5 results on '"Olivier Bonino"'
Search Results
2. In depth analysis of transfer length method application on passivated contacts under illumination
- Author
-
Olivier Bonino, Jean-Pierre Vilcot, Wilfried Favre, Julien Sudre, Léo Basset, Gilles Ménard, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Optoélectronique - IEMN (OPTO - IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), This work was done in the framework of a PhD funded by the CEA. The authors would also like to thank SunChemical for providing the hot-melt inks for patterning applications., Université catholique de Lille (UCL)-Université catholique de Lille (UCL), INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), and Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA)
- Subjects
Materials science ,Fabrication ,Passivation ,Maximum power principle ,TLM ,02 engineering and technology ,Electron ,7. Clean energy ,01 natural sciences ,law.invention ,Electrical resistivity and conductivity ,law ,0103 physical sciences ,Solar cell ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010302 applied physics ,Renewable Energy, Sustainability and the Environment ,business.industry ,Passivated contacts ,Biasing ,021001 nanoscience & nanotechnology ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Operating conditions ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Heterojunction ,0210 nano-technology ,business ,Contact resistivity ,Low voltage - Abstract
International audience; Although solar cells operate under illumination, most electrical characterization methods are carried out in darkness, which implies some bias. In this work, we study the influence of light on the contact resistivity of the electron and hole contacts of a silicon heterojunction (SHJ) cell using the transfer length method (TLM) method in order to determine them in conditions representative of an operating solar cell at maximum power point. A specific fabrication process has been developed to preserve the passivation level. Therefore, we first focus on the patterning approach used for processing, and show that we can fabricate TLM samples with good passivation properties. Using simulations, we also discuss on the influence of inhomogeneities in the excess minority carrier spatial concentration on the TLM analysis. These inhomogeneities, due to shading, local damages in the passivation or to carrier drift under bias voltage make the measurement complicated to carry out without significant error. Our results suggest that the measurement is more precise in darkness and at very high injection levels, under rear illumination and a low voltage bias.
- Published
- 2021
- Full Text
- View/download PDF
3. Influence of injection level and wafer resistivity on series resistance of silicon heterojunction solar cells
- Author
-
Léo Basset, Wilfried Favre, Olivier Bonino, Jean-Pierre Vilcot, Institut National de L'Energie Solaire (INES), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), Optoélectronique - IEMN (OPTO - IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), and Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
[SPI]Engineering Sciences [physics] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics - Abstract
International audience; Choice of topic: This work focuses on the modeling and characterization of silicon heterojunction solar cells. Scientific innovation and relevance: Series resistance (R S) in SHJ cells is related to various carrier transport mechanisms in both bulk materials and at the interfaces, in combined transverse and lateral directions. We propose to review the influence of wafer dark resistivity on R S of SHJ cells with the rear emitter configuration and propose a new approach for improved modeling of such devices. Aim and approach used: Our work aims at improving understanding and modeling of R S various contributions in SHJ cells with rear emitter configuration. For this purpose, we prepared rear emitter n-type SHJ cells varying the substrate dark resistivity from 0.49 to 14.1 Ω. cm, as well as special samples to allow the measurement of electron contact resistance (ρ C,e −). We examined variations of effective lifetime, efficiency and series resistance with c-Si dark resistivity. Results: Efficiency varies only slightly with wafer dark resistivity in our experiment. Injection level is found to be very important to examine performance, both for passivation and series resistance matters. We propose a series resistance model that takes into account the lateral transport in parallel between the c-Si wafer and the ITO layer under varying injection levels.
- Published
- 2020
4. Directional growth of polycrystalline magnetostrictive TbxDy1−xFey compounds by casting in a strong unidirectional gradient
- Author
-
Robert Tournier, Patricia de Rango, Olivier Bonino, Laboratoire de Cristallographie, and Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Materials science ,Condensed matter physics ,Magnetostriction ,02 engineering and technology ,magnetostriction ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Casting ,Rod ,Electronic, Optical and Magnetic Materials ,Magnetic field ,directional growth ,Compressive strength ,alloys ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Crystallite ,Texture (crystalline) ,0210 nano-technology ,Directional solidification - Abstract
International audience; Rods of highly magnetostrictive polycrystalline TbxDy1-xFey materials are elaborated by casting in a cylindrical mould with cooling imposed from the bottom which leads to a fast vertical unidirectional growth. A [1 1 0] orientation is obtained along the axis of the rods parallel to the growth direction. The magnetostrictive properties are remarkable along the rods axis comparable to those of [1 1 1] rods. The saturated magnetostriction measured in a parallel magnetic field is lambda(parallel to) = 1124 x 10(-6) under 0 MPa and increases to 1760 x 10(-6) under a compressive stress of 25 MPa. The pseudolinear variation of the magnetostriction with the internal magnetic field Delta lambda(parallel to)/mu(0)Delta H-int reaches 640 x 10(-6)/0.04 T under 9.9 Mfa. The texture and the good magnetostrictive properties are reproducible.
- Published
- 2000
- Full Text
- View/download PDF
5. Contribution of the surface contamination of uranium materials on the quantitative analysis results by electron probe microbeam analysis
- Author
-
Catherine Fucili, Olivier Bonino, O. Dugne, Cécile Fournier, and Claude Merlet
- Subjects
chemistry.chemical_compound ,Surface coating ,Auger electron spectroscopy ,Microprobe ,Materials science ,chemistry ,Analytical chemistry ,Oxide ,chemistry.chemical_element ,Electron microprobe ,Uranium ,Electron spectroscopy ,Microanalysis - Abstract
The first part of this paper is devoted to the study of contaminated surface of the uranium materials U, UFe2 and U6Fe a few hours after the preparation. These oxidation conditions are selected with the aim to reproduce the same contamination surfaces that occurred in microprobe analytical conditions. The surface characterization techniques are SIMS and Auger spectroscopy. The contaminated surfaces are described. They are made of successive layers: a carbon layer, one oxidized iron layer followed by an iron depletion layer (only in UFe2 and U6Fe), and a ternary oxide layer (U-Fe-O for UFe2 et U6Fe and UO2+x for the uranium). The second part of this paper is devoted to estimating errors caused by surface contamination during quantitative analysis. EPMA-WDS is used to make the estimation. The analyses were carried out with a CAMECA SX100 and the simulation with the X-Film software.
- Published
- 2000
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.