543 results on '"Observable universe"'
Search Results
2. Introduction
- Author
-
Gallaway, Mark, Ashby, Neil, Series editor, Brantley, William, Series editor, Deady, Matthew, Series editor, Fowler, Michael, Series editor, Hjorth-Jensen, Morten, Series editor, Inglis, Michael, Series editor, Klose, Heinz, Series editor, Sherif, Helmy, Series editor, and Gallaway, Mark
- Published
- 2016
- Full Text
- View/download PDF
3. A First Look at the History
- Author
-
Lyth, David H., Beech, Martin, Series editor, and Lyth, David H.
- Published
- 2016
- Full Text
- View/download PDF
4. Unity and Symmetry in the De Luce of Robert Grosseteste
- Author
-
Tanner, Brian K., Bower, Richard G., McLeish, Thomas C. B., Gasper, Giles E. M., Lagerlund, Henrik, Series editor, Yrjönsuuri, Mikko, Series editor, Cunningham, Jack P., editor, and Hocknull, Mark, editor
- Published
- 2016
- Full Text
- View/download PDF
5. Understanding the Universe
- Author
-
Seligman, Erik and Seligman, Erik
- Published
- 2016
- Full Text
- View/download PDF
6. Into the Infinite
- Author
-
Seligman, Erik and Seligman, Erik
- Published
- 2016
- Full Text
- View/download PDF
7. Numbers
- Author
-
Huemer, Michael and Huemer, Michael
- Published
- 2016
- Full Text
- View/download PDF
8. The Shape, Size, Age and Origin of the Universe
- Author
-
Seargent, David A. J. and Seargent, David A. J.
- Published
- 2015
- Full Text
- View/download PDF
9. Go Stupid : A Letter to Aspiring Imbeciles
- Author
-
Gabard, David, Waks, Leonard J., Series Editor, Porfilio, Brad J., editor, and Ford, Derek R., editor
- Published
- 2015
- Full Text
- View/download PDF
10. Ultimate Intelligence Part I: Physical Completeness and Objectivity of Induction
- Author
-
Özkural, Eray, Goebel, Randy, Series editor, Tanaka, Yuzuru, Series editor, Wahlster, Wolfgang, Series editor, Bieger, Jordi, editor, Goertzel, Ben, editor, and Potapov, Alexey, editor
- Published
- 2015
- Full Text
- View/download PDF
11. Understanding Our Only Universe
- Author
-
Valerio Marra
- Subjects
cosmology ,standard model ,dark energy ,universe expansion ,observable universe ,Philosophy (General) ,B1-5802 - Abstract
In an imaginary dialogue between a professor and a layman about the future of cosmology, the said professor relates the paradoxical story of scientist Zee Prime, a bold thinker of a future civilization, stuck in a lonely galaxy, forever unaware of the larger universe. Zee Prime comes to acknowledge his position and shows how important it is to question standard models and status quo, as only the most imaginative ideas give us the chance to understand what he calls “our only universe” — the special place and time in which we live.
- Published
- 2017
12. Direct Product of Sporadic Groups as a Symmetry Group of the Observable Universe at Maximum Expansion
- Author
-
Tomáš Ajdari
- Subjects
Dirac's large numbers ,sporadic groups ,observable universe ,symmetry - Abstract
The direct product of sporadic simple groups is a rather large group of the approximate order of 2.33×10^365, describing an object of d = 93.75 billion ly and weight of 9.63 × 10^53 kg, composed out of 6.15 × 10^121 3D knots - particles. This is the same weight as two classical electrons at Planck density minus the weight of all baryonic matter inside a local (late time) Hubble volume. The Compton wavelength of all baryonic matter inside the observable universe at maximum expansion is directly related to the order of this group. Two values of Hubble's constant (Hubble tension) are recovered. Proton/electron mass ratio is recovered assuming precise baryonic matter/total matter ratio of 1/2π, which is inside contemporary estimates. This group is implicated as a source of Weyl-Dirac's-Funkhouser's large numbers., Version 1
- Published
- 2023
- Full Text
- View/download PDF
13. Background: Correlating Microscale and Macroscale
- Author
-
Li, Jinghai, Huang, Wenlai, Li, Jinghai, and Huang, Wenlai
- Published
- 2014
- Full Text
- View/download PDF
14. The Entropy of the Universe and the Maximum Entropy Production Principle
- Author
-
Lineweaver, Charles H., Abarbanel, Henry, Series editor, Braha, Dan, Series editor, Érdi, Péter, Series editor, Friston, Karl, Series editor, Haken, Hermann, Series editor, Jirsa, Viktor, Series editor, Kacprzyk, Janusz, Series editor, Kaneko, Kunihiko, Series editor, Kirkilionis, Markus, Series editor, Kurths, Jürgen, Series editor, Nowak, Andrzej, Series editor, Reichl, Linda, Series editor, Schuster, Peter, Series editor, Schweitzer, Frank, Series editor, Sornette, Didier, Series editor, Thurner, Stefan, Series editor, Dewar, Roderick C., editor, Lineweaver, Charles H., editor, Niven, Robert K., editor, and Regenauer-Lieb, Klaus, editor
- Published
- 2014
- Full Text
- View/download PDF
15. Buddhism
- Author
-
Weintraub, David A. and Weintraub, David A.
- Published
- 2014
- Full Text
- View/download PDF
16. Meaningless Space?: Astrophysics and Theology
- Author
-
Benz, Arnold O., George, Mark K., editor, and Pezzoli-Olgiati, Daria, editor
- Published
- 2014
- Full Text
- View/download PDF
17. Data-Driven Convergence Prediction of Astrobots Swarms
- Author
-
Matin Macktoobian, Denis Gillet, Francesco Basciani, and Jean-Paul Kneib
- Subjects
FOS: Computer and information sciences ,0209 industrial biotechnology ,Computer science ,Astrobotics ,Swarm robotics ,FOS: Physical sciences ,Observable universe ,02 engineering and technology ,Data-driven ,Machine Learning ,Computer Science - Robotics ,020901 industrial engineering & automation ,Convergence (routing) ,Spectroscopic Surveys ,Electrical and Electronic Engineering ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Formal verification ,Categorical variable ,Swarm behaviour ,Astronomical instrumentation ,Astronomical Instrumentation ,Control and Systems Engineering ,Convergence Prediction ,Astrophysics - Instrumentation and Methods for Astrophysics ,Robotics (cs.RO) ,Algorithm ,Swarm Robotics - Abstract
Astrobots are robotic artifacts whose swarms are used in astrophysical studies to generate the map of the observable universe. These swarms have to be coordinated with respect to various desired observations. Such coordination\footnote{\z{A coordination sample of the astrobots may be found in \url{http://y2u.be/MpXWvpz4h00.}}} are so complicated that distributed swarm controllers cannot always coordinate enough astrobots to fulfill the minimum data desired to be obtained in the course of observations. Thus, a convergence verification is necessary to check the suitability of a coordination before its execution. However, a formal verification method does not exist for this purpose. In this paper, we instead use machine learning to predict the convergence of astrobots swarm. \z{As the first solution to this problem}, we propose a weighted $k$-NN-based algorithm which \rr{requires the initial status of a swarm as well as its observational targets to predict its convergence. Our algorithm learns to predict based on the coordination data obtained from previous coordination of the desired swarm. This method first generates a convergence probability for each astrobot based on a distance metric. Then, these probabilities are transformed to either a complete or an incomplete categorical result.} The method is applied to two typical swarms including 116 and 487 astrobots. It turns out that the correct prediction of successful coordination may be up to 80\% of overall predictions. Thus, these results witness the efficient accuracy of our predictive convergence analysis strategy.
- Published
- 2022
- Full Text
- View/download PDF
18. The Cosmic Radius of Observable Universe
- Author
-
Xiaoyun Li, Suoang Longzhou, and La Ba Sakya Genzon
- Subjects
Physics ,COSMIC cancer database ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,Observable ,Observable universe ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radius ,Astrophysics ,Universe ,Metric expansion of space ,Constant (mathematics) ,media_common - Abstract
This paper introduces three cosmic expansion models with constant, decelerating and accelerating speed of expansion respectively. Then characters of these cosmic expansion models are compared. Based on these cosmic expansion models, the thresholds of observable universe are calculated via simulations, where the earliest observable cosmic radius R(tearliest) is always 0.368R (R is cosmic radius at current universe time) for any cosmic expansion models.
- Published
- 2022
- Full Text
- View/download PDF
19. Distances in Physics and Chemistry
- Author
-
Deza, Michel Marie, Deza, Elena, Deza, Michel Marie, and Deza, Elena
- Published
- 2013
- Full Text
- View/download PDF
20. SETI: Assessing Imaginative Proposals
- Author
-
Cook, Stephen P., Hanslmeier, Arnold, editor, Kempe, Stephan, editor, and Seckbach, Joseph, editor
- Published
- 2012
- Full Text
- View/download PDF
21. Multiverses, Science, and Ultimate Causation
- Author
-
Ellis, George, Holder, Rodney D., editor, and Mitton, Simon, editor
- Published
- 2012
- Full Text
- View/download PDF
22. Biological Factors
- Author
-
Halley, J. Woods and Halley, J. Woods
- Published
- 2012
- Full Text
- View/download PDF
23. Policy, Ethical and Other Implications
- Author
-
Halley, J. Woods and Halley, J. Woods
- Published
- 2012
- Full Text
- View/download PDF
24. Is the Observable Universe Just a Square Root of the Sporadic Groups?
- Author
-
Tomáš Ajdari
- Subjects
Universe ,Sporadic groups ,Observable ,Mass of the observable universe ,Groups ,Observable universe - Abstract
The direct product of all the 26 sporadic groups is a large group of order 2.333 × 10^365. This group would form a sphere with diameter of d = 7.638 × 10^121. The cube root of this group is one of Dirac's large numbers: 6.156 × 10^121, which is the mass of this group. If we take the square root of this group/set the identity of this group to 2π × Planck length, we'll get an object with diameter d = 93.76 billion ly and weight of 9.63×10^53 kg. This compares well to current estimates of the diameter of the observable universe of about 92.80 billion ly (error of about 1 %) and mass of 9.288 × 10^53 kg (estimated range 9.102 – 9.473 × 10^53 kg, dark matter + baryonic matter). The relative error for the radius is about 1 % and about 1 % (3.7 %) for mass, since the density of both objects is the same. The observable universe might be related to the direct product of the sporadic groups.
- Published
- 2022
- Full Text
- View/download PDF
25. The Cube of Classical Electron Diameter is Related to the Mass of the Observable Universe. The Derived Volume = Entropy of the Observable Universe. ΛCDM Problems. Black Hole Electron Related to the Mass of the Observable Universe
- Author
-
Tomáš Ajdari
- Subjects
classical electron diameter ,mass ,observable universe ,ΛCDM ,Planck density - Abstract
A cubic volume derived from the diameter of a classical electron would fit in9.2280 × 1053 kg of matter at Planck density, which is well inside the total mass of the observable universe as given by Planck18. The entropy of the particle horizon is very close to the number of these volumes contained within the observable universe. The number of these volumes inside a Hubble volume is very close to the cube root of the direct product of all the 26 sporadic groups. A ring around the observable universe made out of "black hole electrons" would weigh9.31 × 1053 kg , which is inside the mass of the observable universe as given by Planck18.
- Published
- 2022
- Full Text
- View/download PDF
26. Astrobotics: Swarm Robotics for Astrophysical Studies
- Author
-
Matin Macktoobian, Denis Gillet, and Jean-Paul Kneib
- Subjects
FOS: Computer and information sciences ,Robot kinematics ,business.industry ,Computer science ,Dark matter ,Swarm robotics ,FOS: Physical sciences ,Observable universe ,Robotics ,Automation ,Field (computer science) ,Computer Science Applications ,Computer Science::Robotics ,Computer Science - Robotics ,Observational astronomy ,Computer engineering ,Control and Systems Engineering ,Artificial intelligence ,Electrical and Electronic Engineering ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Robotics (cs.RO) - Abstract
This paper introduces the emerging field of astrobotics, that is, a recently-established branch of robotics to be of service to astrophysics and observational astronomy. We first describe a modern requirement of dark matter studies, i.e., the generation of the map of the observable universe, using astrobots. Astrobots differ from conventional two-degree-of-freedom robotic manipulators in two respects. First, the dense formation of astrobots give rise to the extremely overlapping dynamics of neighboring astrobots which make them severely subject to collisions. Second, the structure of astrobots and their mechanical specifications are specialized due to the embedded optical fibers passed through them. We focus on the coordination problem of astrobots whose solutions shall be collision-free, fast execution, and complete in terms of the astrobots' convergence rates. We also illustrate the significant impact of astrobots assignments to observational targets on the quality of coordination solutions To present the current state of the field, we elaborate the open problems including next-generation astrophysical projects including 20,000 astrobots, and other fields, such as space debris tracking, in which astrobots may be potentially used
- Published
- 2022
27. The Position of Man in the Cosmos
- Author
-
Kanitscheider, Bernulf, Frey, Ulrich J., editor, Störmer, Charlotte, editor, and Willführ, Kai P., editor
- Published
- 2010
- Full Text
- View/download PDF
28. The Big Bang and the First 380,000 Years
- Author
-
Beech, Martin and Beech, Martin
- Published
- 2010
- Full Text
- View/download PDF
29. Introduction
- Author
-
Beech, Martin and Beech, Martin
- Published
- 2009
- Full Text
- View/download PDF
30. The Insignificance of Man?
- Author
-
Block, David L. and Freeman, Kenneth C.
- Published
- 2008
- Full Text
- View/download PDF
31. Gravitational wave observatories may be able to detect hyperbolic encounters of black holes
- Author
-
Sanjit Mitra, Sajal Mukherjee, and Sourav Chatterjee
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Gravitational wave ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Observable universe ,General Relativity and Quantum Cosmology (gr-qc) ,General Relativity and Quantum Cosmology ,Black hole ,Stars ,Space and Planetary Science ,Primary (astronomy) ,Globular cluster ,Cluster (physics) ,Astrophysics - High Energy Astrophysical Phenomena ,Stellar evolution - Abstract
Gravitational Wave (GW) astronomy promises to observe different kinds of astrophysical sources. Here we explore the possibility of detection of GWs from hyperbolic interactions of compact stars with ground-based interferometric detectors. It is believed that a bound compact cluster, such as a globular cluster, can be a primary environment for these interactions. We estimate the detection rates for such events by considering local geometry within the cluster, accounting for scattering probability of compact stars at finite distances, and assuming realistic cluster properties guided by available numerical models, their formation times, and evolution of stars inside them. We find that, even in the conservative limit, it may be possible to detect such black hole encounters in the next few years by the present network of observatories with the ongoing sensitivity upgrades and one to few events per year with the next generation observatories. In practice, actual detection rates can significantly surpass the estimated average rates, since the chances of finding outliers in a very large population can be high. Such observations (or, no observation) may provide crucial constraints to estimate the number of isolated compact stars in the universe. These detections will be exciting discoveries on their own and will be complimentary to observations of binary mergers bringing us one step closer to address a fundamental question, how many black holes are there in the observable universe., 10 pages, 4 figures
- Published
- 2021
- Full Text
- View/download PDF
32. On the Origin of the CMB Radiation
- Author
-
Jarl-Thure Eriksson
- Subjects
Physics ,Photon ,media_common.quotation_subject ,Cosmic microwave background ,Observable universe ,Astrophysics ,Universe ,Black hole ,symbols.namesake ,symbols ,Dark energy ,Scale factor (cosmology) ,media_common ,Hubble's law - Abstract
According to the standard model the CMB radiation is a relict of the Big Bang. Even if the temperature has varied over the years, we now have an accurate figure, 2,72548 K. The radiation exhibits an almost perfect black body spectrum, which causes some confusion, the number of photons required does not match the number available at a distant moment in the past. Several scattering mechanisms have been suggested to give the photon number the necessary gain. It is assumed that the last scattering at ca 380.000 yr after the big bang has left the radiation pattern we now observe. Some notable physicists have expressed doubts about the last scattering and emphasized that the photons originate from positron-electron (e+-e-) annihilations and that scattering would not preserve the black body spectrum. Based on known laws of physics a theory, CBU for the Continuously Breeding Universe, has been developed. The theory incorporates important ideas from the past. The universe is a complex emerging system, which starts from the single quantum fluctuation of a positron-electron pair. Expansion is driven by the emersion of new pairs. Typically, the gravitational parameter G is inversely proportional to the radius. The theory predicts correctly the radius of the observable universe, the Hubble parameter, the energy content and gives a plausible explanation to dark energy. The CBU theory postulates that the primordial universe undergoes a transition from a black hole to a photon filled universe. After the transition one half of the energy is bound to a great multitude of ‘small’ black holes, while the other half propagate as the CMB radiation in the free space. It is presumed that the CMB photons are due to e+-e- annihilations. The frequency-energy (hf) of the photons decreases according to ac2, where ac is the scale factor of the transition. As a characteristic feature the CMB photons are pairwise entangled and in a state of superposition. If we assume that photons in a superposition cannot give off energy, they compensate the hf loss by increasing the number of photons. As they move in all directions the gain will be 1/ac3. In addition, when the photons enter the observable universe at afl (first light), the Doppler effect lengthens the wavelength, whereby the 1-dimensional photon ray to be observed on Earth gets a number gain of 1/afl in compensation, the total gain being 1/afl ac3. The gain effect and the half-energy at the CMB transition result in an energy density of 4,173·10-14 J/m3, equal to BT04, where B is the Stefan-Boltzmann black body energy density constant.
- Published
- 2021
- Full Text
- View/download PDF
33. Application of Regge Theory to Astronomical Objects
- Author
-
Vazgen V. Sargsyan, Horst Lenske, Gurgen G. Adamian, and Nikolai V. Antonenko
- Subjects
Physics ,Astronomical Objects ,astronomical objects ,QC1-999 ,Observable universe ,Regge trajectories ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Moment of inertia ,Rotation ,Galaxy ,Neutron star ,Stars ,moment of inertia ,Darwin instability effect ,Planet ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Using the model based on the Regge-like laws, new analytical formulas are obtained for the moment of inertia, the rotation frequency, and the radius of astronomical non-exotic objects (planets, stars, galaxies, and clusters of galaxies). The rotation frequency and moment of inertia of a neutron star and the observable Universe are estimated. The estimates of the average numbers of stars and galaxies in the observable Universe are given. The Darwin instability effect in the binary systems (di-planets, di-stars, and di-galaxies) is also analyzed.
- Published
- 2021
- Full Text
- View/download PDF
34. What is reality, really?
- Author
-
Hanlon, Michael and Hanlon, Michael
- Published
- 2007
- Full Text
- View/download PDF
35. Introduction
- Author
-
Turney, Chris and Turney, Chris
- Published
- 2006
- Full Text
- View/download PDF
36. Supernova model discrimination with hyper-kamiokande
- Author
-
Y. Nagao, H. Tanaka, A. Minamino, B. Navarro-Garcia, Z. Xie, L. Nascimento Machado, J. Lagoda, M. Shinoki, S. Cuen-Rochin, Arman Esmaili, F. Ballester, S. Parsa, N. McCauley, Jung-Hyun Kim, K. Frankiewicz, L. L. Kormos, Masaki Ishitsuka, M. Malek, V. Valentino, N. Kazarian, T. Wachala, E. Drakopoulou, G. Grella, V. Paolone, L. F. Thompson, A. K. Tomatani-Sánchez, A. Blanchet, R. A. Wendell, John Ellis, J. Y. Kim, N. W. Prouse, O. V. Mineev, M. R. Vagins, T. Boschi, T. Lindner, J. González-Nuevo, Hiroshi Ito, N. Skrobova, M. La Commara, L. Gialanella, F. Orozco-Luna, T. Kumita, A. Garfagnini, S. H. Jeon, A. Dergacheva, Hiroaki Menjo, A. T. Suzuki, K. Okamoto, C. E. R. Naseby, J. F. Martin, T. Iijima, M. Mezzetto, G. Ricciardi, J. R. Wilson, P. Gumplinger, Y. Takemoto, G. Galinski, K. Zaremba, T. Nakadaira, D. Vivolo, A. Carroll, C. Vilela, A. Blondel, A. Rychter, T. A. Doyle, C. Garde, G. De Rosa, A. Oshlianskyi, Hiroyuki Sekiya, R. Matsumoto, G. Pastuszak, P. J. Rajda, F. Monrabal, Yoichi Asaoka, G. Díaz López, K. L. Stankevich, C. D. Shin, Y. Fukuda, Yuto Ashida, Michal Malinský, T. Suganuma, B. Radics, Kohta Murase, Marco Grassi, P. Mehta, F. Cafagna, Ahmed Ali, L. Koerich, Vincenzo Berardi, Etam Noah, F. J. P. Soler, Alan Cosimo Ruggeri, M. Kekic, G. Vasseur, S. Wronka, M. Thiesse, B. Ferrazzi, K. Iwamoto, Yu. Kudenko, Atsushi Takeda, Kendall Mahn, David Hadley, B. Roskovec, M. Bergevin, A. Korzenev, J.J. Gómez-Cadenas, M. Batkiewicz-Kwasniak, M. Tzanov, M. Ikeda, Federico Sanchez, W. Obrębski, H. S. Jo, Y. Takeuchi, Piotr Kalaczyński, S. Chakraborty, J. C. Nugent, S. King, P. Paganini, M. Miura, F. Ameli, D. N. Yeum, C. J. Metelko, Akito Araya, T. Kajita, M. Tanaka, I. T. Lim, L. Mellet, S. Y. Kim, S. Bolognesi, A. Bravar, J. S. Jang, D. Svirida, A. Fiorentini, J. Renner, M. Chabera, L. O'Sullivan, V. Herrero, F. Iacob, K. Nakamura, Ko Okumura, Lukasz Stawarz, N. Ogawa, Laura Bonavera, Y. Maekawa, Takatomi Yano, Ll. Marti, H. J. Rose, S. El Hedri, L. Maret, G. Zarnecki, L. Bernard, S. H. Seo, H. Nakamura, H. Ozaki, A. P. Kryukov, A. Popov, Hisakazu Minakata, M. Buizza Avanzini, P. Sarmah, K. Martens, Sergio Luis Suárez Gómez, Hiroaki Aihara, V. Lezaun, G. A. Cowan, C. Riccio, S. Garode, R. Akutsu, M. Lamers James, T. Nicholls, I. Alekseev, K. Kowalik, J. Kasperek, T. Zakrzewski, S. B. Kim, T. Kutter, Evan O'Connor, B. Jamieson, F. Nova, M. Barbi, Xianguo Lu, Y. Sonoda, M. Friend, Teppei Katori, L. H. V. Anthony, A. Shaikhiev, C. J. Densham, V. Gousy-Leblanc, I. Bandac, J. H. Choi, S. Sano, A. K. Ichikawa, Magda Cicerchia, S. Valder, S. Roth, J. Kameda, M. Zito, A. Vijayvargi, S. Nakai, Y. Kotsar, K. M. Tsui, K. Hoshina, K. K. Joo, C. Pastore, T. Marchi, K. Niewczas, K. Nakayoshi, G. Fiorillo, C. McGrew, P. F. Loverre, S. Playfer, G.D. Barr, L. Labarga, T. Kobayashi, E. S. Pinzon Guerra, André Rubbia, D. Karlen, Th. A. Mueller, L. Koch, F. J. Mora, M. M. Khabibullin, Hidekazu Kakuno, Yoshitaka Itow, H. K. Tanaka, P. Adrich, Jeong-Eun Lee, S. Samani, M. G. Catanesi, M. Yu, M. J. Wilking, Robert Svoboda, P. Mijakowski, N. Kolev, Yu. Onishchuk, A. Kato, J. M. Poutissou, C. Bronner, Yutaka Nakajima, B. Richards, C. Ruggles, M. Needham, P. Jonsson, Y. Hayato, S. Mine, A. Konaka, L. Munteanu, Kunio Inoue, O. Drapier, Kenneth Long, M. McCarthy, T. Kinoshita, G. Tortone, Yuuki Nakano, T. Feusels, N. Izumi, Reetanjali Moharana, T. Dealtry, S. Hassani, G. Pronost, K. Sakashita, J. G. Learned, H. M. O'Keeffe, Shintaro Ito, E. Rondio, Toru Ogitsu, D. A. Patel, Tatiana Ovsiannikova, M. Guigue, Yusuke Koshio, T. Matsubara, S. M. Stellacci, R. J. Wilkes, G. Santucci, S. Y. Suzuki, S. D. Rountree, K. Zietara, A. A. Quiroga, M. Jakkapu, A. Boiano, L. Berns, M. O. Wascko, M. M. Vyalkov, K. Porwit, M. Taani, A. Evangelisti, I. Sashima, Michal Dziewiecki, J. Feng, Y. Seiya, M. Yonenaga, B. Spisso, B. W. Pointon, C. M. Mollo, N. Booth, S. V. Cao, N. Ospina, A. J. Finch, V. Takhistov, E. Radicioni, P. Przewlocki, S. Nakayama, S. Yen, T. Sekiguchi, Yudai Suwa, J. M. Calvo-Mozota, S. Zsoldos, C. Checchia, M. Posiadala-Zezula, E. O'Sullivan, Janusz Marzec, F. Retiere, Jan T. Sobczyk, P. Migliozzi, S. Borjabad, I. Di Palma, John Hill, K. A. Kouzakov, D. L. Wark, L. Cook, D. Sgalaberna, E. W. Miller, M. Lamoureux, M. Y. Pac, S. Russo, S. L. Cartwright, Yasunari Suzuki, D. Bose, B. Zaldivar, D. Martin, Dongsu Ryu, Z. Shan, S. Miki, M. Jiang, J. Kisiel, N. Yershov, M. Matusiak, C. Pea-Garay, K. Sato, Jesús Daniel Santos, Y. Yamaguchi, D. Bravo-Berguo, Chad Finley, T. Tashiro, Lawrence D. Brown, A. Gorin, Hiromasa Tanaka, M. Ziembicki, T. Vladisavljevic, J. Zalipska, J. Insler, C. Yanagisawa, Abinash Medhi, L. Kravchuk, W. Idrissi Ibnsalih, Hirokazu Ishino, J. Bian, K. Magar, S. Cebrian, Philippe Mermod, R. Gornea, Juan Pedro Ochoa-Ricoux, Sergei Fedotov, S. Izumiyama, C. Bozza, R. Esteve, Seiko Hirota, T. Tsukamoto, K. Skwarczynski, E. De la Fuente, T. Kikawa, M. Gonin, J. Xia, Intae Yu, Gareth J. Barker, A. Marinelli, E. Kearns, L. Lavitola, Michal Ostrowski, N. Deshmukh, Y. Kataoka, F. d. M. Blaszczyk, Carsten Rott, C. Mariani, T. Ishida, Roberto Spina, J. W. Seo, Masashi Yokoyama, F. Gramegna, K. Hultqvist, G. Collazuol, P. Spradlin, Gus Sinnis, A. Takenaka, T. Xin, M. Bellato, Yuki Fujii, Mark Scott, J. A. Hernando-Morata, P. Ferrario, A. Buchowicz, S. J. Jenkins, J. Walker, J. Toledo, Pablo Fernandez, Sandhya Choubey, S. Emery, A. Mefodiev, R.P. Kurjata, M. Mongelli, J. Dumarchez, Tsuyoshi Nakaya, M. Antonova, M. Danilov, M. Feely, A. Holin, Ara Ioannisian, B. A. Popov, K Stopa, W. G. S. Vinning, M. L. Sánchez, Masato Shiozawa, L. Ludovici, J. Gao, S. Bhadra, Koji Ishidoshiro, Hiroshi Nunokawa, V. Aushev, M. Hartz, I. Shimizu, C. S. Moon, M. B. Smy, S. Matsuno, I. Anghel, J. Migenda, T. Mondal, F. Di Lodovico, M. Tada, D. J. Payne, M. Kuze, N. C. Hastings, P. Di Meo, Y. Nishimura, M. Inomoto, L. Magaletti, C. Giganti, A. Klekotko, Patrick Dunne, J. Yoo, M. C. Sanchez, A. N. Khotjantsev, Kyujin Kwak, Lars Eklund, M. Lawe, A. Mitra, H. W. Sobel, Jürgen Pozimski, Yasuhiro Makida, A. Bubak, Jaroslaw Pasternak, B. Quilain, R. Leitner, Marco Laveder, J. P. Coleman, N. F. Calabria, H. I. Jang, S. B. Boyd, Moon Moon Devi, M. Fitton, M. Harada, Artur F. Izmaylov, J. McElwee, Shunsaku Horiuchi, P. de Perio, K. Nakagiri, Y. Kano, M. Rescigno, S. Moriyama, Masayuki Nakahata, C. Pidcott, Y. Uchida, V. Palladino, A. Longhin, A. Shaykina, Michelangelo Pari, Akimichi Taketa, Yuichi Oyama, S. Suvorov, R. P. Litchfield, D. H. Moon, Katsuki Hiraide, M. Pavin, M. Koga, R. B. Vogelaar, Enrique Fernandez-Martinez, B. L. Hartfiel, Koji Yamamoto, K. Ohta, K. Abe, Alexander Studenikin, E. Mazzucato, Elisa Bernardini, Abe, K., Adrich, P., Aihara, H., Akutsu, R., Alekseev, I., Ali, A., Ameli, F., Anghel, I., Anthony, L. H. V., Antonova, M., Araya, A., Asaoka, Y., Ashida, Y., Aushev, V., Ballester, F., Bandac, I., Barbi, M., Barker, G. J., Barr, G., Batkiewicz-Kwasniak, M., Bellato, M., Berardi, V., Bergevin, M., Bernard, L., Bernardini, E., Berns, L., Bhadra, S., Bian, J., Blanchet, A., Blaszczyk, F. D. M., Blondel, A., Boiano, A., Bolognesi, S., Bonavera, L., Booth, N., Borjabad, S., Boschi, T., Bose, D., Boyd, S. B., Bozza, C., Bravar, A., Bravo-Berguo, D., Bronner, C., Brown, L., Bubak, A., Buchowicz, A., Buizza Avanzini, M., Cafagna, F. S., Calabria, N. F., Calvo-Mozota, J. M., Cao, S., Cartwright, S. L., Carroll, A., Catanesi, M. G., Cebrian, S., Chabera, M., Chakraborty, S., Checchia, C., Choi, J. H., Choubey, S., Cicerchia, M., Coleman, J., Collazuol, G., Cook, L., Cowan, G., Cuen-Rochin, S., Danilov, M., Diaz Lopez, G., De La Fuente, E., De Perio, P., De Rosa, G., Dealtry, T., Densham, C. J., Dergacheva, A., Deshmukh, N., Devi, M. M., Di Lodovico, F., Di Meo, P., Di Palma, I., Doyle, T. A., Drakopoulou, E., Drapier, O., Dumarchez, J., Dunne, P., Dziewiecki, M., Eklund, L., El Hedri, S., Ellis, J., Emery, S., Esmaili, A., Esteve, R., Evangelisti, A., Feely, M., Fedotov, S., Feng, J., Fernandez, P., Fernandez-Martinez, E., Ferrario, P., Ferrazzi, B., Feusels, T., Finch, A., Finley, C., Fiorentini, A., Fiorillo, G., Fitton, M., Frankiewicz, K., Friend, M., Fujii, Y., Fukuda, Y., Galinski, G., Gao, J., Garde, C., Garfagnini, A., Garode, S., Gialanella, L., Giganti, C., Gomez-Cadenas, J. J., Gonin, M., Gonzalez-Nuevo, J., Gorin, A., Gornea, R., Gousy-Leblanc, V., Gramegna, F., Grassi, M., Grella, G., Guigue, M., Gumplinger, P., Hadley, D. R., Harada, M., Hartfiel, B., Hartz, M., Hassani, S., Hastings, N. C., Hayato, Y., Hernando-Morata, J. A., Herrero, V., Hill, J., Hiraide, K., Hirota, S., Holin, A., Horiuchi, S., Hoshina, K., Hultqvist, K., Iacob, F., Ichikawa, A. K., Idrissi Ibnsalih, W., Iijima, T., Ikeda, M., Inomoto, M., Inoue, K., Insler, J., Ioannisian, A., Ishida, T., Ishidoshiro, K., Ishino, H., Ishitsuka, M., Ito, H., Ito, S., Itow, Y., Iwamoto, K., Izmaylov, A., Izumi, N., Izumiyama, S., Jakkapu, M., Jamieson, B., Jang, H. I., Jang, J. S., Jenkins, S. J., Jeon, S. H., Jiang, M., Jo, H. S., Jonsson, P., Joo, K. K., Kajita, T., Kakuno, H., Kameda, J., Kano, Y., Kalaczynski, P., Karlen, D., Kasperek, J., Kataoka, Y., Kato, A., Katori, T., Kazarian, N., Kearns, E., Khabibullin, M., Khotjantsev, A., Kikawa, T., Kekic, M., Kim, J. H., Kim, J. Y., Kim, S. B., Kim, S. Y., King, S., Kinoshita, T., Kisiel, J., Klekotko, A., Kobayashi, T., Koch, L., Koga, M., Koerich, L., Kolev, N., Konaka, A., Kormos, L. L., Koshio, Y., Korzenev, A., Kotsar, Y., Kouzakov, K. A., Kowalik, K. L., Kravchuk, L., Kryukov, A. P., Kudenko, Y., Kumita, T., Kurjata, R., Kutter, T., Kuze, M., Kwak, K., La Commara, M., Labarga, L., Lagoda, J., Lamers James, M., Lamoureux, M., Laveder, M., Lavitola, L., Lawe, M., Learned, J. G., Lee, J., Leitner, R., Lezaun, V., Lim, I. T., Lindner, T., Litchfield, R. P., Long, K. R., Longhin, A., Loverre, P., Lu, X., Ludovici, L., Maekawa, Y., Magaletti, L., Magar, K., Mahn, K., Makida, Y., Malek, M., Malinsky, M., Marchi, T., Maret, L., Mariani, C., Marinelli, A., Martens, K., Marti, L., Martin, J. F., Martin, D., Marzec, J., Matsubara, T., Matsumoto, R., Matsuno, S., Matusiak, M., Mazzucato, E., Mccarthy, M., Mccauley, N., Mcelwee, J., Mcgrew, C., Mefodiev, A., Medhi, A., Mehta, P., Mellet, L., Menjo, H., Mermod, P., Metelko, C., Mezzetto, M., Migenda, J., Migliozzi, P., Mijakowski, P., Miki, S., Miller, E. W., Minakata, H., Minamino, A., Mine, S., Mineev, O., Mitra, A., Miura, M., Moharana, R., Mollo, C. M., Mondal, T., Mongelli, M., Monrabal, F., Moon, D. H., Moon, C. S., Mora, F. J., Moriyama, S., Mueller, T. A., Munteanu, L., Murase, K., Nagao, Y., Nakadaira, T., Nakagiri, K., Nakahata, M., Nakai, S., Nakajima, Y., Nakamura, K., Nakamura, K. I., Nakamura, H., Nakano, Y., Nakaya, T., Nakayama, S., Nakayoshi, K., Nascimento Machado, L., Naseby, C. E. R., Navarro-Garcia, B., Needham, M., Nicholls, T., Niewczas, K., Nishimura, Y., Noah, E., Nova, F., Nugent, J. C., Nunokawa, H., Obrebski, W., Ochoa-Ricoux, J. P., O'Connor, E., Ogawa, N., Ogitsu, T., Ohta, K., Okamoto, K., O'Keeffe, H. M., Okumura, K., Onishchuk, Y., Orozco-Luna, F., Oshlianskyi, A., Ospina, N., Ostrowski, M., O'Sullivan, E., O'Sullivan, L., Ovsiannikova, T., Oyama, Y., Ozaki, H., Pac, M. Y., Paganini, P., Palladino, V., Paolone, V., Pari, M., Parsa, S., Pasternak, J., Pastore, C., Pastuszak, G., Patel, D. A., Pavin, M., Payne, D., Pea-Garay, C., Pidcott, C., Pinzon Guerra, E., Playfer, S., Pointon, B. W., Popov, A., Popov, B., Porwit, K., Posiadala-Zezula, M., Poutissou, J. -M., Pozimski, J., Pronost, G., Prouse, N. W., Przewlocki, P., Quilain, B., Quiroga, A. A., Radicioni, E., Radics, B., Rajda, P. J., Renner, J., Rescigno, M., Retiere, F., Ricciardi, G., Riccio, C., Richards, B., Rondio, E., Rose, H. J., Roskovec, B., Roth, S., Rott, C., Rountree, S. D., Rubbia, A., Ruggeri, A. C., Ruggles, C., Russo, S., Rychter, A., Ryu, D., Sakashita, K., Samani, S., Sanchez, F., Sanchez, M. L., Sanchez, M. C., Sano, S., Santos, J. D., Santucci, G., Sarmah, P., Sashima, I., Sato, K., Scott, M., Seiya, Y., Sekiguchi, T., Sekiya, H., Seo, J. W., Seo, S. H., Sgalaberna, D., Shaikhiev, A., Shan, Z., Shaykina, A., Shimizu, I., Shin, C. D., Shinoki, M., Shiozawa, M., Sinnis, G., Skrobova, N., Skwarczynski, K., Smy, M. B., Sobczyk, J., Sobel, H. W., Soler, F. J. P., Sonoda, Y., Spina, R., Spisso, B., Spradlin, P., Stankevich, K. L., Stawarz, L., Stellacci, S. M., Stopa, K., Studenikin, A. I., Suarez Gomez, S. L., Suganuma, T., Suvorov, S., Suwa, Y., Suzuki, A. T., Suzuki, S. Y., Suzuki, Y., Svirida, D., Svoboda, R., Taani, M., Tada, M., Takeda, A., Takemoto, Y., Takenaka, A., Taketa, A., Takeuchi, Y., Takhistov, V., Tanaka, H., Tanaka, H. A., Tanaka, H. I., Tanaka, M., Tashiro, T., Thiesse, M., Thompson, L. F., Toledo, J., Tomatani-Sanchez, A. K., Tortone, G., Tsui, K. M., Tsukamoto, T., Tzanov, M., Uchida, Y., Vagins, M. R., Valder, S., Valentino, V., Vasseur, G., Vijayvargi, A., Vilela, C., Vinning, W. G. S., Vivolo, D., Vladisavljevic, T., Vogelaar, R. B., Vyalkov, M. M., Wachala, T., Walker, J., Wark, D., Wascko, M. O., Wendell, R. A., Wilkes, R. J., Wilking, M. J., Wilson, J. R., Wronka, S., Xia, J., Xie, Z., Xin, T., Yamaguchi, Y., Yamamoto, K., Yanagisawa, C., Yano, T., Yen, S., Yershov, N., Yeum, D. N., Yokoyama, M., Yonenaga, M., Yoo, J., Yu, I., Yu, M., Zakrzewski, T., Zaldivar, B., Zalipska, J., Zaremba, K., Zarnecki, G., Ziembicki, M., Zietara, K., Zito, M., Zsoldos, S., Laboratoire Leprince-Ringuet (LLR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Hyper-Kamiokande, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics - Instrumentation and Detectors ,09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación ,KAMIOKANDE ,Astrophysics ,01 natural sciences ,neutrino: flux ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,neutrino ,accretion ,black hole ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Core-collapse supernovae ,neutron star ,Monte Carlo ,physics.ins-det ,010303 astronomy & astrophysics ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Instrumentation and Detectors (physics.ins-det) ,16. Peace & justice ,Supernova ,neutrino: detector ,07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos ,supernova ,neutrino astronomy ,neutrino physics ,Neutrino detector ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,supernova: collapse ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Observable universe ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Hyper-Kamiokande ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,High energy physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,High Energy Astrophysical Phenomena ,Astrophysics::Galaxy Astrophysics ,hep-ex ,010308 nuclear & particles physics ,supernova: model ,Astronomy and Astrophysics ,Galaxy ,Black hole ,Neutron star ,Space and Planetary Science ,neutrino: burst ,galaxy ,Neutrino astronomy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,astro-ph.IM - Abstract
Autorzy: Abe K., Adrich P., Aihara H., Akutsu, R., Alekseev I., Ali A. , Ameli F., Anghel I., Anthony L. H. V., Antonova M. , Araya A., Asaoka Y., Ashida Y., Aushev V., Ballester F., Bandac I., Barbi M., Barker G. J., Barr G., Batkiewicz-Kwasniak M., Bellato M., Berardi V., Bergevin M., Bernard L., Bernardini E., Berns L., Bhadra S., Bian J., Blanchet A., Blaszczyk F. d. M., Blonde A., Boiano A., Bolognesi S., Bonavera L., Booth N., Borjabad S., Boschi, T., Bose D., Boyd S . B., Bozza C., Bravar A., Bravo-Berguño D., Bronner C., Brown L., Bubak Arkadiusz, Buchowicz A., Buizza Avanzini M., Cafagna F. S., Calabria N. F., Calvo-Mozota J. M., Cao S., Cartwright S.L., Carroll A., Catanesi M. G., Cebriàn, S., Chabera M., Chakraborty, S., Checchia C., Choi J.H., Choubey S., Cicerchia M., Coleman J., Collazuol G., Cook L., Cowan G., Cuen-Rochin, S., Danilov M., Díaz López G., De la Fuente E., de Perio P., De Rosa G., Dealtry T., Densham C. J., Dergacheva A., Deshmukh N., Devi M. M., Di Lodovico F., Di Meo, P., Di Palma I., Doyle T. A., Drakopoulou E., Drapier O., Dumarchez J., Dunne P., Dziewiecki M., Eklund L., El Hedri S., Ellis J., Emery S., Esmaili A., Esteve R., Evangelisti A., Feely M., Fedotov S., Feng J., Fernandez P., Fernández-Martinez E., Ferrario P., Ferrazzi,B., Feusels T., Finch A., Finley C., Fiorentini A., Fiorillo G., Fitton M., Frankiewicz K., Friend M., Fujii Y., Fukuda Y., Galinski G., Gao J., Garde C., Garfagnini A., Garode S., Gialanella L., Giganti C., Gomez-Cadenas J.J., Gonin M., González-Nuevo J., Gorin A., Gornea R., Gousy-Leblanc V. Gramegna F. Grassi M. Grella G. Guigue M. Gumplinger P. Hadley D.R. Harada M., Hartfiel B., Hartz M., Hassani S., Hastings N.C., Hayato Y., Hernando-Morata J.A., Herrero V., Hill J., Hiraide K., Hirota S., Holin A., Horiuchi S., Hoshina K., Hultqvist K., Iacob F., Ichikawa A.K., Idrissi Ibnsalih W., Iijima T., Ikeda M., Inomoto M., Inoue K., Insler J., Ioannisian A., Ishida T., Ishidoshiro K., Ishino H., Ishitsuka M., Ito H., Ito S., Itow Y., Iwamoto K., Izmaylov A., Izumi N., Izumiyama S., Jakkapu M., Jamieson B., Jang H.I., Jang J.S., Jenkins S.J., Jeon S.H., Jiang M., Jo H.S., Jonsson P., Joo K.K., Kajita T., Kakuno H., Kameda J., Kano Y., Kalaczynski P., Karlen D., Kasperek J., Kataoka Y., Kato A., Katori T., Kazarian N., Kearns E., Khabibullin M., Khotjantsev A., Kikawa T., Kekic M., Kim J.H., Kim J.Y., Kim S.B., Kim S.Y., King S., Kinoshita T., Kisiel Jan, Klekotko A., Kobayashi T., Koch L., Koga M., Koerich L., Kolev N., Konaka A., Kormos L.L., Koshio Y., Korzenev A., Kotsar Y., Kouzakov K.A., Kowalik K.L., Kravchuk L., Kryukov A.P., Kudenko Y., Kumita T., Kurjata R., Kutter T., Kuze M., Kwak K., La Commara M., Labarga L., Lagoda J., Lamers James J., Lamoureux M., Laveder M., Lavitola L., Lawe M., Learned J.G., Lee J., Leitner R., Lezaun V., Lim I.T., Lindner T., Litchfield R.P., Long K.R., Longhin A., Loverre P., Lu X., Ludovici L., Maekawa Y., Magaletti L., Magar K., Mahn K., Makida Y., Malek M., Malinský M., Marchi T., Maret L., Mariani C., Marinelli A., Martens K., Marti L., Martin J.F. Martin D., Marzec J., Matsubara T., Matsumoto R., Matsuno S., Matusiak M., Mazzucato E., McCarthy M., McCauley N., McElwee J., McGrew C., Mefodiev A., Medhi A., Mehta P., Mellet L., Menjo H., Mermod P., Metelko C., Mezzetto M., Migenda J., Migliozzi P., Mijakowski P., Miki S., Miller E.W., Minakata H., Minamino A., Mine S., Mineev O., Mitra A., Miura M., Moharana R., Mollo C.M., Mondal T., Mongelli M., Monrabal F., Moon D.H., Moon C.S., Mora F.J., Moriyama S., Mueller Th.A., Munteanu L., Murase K., Nagao Y., Nakadaira T., Nakagiri K., Nakahata M., Nakai S., Nakajima Y., Nakamura K., Nakamura KI., Nakamura H., Nakano Y., Nakaya T., Nakayama S., Nakayoshi K., Nascimento Machado L., Naseby C.E.R., Navarro-Garcia B., Needham M., Nicholls T., Niewczas K., Nishimura Y., Noah E., Nova F., Nugent J.C., Nunokawa H., Obrebski W., Ochoa-Ricoux J.P., O’Connor E., Ogawa N., Ogitsu T., Ohta K., Okamoto K., O’Keeffe H.M., Okumura K., Onishchuk Y., Orozco-Luna F., Oshlianskyi A., Ospina N., Ostrowski M., O’Sullivan E., O’Sullivan L., Ovsiannikova T., Oyama Y., Ozaki H., Pac M.Y., Paganini P., Palladino V., Paolone V., Pari M., Parsa S., Pasternak J., Pastore C., Pastuszak G., Patel D.A., Pavin M., Payne D., Peña-Garay C., Pidcott C., Pinzon Guerra E., Playfer S., Pointon B.W., Popov A., Popov B., Porwit Kamil, Posiadala-Zezula M., Poutissou J.M., Pozimski J., Pronost G., Prouse N.W., Przewlocki P., Quilain B., Quiroga A.A., Radicioni E., Radics B., Rajda P.J., Renner J., Rescigno M., Retiere F., Ricciardi G., Riccio C., Richards B., Rondio E., Rose H.J., Roskovec B., Roth S., Rott C., Rountree S.D., Rubbia A., Ruggeri A.C., Ruggles C., Russo S., Rychter A., Ryu D., Sakashita K., Samani S., Sánchez F., Sánchez M.L., Sanchez M.C., Sano S., Santos J.D., Santucci G., Sarmah P., Sashima I., Sato K., Scott M., Seiya Y., Sekiguchi T., Sekiya H., Seo J.W., Seo S.H., Sgalaberna D., Shaikhiev A., Shan Z., Shaykina A., Shimizu I., Shin C.D., Shinoki M., Shiozawa M., Sinnis G., Skrobova N., Skwarczynski K., Smy M.B., Sobczyk J., Sobel H.W., Soler F. J. P., Sonoda Y., Spina R., Spisso B., Spradlin B., Stankevich K.L., Stawarz L., Stellacci S.M., Stopa K., Studenikin A.I., Suárez Gómez S.L., Suganuma T., Suvorov S., Suwa Y., Suzuki A.T., Suzuki S.Y., Suzuki Y., Svirida D., Svoboda R., Taani M., Tada M., Takeda A., Takemoto Y., Takenaka A., Taketa A., Takeuchi Y., Takhistov V., Tanaka H., Tanaka H.A., Tanaka H.I., Tanaka M., Tashiro T., Thiesse M., Thompson L.F., Toledo J., Tomatani-Sánchez A.K., Tortone G., Tsui K.M., Tsukamoto T., Tzanov M., Uchida Y., Vagins M.R., Valder S., Valentino V., Vasseur G., Vijayvargi A., Vilela C., Vinning W. G. S., Vivolo D., Vladisavljevic T., Vogelaar R.B., Vyalkov M.M., Wachala T., Walker J., Wark D., Wascko M.O., Wendell R.A., Wilkes R.J., Wilking M.J., Wilson M.R., Wronka S., Xia J., Xie Z., Xin T., Yamaguchi Y., Yamamoto K., Yanagisawa C., Yano T., Yen S., Yershov N., Yeum D.N., Yokoyama M., Yonenaga M., Yoo J., Yu I., Yu M., Zakrzewski T., Zaldivar B., Zalipska J., Zaremba K., Zarnecki G., Ziembicki M., Zietara K., Zito M., Zsoldos S., Core-collapse supernovae are among the most magnificent events in the observable universe. They produce many of the chemical elements necessary for life to exist and their remnants-neutron stars and black holes-are interesting astrophysical objects in their own right. However, despite millennia of observations and almost a century of astrophysical study, the explosion mechanism of core-collapse supernovae is not yet well understood. Hyper-Kamiokande is a next-generation neutrino detector that will be able to observe the neutrino flux from the next galactic core-collapse supernova in unprecedented detail. We focus on the first 500 ms of the neutrino burst, corresponding to the accretion phase, and use a newly-developed, high-precision supernova event generator to simulate Hyper-Kamiokandeʼs response to five different supernova models. We show that Hyper-Kamiokande will be able to distinguish between these models with high accuracy for a supernova at a distance of up to 100 kpc. Once the next galactic supernova happens, this ability will be a powerful tool for guiding simulations toward a precise reproduction of the explosion mechanism observed in nature.
- Published
- 2022
- Full Text
- View/download PDF
37. An Introductory Overview about Cosmological Inflation
- Author
-
Riazuelo, Alain, Blanchard, Alain, editor, and Signore, Monique, editor
- Published
- 2005
- Full Text
- View/download PDF
38. Fractal Universe versus Cosmological Principle : Incompatibility or synthesis?
- Author
-
Pascual-Sánchez, J. F., Gallego, Jesús, editor, Zamorano, Jaime, editor, and Cardiel, Nicolás, editor
- Published
- 2003
- Full Text
- View/download PDF
39. The unique nature of cosmology
- Author
-
Ellis, George F. R., Renn, Jürgen, editor, Divarci, Lindy, editor, Schröter, Petra, editor, Ashtekar, Abhay, editor, Cohen, Robert S., editor, Howard, Don, editor, Sarkar, Sahotra, editor, and Shimony, Abner, editor
- Published
- 2003
- Full Text
- View/download PDF
40. Can the Standard Model Predict a Minimum Acceleration That Gets Rid of Dark Matter?
- Author
-
Espen Gaarder Haug
- Subjects
Physics ,Theoretical physics ,Dark matter ,Dark energy ,Acceleration (differential geometry) ,Observable universe ,Space (mathematics) ,Rotation (mathematics) ,Galaxy ,Standard Model - Abstract
The standard model is considered to be very bad at predicting galaxy rotation, and this is why the hypothesis of dark matter was introduced in physics in the 20th century. However, in this paper, we show that the standard model may not be as far off as previously believed. By taking into account that gravity has an “infinite” extent in space and assessing the assumed mass in the observable universe, we obtain a minimum acceleration that gives a much closer match to observed galaxy rotations than would be expected. We will discuss whether or not this is enough to overturn the long-standing perspective on the standard model and if it could indeed provide a possible and adequate explanation of galaxy rotations.
- Published
- 2021
- Full Text
- View/download PDF
41. The Observable Universe in a Simplified Cosmic Dynamic Model
- Author
-
Suoang Longzhou, Youping Dai, Yangsheng Xu, Xiaoyun Li, and La Ba Sakya Genzon
- Subjects
Physics ,Inflation (cosmology) ,COSMIC cancer database ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,Observable ,Observable universe ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Universe ,Metric expansion of space ,Acceleration ,Speed of light ,media_common - Abstract
This paper introduces a cosmic expansion model with constant speed of cosmic spatial expansion via derivation and simulations, where the speed of cosmic spatial expansion equals the speed of light c. Simulation results show that the earliest observable universe time is t = 5.084 Gyrs where the current universe time T = 13.82 Gyrs, and the furthest observable distance at the earliest observable universe time t is S = 0.632R, where R is the cosmic radius at current universe time T. The above constant cosmic expansion model does not consider the inflation period in the early universe according to the Big Bang model, nor does it considered the cosmic acceleration in recent universe time. However, this simplified cosmic expansion model could be a benchmark that will be helpful to understand the cosmic expansion and the observable universe. Based on the derivation and simulation of the constant cosmic expansion model, the threshold of observable universe for the accelerated cosmic expansion model can also be calculated similarly, as far as the speed of cosmic spatial expansion at any universe time t can be provided.
- Published
- 2021
- Full Text
- View/download PDF
42. Q-Theory: A Connection between Newton’s Law and Coulomb’s Law?
- Author
-
Christopher Pilot
- Subjects
Gravitation ,Physics ,Coulomb's law ,symbols.namesake ,Gravitational potential ,Gravitational field ,Negative mass ,Quantum mechanics ,Planck mass ,symbols ,Dark energy ,Observable universe - Abstract
Assuming a Winterberg model for space where the vacuum consists of a very stiff two-component superfluid made up of positive and negative mass planckions, Q theory is the hypothesis, that Planck charge, qpl, was created at the same time as Planck mass. Moreover, the repulsive force that like-mass planckions experience is, in reality, due to the electrostatic force of repulsion between like charges. These forces also give rise to what appears to be a gravitational force of attraction between two like planckions, but this is an illusion. In reality, gravity is electrostatic in origin if our model is correct. We determine the spring constant associated with planckion masses, and find that, , where ζ(3) equals Apery’s constant, 1.202 …, and, n+(0)=n_(0), is the relaxed, i.e., , number density of the positive and negative mass planckions. In the present epoch, we estimate that, n+(0) equals, 7.848E54 m-3, and the relaxed distance of separation between nearest neighbor positive, or negative, planckion pairs is, l+(0)=l_(0)=5.032E-19 meters. These values were determined using box quantization for the positive and negative mass planckions, and considering transitions between energy states, much like as in the hydrogen atom. For the cosmos as a whole, given a net smeared macroscopic gravitational field of, , due to all the ordinary, and bound, matter contained within the observable universe, an average displacement from equilibrium for the planckion masses is a mere 7.566E-48 meters, within the vacuum made up of these particles. On the surface of the earth, where, g=9.81m/s2, the displacement amounts to, 7.824E-38 meters. All of these displacements are due to increased gravitational pressure within the vacuum, which in turn is caused by applied gravitational fields. The gravitational potential is also derived and directly related to gravitational pressure.
- Published
- 2021
- Full Text
- View/download PDF
43. Does Space Have a Gravitational Susceptibility? A Model for the ΛCDM Density Parameters in the Friedmann Equation
- Author
-
Christopher Pilot
- Subjects
Physics ,symbols.namesake ,Gravitational field ,Negative mass ,Vacuum energy ,Friedmann equations ,Quantum electrodynamics ,Dark matter ,Dark energy ,symbols ,Planck mass ,Observable universe - Abstract
We propose a model for gravity based on the gravitational polarization of space. With this model, we can relate the density parameters within the Friedmann model, and show that dark matter is bound mass formed from massive dipoles set up within the vacuum surrounding ordinary matter. Aggregate matter induces a gravitational field within the surrounding space, which reinforces the original field. Dark energy, on the other hand, is the energy density associated with gravitational fields both for ordinary matter, and bound, or induced dipole matter. At high CBR temperatures, the cosmic susceptibility, induced by ordinary matter vanishes, as it is a smeared or average value for the cosmos as a whole. Even though gravitational dipoles do exist, no large-scale alignment or ordering is possible. Our model assumes that space, i.e., the vacuum, is filled with a vast assembly (sea) of positive and negative mass particles having Planck mass, called planckions, which is based on extensive work by Winterberg. These original particles form a very stiff two-component superfluid, where positive and negative mass species neutralize one another already at the submicroscopic level, leading to zero net mass, zero net gravitational pressure, and zero net entropy, for the undisturbed medium. It is theorized that the gravitational dipoles form from such material positive and negative particles, and moreover, this causes an intrinsic polarization of the vacuum for the universe as a whole. We calculate that in the present epoch, the smeared or average susceptibility of the cosmos equals, , and the overall resulting polarization equals, =2.396kg/m2. Moreover, due to all the ordinary mass in the universe, made up of quarks and leptons, we calculate a net gravitational field having magnitude, =3.771E-10m/s2. This smeared or average value permeates all of space, and can be deduced by any observer, irrespective of location within the universe. This net gravitational field is forced upon us by Gauss’s law, and although technically a surface gravitational field, it is argued that this surface, smeared value holds point for point in the observable universe. A complete theory of gravitational polarization is presented. In contrast to electrostatics, gravistatics leads to anti-screening of the original source field, increasing the original value, , to, , where is the induced or polarized field. In the present epoch, this leads to a bound mass, , where MF is the sum of all ordinary source matter in the universe, and equals the relative permittivity. A new radius, and new mass, for the observable universe is dictated by the density parameters in Friedmann’s equation, and Gauss’s law. These lead to the very precise values, R0=3.217E27 meters, and, MF=5.847E55kg, respectively, somewhat larger than current less accurate estimates.
- Published
- 2021
- Full Text
- View/download PDF
44. Understanding Our Only Universe.
- Author
-
Marra, Valerio
- Subjects
METAPHYSICAL cosmology ,UNIVERSE ,STANDARD model (Nuclear physics) - Abstract
In an imaginary dialogue between a professor and a layman about the future of cosmology, the said professor relates the paradoxical story of scientist Zee Prime, a bold thinker of a future civilization, stuck in a lonely galaxy, forever unaware of the larger universe. Zee Prime comes to acknowledge his position and shows how important it is to question standard models and status quo, as only the most imaginative ideas give us the chance to understand what he calls "our only universe" -- the special place and time in which we live. [ABSTRACT FROM AUTHOR]
- Published
- 2017
45. The Emergence of a New Vision: The Unfolding Universe
- Author
-
Kafatos, Menas, Nadeau, Robert, Kafatos, Menas, and Nadeau, Robert
- Published
- 2000
- Full Text
- View/download PDF
46. SPIDERS: overview of the X-ray galaxy cluster follow-up and the final spectroscopic data release
- Author
-
A. Saro, Mara Salvato, K. Furnell, S. Damsted, Gary A. Mamon, J. Ider Chitham, G. Erfanianfar, Eric Jullo, Tom Dwelly, Johan Comparat, C. C. Kirkpatrick, Chris A. Collins, R. Capasso, Nicolas Clerc, Dmitry Bizyaev, Alexis Finoguenov, J. R. Brownstein, A. Gueguen, A. Kukkola, Donald P. Schneider, N. Padilla, Andrea Merloni, Clerc, N, C Kirkpatrick, C, Finoguenov, A, Capasso, R, Comparat, J, Damsted, S, Furnell, K, E Kukkola, A, Ider , J, Chitham, Merloni, A, Salvato, M, Gueguen, A, Dwelly, T, Collins, C, Saro, A, Erfanianfar, G, P Schneider, D, Brownstein, J, A Mamon, G, Padilla, N, Jullo, E, Bizyaev, D, Department of Physics, Helsinki Institute of Physics, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Physics [Helsinki], Falculty of Science [Helsinki], Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Helsinki Institute of Physics (HIP), Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, Oskar Klein Centre [Stockholm], Stockholm University, Astrophysics Research Institute [Liverpool] (ARI), Liverpool John Moores University (LJMU), Max-Planck-Institut für Extraterrestrische Physik (MPE), Università degli studi di Trieste = University of Trieste, INAF - Osservatorio Astronomico di Trieste (OAT), Istituto Nazionale di Astrofisica (INAF), Department of Astronomy and Astrophysics [PennState], Pennsylvania State University (Penn State), Penn State System-Penn State System, University of Utah, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Pontificia Universidad Católica de Chile (UC), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Apache point observatory, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), University of Helsinki-University of Helsinki, University of Helsinki, University of Trieste, and Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES)
- Subjects
II ,SAMPLE ,TELESCOPE ,media_common.quotation_subject ,FOS: Physical sciences ,Observable universe ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Cosmology ,galaxies: clusters: general ,cosmology: observations ,X-rays: galaxies: clusters ,Astrophysics - Astrophysics of Galaxies ,EROSITA ,ROSAT ,0103 physical sciences ,clusters: general [galaxies] ,010303 astronomy & astrophysics ,Spectrograph ,QC ,Astrophysics::Galaxy Astrophysics ,Galaxy cluster ,QB ,media_common ,Physics ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,IDENTIFICATION ,010308 nuclear & particles physics ,MASS CALIBRATION ,Astronomy and Astrophysics ,115 Astronomy, Space science ,Redshift ,Galaxy ,galaxies: cluster [X-rays] ,RESOLUTION ,Space and Planetary Science ,Sky ,Astrophysics of Galaxies (astro-ph.GA) ,COSMOLOGY ,DIGITAL SKY SURVEY ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,observation [cosmology] - Abstract
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a large spectroscopic programme for X-ray selected galaxy clusters as part of the Sloan Digital Sky Survey-IV (SDSS-IV). We describe the final dataset in the context of SDSS Data Release 16 (DR16): the survey overall characteristics, final targeting strategies, achieved completeness and spectral quality, with special emphasis on its use as a galaxy cluster sample for cosmology applications. SPIDERS now consists of about 27,000 new optical spectra of galaxies selected within 4,000 photometric red sequences, each associated with an X-ray source. The excellent spectrograph efficiency and a robust analysis pipeline yield a spectroscopic redshift measurement success rate exceeding 98%, with a median velocity accuracy of 20 km s$^{-1}$ (at $z=0.2$). Using the catalogue of 2,740 X-ray galaxy clusters confirmed with DR16 spectroscopy, we reveal the three-dimensional map of the galaxy cluster distribution in the observable Universe up to $z\sim0.6$. We highlight the homogeneity of the member galaxy spectra among distinct regions of the galaxy cluster phase space. Aided by accurate spectroscopic redshifts and by a model of the sample selection effects, we compute the galaxy cluster X-ray luminosity function and we present its lack of evolution up to $z=0.6$. Finally we discuss the prospects of forthcoming large multiplexed spectroscopic programmes dedicated to follow up the next generation of all-sky X-ray source catalogues., 19 pages, 21 figures. Accepted for publication in MNRAS
- Published
- 2020
- Full Text
- View/download PDF
47. Emergence of life in an inflationary universe
- Author
-
Tomonori Totani
- Subjects
0301 basic medicine ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Extraterrestrial Environment ,Earth, Planet ,Polymers ,Event (relativity) ,media_common.quotation_subject ,Origin of Life ,FOS: Physical sciences ,Planets ,lcsh:Medicine ,Observable universe ,Astrophysics ,Expected value ,01 natural sciences ,Article ,Polymerization ,03 medical and health sciences ,Abiogenesis ,0103 physical sciences ,Exobiology ,Quantitative Biology - Populations and Evolution ,lcsh:Science ,010303 astronomy & astrophysics ,media_common ,Earth and Planetary Astrophysics (astro-ph.EP) ,Inflation (cosmology) ,Physics ,Multidisciplinary ,Nucleotides ,Exoplanets ,Evolutionary theory ,lcsh:R ,Populations and Evolution (q-bio.PE) ,Biomolecules (q-bio.BM) ,Universe ,Cosmology ,Stars ,030104 developmental biology ,Quantitative Biology - Biomolecules ,FOS: Biological sciences ,Extraterrestrial life ,Astronomy and astrophysics ,RNA ,lcsh:Q ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Abiotic emergence of ordered information stored in the form of RNA is an important unresolved problem concerning the origin of life. A polymer longer than 40--100 nucleotides is necessary to expect a self-replicating activity, but the formation of such a long polymer having a correct nucleotide sequence by random reactions seems statistically unlikely. However, our universe, created by a single inflation event, likely includes more than $10^{100}$ Sun-like stars. If life can emerge at least once in such a large volume, it is not in contradiction with our observations of life on Earth, even if the expected number of abiogenesis events is negligibly small within the observable universe that contains only $10^{22}$ stars. Here, a quantitative relation is derived between the minimum RNA length $l_{\min}$ required to be the first biological polymer, and the universe size necessary to expect the formation of such a long and active RNA by randomly adding monomers. It is then shown that an active RNA can indeed be produced somewhere in an inflationary universe, giving a solution to the abiotic polymerization problem. On the other hand, $l_{\min}$ must be shorter than $\sim$20 nucleotides for the abiogenesis probability close to unity on a terrestrial planet, but a self-replicating activity is not expected for such a short RNA. Therefore, if extraterrestrial organisms of a different origin from those on Earth are discovered in the future, it would imply an unknown mechanism at work to polymerize nucleotides much faster than random statistical processes., Comment: 9 pages, 1 figure. matches the published version from Scientific Reports
- Published
- 2020
- Full Text
- View/download PDF
48. The Quantum Bang Hypothesis: An Alternative to Dark Matter and Dark Energy
- Author
-
Patrick G. Tonin
- Subjects
Physics ,Inflation (cosmology) ,Theoretical physics ,symbols.namesake ,Gravitational coupling constant ,Dark matter ,Dark energy ,symbols ,Observable universe ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Scale factor (cosmology) ,Quantum realm ,Hubble's law - Abstract
We hypothesize that the quantum realm and the cosmos are linked by a scaling relation where the gravitational coupling constant αG is the scale factor and decreases with cosmic time. We propose a simple cosmological model where cosmic inflation, dark energy and dark matter could be redundant concepts. We show that cosmological parameters such as the Hubble constant, the age, density and mass of the observable Universe could be derived simply from quantum parameters. Finally, we propose a fundamental MOND formula with no interpolating function and an acceleration parameter simply derived from the Hubble constant.
- Published
- 2020
- Full Text
- View/download PDF
49. Are We Alone?
- Author
-
Davies, Paul, Chela-Flores, Julian, editor, and Raulin, François, editor
- Published
- 1998
- Full Text
- View/download PDF
50. Inflation, Microwave Background Anisotropy, and Open Universe Models
- Author
-
Frieman, J. A., Kafatos, Menas, editor, and Kondo, Yoji, editor
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.