMMOGRAPHIE
- Author
-
J. Oellinger, Ulrich Boenick, D. Schauer, O. Wendt, T. C. Lüth, and Roland Felix
- Subjects
Biomedical Engineering - Published
- 2000
- Full Text
- View/download PDF
37. [Three-dimensional visualization of stationary flow behind artificial heart valves]
- Author
-
E, Stösslein, M O, Wendt, M, Pohl, and W, Meier
- Subjects
Heart Valve Prosthesis ,Models, Cardiovascular ,Humans ,Prosthesis Design ,Rheology ,Blood Flow Velocity - Abstract
The visualization and quantitative analysis of flow offers a possibility for the hydrodynamic characterization of artificial heart valves. Different types of valves can be compared if velocity profile and the turbulent shear stress caused by the prosthesis are known. The tracer technique was selected, since it permits visualization also of turbulent flow through the valve. With the aid of a simple optical device the three-dimensional flow pattern behind the valve is determinable. The main features of the method are: The regions of interest can easily be identified. Velocity profiles can be determined and shear stress and turbulence intensities estimated. The experimental setup is simple, calibration is not necessary, and it can be used for turbulent flows. The method can be used only with transparent fluids and vessels; measurements in blood are not possible. Because of the large number of measuring points required the method is very time-consuming. The use of an automatic picture analyzing system would make it possible to increase the number of pictures processed, and thus increase resolution. The velocity profile of a three-finger-valve, the TAD 29, was established at a distance of 20 mm from the ring, and compared with known profiles from the literature. The valve has an opening angle of 70 degrees. All typical regions for the flow of an artificial heart valve, such as jet, stagnation gone, backflow and turbulence were demonstrated.
- Published
- 1991
38. The Influence of Rheological Properties of Test Fluids on the Flow Pattern Inside the Artificial Ventricle (Type Rostock) and in the Aortic Outflow Tract
- Author
-
D. Lerche, Max O. Wendt, and Manfred Pohl
- Subjects
Artificial Ventricle ,Materials science ,medicine.anatomical_structure ,Shear (geology) ,Rheology ,Turbulence ,medicine ,Outflow ,Laminar flow ,Heart valve ,Flow pattern ,Biomedical engineering - Abstract
The investigation of the flow pattern inside artificial ventricles and downstream of heart valve prostheses gives indications to the hydrodynamic optimization of such systems. The turbulent and laminar shear stresses within show strong local variations. The degree of damage of the blood components and the wall epithel depend on the value and duration of stresses.
- Published
- 1990
- Full Text
- View/download PDF
39. Realisierung des Katheterantriebes und der Meßwerterfassung in einem Herzkranzgefäßmodell für PTCA-Katheter
- Author
-
Ulrich Boenick, W. Rutsch, Marc Kraft, and O. Wendt
- Subjects
Biomedical Engineering - Published
- 1997
- Full Text
- View/download PDF
40. IN VITRO HÄMOLYSE KÜNSTLICHER MECHANISCHER HERZKLAPPEN
- Author
-
M. O. Wendt, S. Pratsch, M. Pohl, and D. Lerche
- Subjects
Materials science ,Biomedical Engineering - Published
- 1991
- Full Text
- View/download PDF
41. DER EINFLUß DER KLAPPENGRÖßE KÜNSTLICHER MECHANISCHER HERZKLAPPEN AUF DEN DRUCKVERLUST
- Author
-
M. O. Wendt, D. Lerche, and M. Pohl
- Subjects
Biomedical Engineering - Published
- 1991
- Full Text
- View/download PDF
42. UNTERSUCHUNGEN ZUR LECKAGE EINER BJÖRK-SHILEY-HERZKLAPPE MIT NEWTON’SCHEN UND NICHT-NEWTON’SCHEN FLUIDEN
- Author
-
M. Pohl, M. O. Wendt, E. Stößlein., and D. Lerche
- Subjects
Biomedical Engineering - Published
- 1991
- Full Text
- View/download PDF
43. Rotationsabhängige Beeinträchtigung der Hämodynamik unterschiedlicher Kippscheibenprothesen bei verkanteter Implantation.
- Author
-
M. Hartrumpf, R.-U. Kühnel, U. Stock, M.-O. Wendt, M. Pohl, and J. Albes
- Published
- 2005
44. [Ender's intramedullary nailing. A surgical, technically simple procedure in geriatric surgery?]
- Author
-
G, Otten, O, Wendt, W, Kaiser, and H, Heymann
- Subjects
Male ,Postoperative Care ,Postoperative Complications ,Humans ,Female ,Prognosis ,Femoral Fractures ,Early Ambulation ,Aged ,Fracture Fixation, Intramedullary - Published
- 1982
45. [Isolated Crohn disease attack of the stomach--differential diagnostic and therapeutic problems]
- Author
-
G, Otten, W, Düben, O, Wendt, and W, Kaiser
- Subjects
Diagnosis, Differential ,Male ,Crohn Disease ,Gastrectomy ,Gastric Mucosa ,Recurrence ,Gastritis ,Gastroscopy ,Humans ,Middle Aged - Abstract
There are about 15-30 patients reported in the literature, who suffered from well established, isolated Crohn's disease of the stomach. Another case is reported here, who had gastrectomy, since a diagnosis of gastric carcinoma had been made before and during surgery. When histological findings are negative, very extensive diagnostic procedures have to be performed in order to exclude this entity and to avoid useless gastric surgery. A clearcut recommendation as to surgery in cases of stenosis of the pyloric region cannot be given; the experience from the case described however would tend to favour treatment by gastrectomy.
- Published
- 1982
46. Behandlung der Brust- und Lendenwirbelbrüche mit dem 3-Punkt-Stützkorsett
- Author
-
H.-D. Lang, O. Wendt, B. Petracic, and K. Vogel
- Published
- 1976
- Full Text
- View/download PDF
47. [Treatment of thoracic and lumbar vertebral fractures using the 3-point support-brace]
- Author
-
O, Wendt, B, Petracic, H D, Lang, and K, Vogel
- Subjects
Adult ,Male ,Braces ,Lumbar Vertebrae ,Adolescent ,Spinal Injuries ,Humans ,Female ,Middle Aged ,Thoracic Vertebrae ,Aged ,Follow-Up Studies - Published
- 1975
48. LONGITUDINAL CONTROL SYSTEM FOR HIGH-SPEED AIRCRAFT
- Author
-
Harold O. Wendt
- Subjects
Computer science ,Control system ,High-speed flight ,Automotive engineering - Published
- 1948
- Full Text
- View/download PDF
49. Eine Apparatur zur Herstellung dielektrischer Vielfachschichten
- Author
-
G. Schreiber and M. O. Wendt
- Published
- 1962
- Full Text
- View/download PDF
50. [Oral antidiabetic monotherapy and combination treatment with glybenclamide (HB 419) and biguanides of insulin receiving diabetics of the adult type]
- Author
-
B, Knick, O, Wendt, M L, Konder, and P, Netter
- Subjects
Adult ,Blood Glucose ,Time Factors ,Biguanides ,Administration, Oral ,Drug Synergism ,Middle Aged ,Cyclohexanes ,Ambulatory Care ,Diabetes Mellitus ,Humans ,Hypoglycemic Agents ,Insulin ,Urea ,Sulfones ,Aged - Published
- 1970
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.