87 results on '"Omkulthom Al kamaly"'
Search Results
2. New N-amino-5-cyano-6-pyridones as antimicrobial small molecules endowed with DNA gyrase a inhibitory activity: design, one-pot synthesis, biological assessment and in silico insights
- Author
-
Omkulthom Al Kamaly, Amel S. Younes, Marwa F. Harras, Rehab Sabour, Aisha A. Alsfouk, and Mona H. Ibrahim
- Subjects
One-pot synthesis ,Antimicrobial ,Pyridones ,DNA gyrase ,Chemistry ,QD1-999 - Abstract
Abstract A set of innovative N-amino-5-cyano-6-pyridones derivatives was developed and produced using one-pot three-component procedures. The evaluated molecules were examined for their antimicrobial efficacy. Based on the acquired findings, most of the investigated compounds had promising antimicrobial properties. Out of these derivatives of 3-cyanopyridine, compounds 3d and 3e exhibited minimum inhibitory concentrations (MIC) of 3.91 µg/mL against E.coli. In vitro evaluation of DNA gyrase A displayed that molecule 3d exhibited promising potency as an inhibitor, with an IC50 value of 1.68 µg/mL compared to ciprofloxacin (IC50 = 0.45 µg/mL). Furthermore, it was observed that molecule 3e exhibited a moderate inhibitory effect, as indicated by its IC50 value of 3.77 µg/mL. A kinetics study conducted to assess the time required to kill E. coli bacteria demonstrated that gentamycin and compounds 3d and 3e exhibited bactericidal effects within a time frame of 90–120 min. Based on the ADME predictions, compounds 3d and 3e are expected to have favorable oral bioavailability and are unlikely to penetrate the blood-brain barrier. Computational mutagenicity and tumorigenicity studies were conducted on compounds 3d and 3e. The molecular docking investigation has conclusively demonstrated the binding of compounds 3d and 3e to the target DNA gyrase A enzyme, further reinforcing the existing data.
- Published
- 2024
- Full Text
- View/download PDF
3. Chemical composition, antimicrobial, and antioxidant properties of essential oils from Artemisia herba-alba asso. and Artemisia huguetii caball. from Morocco: in vitro and in silico evaluation
- Author
-
Mohamed El Ouardi, Aziz Drioiche, Fadoua El Makhoukhi, Jamal Mabrouki, Mohammed Hakmi, Omkulthom Al kamaly, Bshra A. Alsfouk, Brahim Eddamsyry, Hamid Khamar, Touriya Zair, and Mohammed Alaoui El Belghiti
- Subjects
Artemisia herba-alba asso. ,Artemisia huguetii caball. ,camphor ,thujone ,eucalyptol ,davanone ,Chemistry ,QD1-999 - Abstract
IntroductionMorocco is home to a remarkable diversity of flora, including several species from the Artemisia genus. This study aims to thoroughly examine the chemical composition of essential oils derived from Artemisia species and assess their antibacterial and antioxidant properties through in vitro experiments and in silico simulations.MethodsSamples of Artemisia herba-alba Asso. were collected from Boulemane and Ifrane in Morocco, while Artemisia huguetii Caball. was sampled from Tata, representing regions of the Central Middle Atlas and Western Anti-Atlas. Essential oils were extracted using hydrodistillation, and their chemical composition was analyzed by gas chromatography-mass spectrometry (GC-MS). Antibacterial and antifungal activities were evaluated, and antioxidant properties were assessed using the DPPH assay. In silico predictions of antibacterial and antioxidant activities were performed using computational models.ResultsThe extraction yields varied depending on the geographical origin, ranging from 1.54% to 2.78%. GC-MS analysis revealed significant differences in the chemical composition of the oils from different Artemisia species and regions, with a notable prevalence of oxygenated monoterpenes. Specifically, the oil from Boulemane was rich in thujone, the oil from Ifrane was predominantly composed of camphor, and the oil from Tata contained both camphor and thujone. The oils exhibited stronger antifungal than antibacterial properties, with Enterobacter cloacae strains showing high sensitivity, with minimum inhibitory concentrations (MIC) of approximately 12.5 mg/mL. The Boulemane oil of A. herba-alba displayed the highest antioxidant activity, effectively inhibiting DPPH at a concentration of 13.501 μg/mL.DiscussionThe in silico simulations predicted that the primary compounds in these essential oils, such as davanone, eucalyptol, camphor, and thujone, would exhibit potent antibacterial and antioxidant properties. These compounds were found to have favorable ADMET characteristics, including good blood-brain barrier permeability, gastrointestinal absorption, and skin penetration. Molecular docking studies revealed strong interactions between these compounds and key target proteins, such as NADPH-dependent catalase and dihydrofolate reductase. The stability of the protein-ligand complexes was confirmed by molecular dynamics, with davanone showing a significant impact. Overall, this study provides a comprehensive understanding of the biological potential of Artemisia essential oils, highlighting davanone as a promising molecule for medicinal or pharmaceutical applications.
- Published
- 2024
- Full Text
- View/download PDF
4. Identification of compounds from Origanum compactum and Origanum elongatum using HPLC/UV-ESI-MS and comparative analysis of their antioxidant, antimicrobial, anticoagulant, and antidiabetic properties
- Author
-
Omkulthom Al Kamaly, Aziz Drioiche, Firdaous Remok, Soukaina Saidi, Ahde El Imache, Fadoua El Makhoukhi, Bshra A. Alsfouk, and Touriya Zair
- Subjects
Origanum compactum ,Origanum elongatum ,Lithospermic acid ,Salvianolic acid C ,Rosmarinic acid ,Antioxidant ,Therapeutics. Pharmacology ,RM1-950 - Abstract
The aim was to assess the phytochemical composition, phenolic component levels, and biological properties of the flowering tops of Origanum compactum and Origanum elongatum. The study employed phytochemical assays, spectrophotometric techniques for quantitative analysis of polyphenols, flavonoids, and tannins, and compound identification using HPLC/UV-ESI-MS. The antimicrobial, antioxidant, anticoagulant, and antidiabetic properties were examined both in vitro and in vivo. The results showed that the O. compactum extract had significantly high levels of total polyphenols, measuring 47.368 mg gallic acid equivalents per gram, and flavonoids, measuring 14.839 mg quercetin equivalents per gram. The phytochemical examination of O. compactum revealed that lithospermic acid accounted for 36.82 % of the chemicals detected, followed by salvianolic acid C at 12.57 % and ros-marinic acid at 6.01 %. The main constituents of O. elongatum are salvianolic acid C (14.46 %), luteolin-3-O-glucuronide (13.51 %), salvianolic acid B (12.24 %), rosmarinic acid (7.83 %), and rutin (6.18 %). The results demonstrated different levels of effectiveness against the investigated microorganisms, with the extract from O. compactum exhibiting better activity, particularly against Gram-negative bacteria, certain yeasts, and the fungus Aspergillus niger. The aqueous extracts of both Origanum species demonstrate significant antioxidant activity. O. compactum has a higher total antioxidant capacity (IC50 of 35.083 μg/mL) compared to O. elongatum (IC50 of 77.080 μg/mL). However, O. elongatum has a higher reducing power (35.697 μg/mL) compared to O. compactum (42.563 μg/mL). In vivo evaluations revealed that the aqueous extracts of O. compactum and O. elongatum possess significant antihyperglycemic and anticoagulant properties. The extracts demonstrated a marked reduction in blood glucose levels during the oral glucose tolerance test (OGTT) in Wistar rats and effectively prolonged both prothrombin time (PT) and activated partial thromboplastin time (aPTT), highlighting their ability to inhibit coagulation pathways. Moreover, their comparable efficacy to standard antihyperglycemic medications and absence of severe toxicity, even at high doses, underscore their therapeutic potential for safe and effective treatment applications. Between the two species, O. compactum exhibited superior efficacy in key biological activities such as antioxidant, antimicrobial, and anticoagulant properties, making it a strong candidate for therapeutic applications. This study underscores the value of Origanum species as a rich source of bioactive compounds, offering significant potential in pharmaceuticals, nutraceuticals, and agri-food industries. The findings pave the way for further exploration of their diverse applications.
- Published
- 2024
- Full Text
- View/download PDF
5. Ligand-based drug design of Pinocembrin derivatives against Monkey-Pox disease
- Author
-
Shopnil Akash, Shabana Bibi, Qudsia Yousafi, Awais Ihsan, Riaz Mustafa, Umar Farooq, Atul Kabra, Mohammad M. Alanazi, Ashwag S. Alanazi, and Omkulthom Al Kamaly
- Subjects
Molecular docking ,Molecular dynamic simulation ,Drug-likeness ,ADMET ,Pass prediction ,Monkey-Pox ,Chemistry ,QD1-999 - Abstract
Severe pathogen infections, such as Monkeypox disease caused by the Monkeypox virus, easily spread in different animals and then into humans. There is an urge for novel therapeutic options, such as medicine/vaccine development to control it. Therefore, we designed Pinocembrin derivatives and performed in silico analysis such as molecular docking by PyRx software, molecular dynamics (MD) simulations at 100 ns, binding free energy estimation by AMBER20 software, ADMET profile, and Pass prediction. Optimal results were observed for two derivatives (07 and 11), exhibiting interactions with key residues of the selected protein. These interactions were substantiated by a range of structural and energetic parameters, including binding energies, solvation-free energy models, dynamic fluctuations, hydrogen bonding, and solvent accessibility. Notably, ligands 07 and 11 displayed exceptional binding affinities of −10.3 kcal/mol and −9.6 kcal/mol, respectively. RMSD value presented minor abruptions of about 1.2 to 1.3 Å and superimposed structures of selected derivatives complexes with Monkeypox target protein at 0 ns and 100 ns presented minor fluctuation in the native and bounded conformation. Slight instability is noted from the peaks in graphs of RMSD, RMSF, hydrogen bonds (HBs), beta factor (BF), and solvent-accessible surface area (SASA). Based on promising results, we proposed that Pinocembrin derivatives may serve as novel therapeutic agents against Monkeypox infections. Therefore, strongly advocate for further experimental validation through chemical laboratory testing. Such endeavors could pave the way for the development of effective treatments to mitigate the impact of Monkey-Pox disease.
- Published
- 2023
- Full Text
- View/download PDF
6. QSAR, DFT studies, docking molecular and simulation dynamic molecular of 2-styrylquinoline derivatives through their anticancer activity
- Author
-
Sara Zarougui, Mohammed Er-rajy, Abdelmoujoud Faris, Hamada Imtara, Mohamed El fadili, Omkulthom Al kamaly, Samar Zuhair Alshawwa, Fahd A. Nasr, Mourad Aloui, and Menana Elhallaoui
- Subjects
Anti-cancer ,2-Styrylquinoline derivatives ,2D-QSAR ,DFT reactivity ,Molecular Docking ,Simulation dynamic molecular ,Chemistry ,QD1-999 - Abstract
In this study, a 2D-QSAR (quantitative structure–activity relationship) was performed on 54 new 2-Styrylquinoline derivatives as anticancer substances capable of inhibiting the p53 protein in the cell HCT116++. The 54 2-Styrylquinoline derivatives was calculated applying DFT 6-31G basis to calculate Quantum descriptors, using MM2 for: Topological, Physico-chemical, Geometrical and Constitutional. The study was carried out by performing multiple linear regression (R2 = 0.90), the QSAR model achieved was tested by artificial neural networks method, which is showed high predictability (R2ANN = 0.89). A DFT study was performed to determine the reactivity of the 2-Styrylquinoline derivatives using frontier molecular orbital analysis and analysis of the molecular electrostatic potential (MEP). Derivatives of 2–4 Styrylquinoline are studied for their synthetic accessibility and their similarity to drug. The obtained results show that all the evaluated compounds have similar properties to drug and are accessible to synthesize.A molecular docking analysis was performed for three compounds: 14, 34, and 54, having various reactivities against the p53 HCT116++ protein (identified by PDB ID: 2GEQ). The results showed strong interactions between the three ligands and the 2GEQ protein, the amino acids HIS 176, SER A180, PRO A188 and ARG A178 are the most active sites of the 2GEQ protein, and based on these result we performed a molecular dynamics simulation to evaluate the stability of our complexes. The MD demonstrates the thermodynamic stability of select compounds during 40 and 100 ns, with all three complexes showing a high level of structural stability.
- Published
- 2023
- Full Text
- View/download PDF
7. In-silico screening based on molecular simulations of 3,4-disubstituted pyrrolidine sulfonamides as selective and competitive GlyT1 inhibitors
- Author
-
Mohamed El fadili, Mohammed Er-rajy, Wafa Ali Eltayb, Mohammed Kara, Amine Assouguem, Asmaa Saleh, Omkulthom Al Kamaly, Sara Zarougui, and Menana Elhallaoui
- Subjects
NMDA ,GlyT1 ,ADME-Toxicity ,CNS ,MD ,Chemistry ,QD1-999 - Abstract
A systematic in-silico study based on molecular modeling techniques was conducted on thirty 3,4-disubstituted pyrrolidine sulfonamides derivatives to identify the drug candidate for treating schizophrenia and impairments associated with NMDA receptor hypofunction, through selective and competitive inhibition of GlyT1. QSAR analysis demonstrates that geometric and constitutional descriptors have a key function in human GlyT1 activity. The in-silico study concluded that the most active ligand labeled C19 was predicted to be a non-toxic inhibitor, with a desired ADME-Toxicity profile and a significant probability to penetrate the central nervous system (CNS). Molecular docking simulations confirmed that the C19 compound was docked to the active sites of drosophila melanogaster dopamine transporter (DAT) protein, creating a variety of chemical bonds towards TYR 124, ASP 475, GLU 480, ALA 479, and VAL 120 amino acids residues. The molecular dynamic (MD) technique combined with the MMGBSA approach confirmed that produced intermolecular interactions for the (DAT protein–C19 ligand) complex remain so stable during 100 ns of MD simulation time. Consequently, the C19 ligand is highly recommended for the treatment of schizophrenia and other disabilities linked to the hypofunction of glutaminergic NMDA receptors.
- Published
- 2023
- Full Text
- View/download PDF
8. Design of novel anti-cancer agents targeting COX-2 inhibitors based on computational studies
- Author
-
Mohammed Er-rajy, Mohamed El fadili, Somdutt Mujwar, Hamada Imtara, Omkulthom Al kamaly, Samar Zuhair Alshawwa, Fahd A. Nasr, Sara Zarougui, and Menana Elhallaoui
- Subjects
Anti-cancer ,COX-2 inhibitors ,3D-QSAR ,DFT reactivity ,Molecular docking ,Molecular dynamic ,Chemistry ,QD1-999 - Abstract
The overexpression of cyclooxygenase-2 (COX-2) was clearly associated with carcinogenesis, and COX-2 as a possible target has long been exploited for cancer therapy. A group of 29 derivatives of 1, 5-diarylpyrazole was used to study its structural requirements using three-dimensional quantitative structure–activity relationship (3D-QSAR), the density functional theory method, molecular docking, and molecular dynamics. Four 3D-QSAR models were developed, and the predictive capability of the four selected models was also successfully tested using different validation methods. The contribution contours of the comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models effectively illustrate the relationships between the various chemical characteristics and their biological activities. Using the density functional theory method with the 6-31G (d, p) basis set and the Becke, 3-parameter, Lee-Yang-Parr (B3LYP) function to evaluate chemical reactivity properties, the results obtained from energy gaps of 3.431, 3.446, and 2.727 ev for molecules numbers 21, 22, and 23 indicate that these three molecules have good chemical stability and reactivity and select the most reactive regions in the three molecules studied. Molecular docking results revealed that the active sites of the COX-2 protein (PDB code: 3PGH) were residues ARG222, THR212, HIS386, HIS207, TYR148, and ASP382, in which the most active ligands and now ligands can inhibit the COX-2 enzyme. Based on the various results obtained by molecular modeling, four new compounds (N1, N2, N3, and N4) were proposed with significant predicted activity by different 3D-QSAR models. A molecular docking study and molecular dynamics simulations of the proposed new molecules (N1 and N2) and the most active molecule over 100 ns revealed that all three molecules establish multiple hydrogen interactions with several residues and also exhibit frequent stability throughout the simulation period. As a result, it is strongly recommended to consider the two newly proposed molecules, N1 and N4, as promising candidates for novel anti-cancer agents specifically designed to target COX-2 inhibition.
- Published
- 2023
- Full Text
- View/download PDF
9. A Study of the Synergistic Effects of Essential Oils from Origanum compactum and Origanum elongatum with Commercial Antibiotics against Highly Prioritized Multidrug-Resistant Bacteria for the World Health Organization
- Author
-
Aziz Drioiche, Soukayna Baammi, Khalid Zibouh, Omkulthom Al Kamaly, Anwar M. Alnakhli, Firdaous Remok, Soukaina Saidi, Rachid Amaiach, Fadoua El Makhoukhi, Abdelhakim Elomri, and Touriya Zair
- Subjects
Origanum compactum ,Origanum elongatum ,thymol ,(E)-caryophyllene ,carvacrol ,antimicrobial activity ,Microbiology ,QR1-502 - Abstract
The irrational use of antibiotics has favored the emergence of resistant bacteria, posing a serious threat to global health. To counteract antibiotic resistance, this research seeks to identify novel antimicrobials derived from essential oils that operate through several mechanisms. It aims to evaluate the quality and composition of essential oils from Origanum compactum and Origanum elongatum; test their antimicrobial activity against various strains; explore their synergies with commercial antibiotics; predict the efficacy, toxicity, and stability of compounds; and understand their molecular interactions through docking and dynamic simulations. The essential oils were extracted via hydrodistillation from the flowering tops of oregano in the Middle Atlas Mountains in Morocco. Gas chromatography combined with mass spectrometry (GC-MS) was used to examine their composition. Nine common antibiotics were chosen and tested alone or in combination with essential oils to discover synergistic effects against clinically important and resistant bacterial strains. A comprehensive in silico study was conducted, involving molecular docking and molecular dynamics simulations (MD). O. elongatum oil includes borneol (8.58%), p-cymene (42.56%), thymol (28.43%), and carvacrol (30.89%), whereas O. compactum oil is mostly composed of γ-terpinene (22.89%), p-cymene (15.84%), thymol (10.21%), and (E)-caryophyllene (3.63%). With O. compactum proving to be the most potent, these essential oils showed antibacterial action against both Gram-positive and Gram-negative bacteria. Certain antibiotics, including ciprofloxacin, ceftriaxone, amoxicillin, and ampicillin, have been shown to elicit synergistic effects. To fight resistant bacteria, the essential oils of O. compactum and O. elongatum, particularly those high in thymol and (E)-caryophyllene, seem promising when combined with antibiotics. These synergistic effects could result from their ability to target the same bacterial proteins or facilitate access to target sites, as suggested by molecular docking simulations. Molecular dynamics simulations validated the stability of the examined protein–ligand complexes, emphasizing the propensity of substances like thymol and (E)-caryophyllene for particular target proteins, opening the door to potentially effective new therapeutic approaches against pathogens resistant to multiple drugs.
- Published
- 2024
- Full Text
- View/download PDF
10. Statistical optimization of tetrahydrocurcumin loaded solid lipid nanoparticles using Box Behnken design in the management of streptozotocin-induced diabetes mellitus
- Author
-
Jai Bharti Sharma, Shailendra Bhatt, Abhishek Tiwari, Varsha Tiwari, Manish Kumar, Ravinder Verma, Deepak Kaushik, Tarun Virmani, Girish Kumar, Omkulthom Al kamaly, Asmaa Saleh, Mohammed Khalid Parvez, and Abdulsalam Alhalmi
- Subjects
Tetrahydrocurcumin ,Box-Behnken design ,SLN ,Pharmacokinetic study ,Pharmacodynamic study ,STZ-induced Diabetes Mellitus ,Therapeutics. Pharmacology ,RM1-950 - Abstract
In the past, curcumin was the go-to medication for diabetes, but recent studies have shown that tetrahydrocurcumin is more effective. The problem is that it's not very soluble in water or very bioavailable. So, our research aims to increase the bioavailability and anti-diabetic efficacy of tetrahydrocurcumin in streptozotocin-induced diabetic rats by synthesizing tetrahydrocurcumin-loaded solid lipid nanoparticles. Box Behnken Design was employed for the optimization of tetrahydrocurcumin-loaded solid lipid nanoparticles (THC-SLNs). The optimal formulation was determined by doing an ANOVA to examine the relationship between the independent variables (drug-to-lipid ratio, surfactant concentration, and co-surfactant concentration) and the dependent variables (particle size, percent entrapment efficiency, and PDI). Particle size, PDI, and entrapment efficiency all showed statistical significance based on F-values and p-values. The optimized batch was prepared using a drug-to-lipid ratio (1:4.16), 1.21% concentration of surfactant, and 0.4775% co-surfactant (observed with a particle size of 147.1 nm, 83.58 ± 0.838 % entrapment efficiency, and 0.265 PDI, and the values were found very close with the predicted ones. As the THC peak vanishes from the DSC thermogram of the improved formulation, this indicates that the drug has been transformed from its crystalline form into its amorphous state. TEM analysis of optimized formulation demonstrated mono-dispersed particles with an average particle size of 145 nm which are closely related to zetasizer’s results. In-vitro release study of optimized formulation demonstrated burst release followed by sustained release up to 71.04% throughout 24 hrs. Increased bioavailability of the adjusted THC-SLN was found in an in vivo pharmacokinetics research with 9.47 folds higher AUC(0-t) compared to plain THC-suspension. Additionally, pharmacodynamic experiments of optimized formulation demonstrated a marked decrease in blood glucose level to 63.7% and increased body weight from 195.8 ± 7.223 to 231.2 ± 7.653 on the 28th day of the study and showed a better anti-diabetic effect than plain drug suspension. Results of stability studies revealed that formulation can be stored for longer periods at room temperature. Tetrahydrocurcumin can be effectively administered by SLN for the treatment of diabetes.
- Published
- 2023
- Full Text
- View/download PDF
11. Papaver rhoeas L. stem and flower extracts: Anti-struvite, anti-inflammatory, analgesic, and antidepressant activities
- Author
-
Anouar Hmamou, El-Mehdi El-Assri, Mostafa El Khomsi, Mohammed Kara, Samar Zuhair Alshawwa, Omkulthom Al Kamaly, Fatima Ezzahra El oumari, Noureddine Eloutassi, and Amal Lahkimi
- Subjects
Papaver rhoeas L. ,Phytochemical screening ,Extraction ,Alkaloids ,Flavonoids ,Tannins ,Therapeutics. Pharmacology ,RM1-950 - Abstract
The Papaver rhoeas L. (P. rhoeas) plant, which belongs to the Papaveraceae family, is also used as food and is exploited to treat several health problems. The purpose of this research is to determine the anti-struvite, anti-inflammatory, analgesic, and antidepressant effects of the stem extract (SE) and flower extract (FE) of the plant P. rhoeas. We used polarizing microscopy and Fourier transform infrared spectrometry (FT-IR) to evaluate the anti-struvite effect of our plant. The edema approach induced by the carrageenan molecule was used to study the anti-inflammatory impact of our extracts. The analgesic test was determined by calculating the number of abdominal contractions induced by the intraperitoneal (IP) administration of acetic acid. To evaluate the antidepressant effect of our extracts, we used the forced swimming test (FST). According to the results of the secondary metabolite extraction, both extracts contained high contents of secondary metabolites, while the results of the screening test showed that flavonoids, alkaloids, phenols, tannins, coumarins, saponins, and terpenoids were present. The result of struvite crystallization inhibition observed by polarizing microscopy and FT-IR shows the inhibition of struvite crystal aggregation by SE by decreasing the amount and size of crystals in a manner similar to cystone. The results of anti-inflammatory activity show maximum inhibition of edema after six hours of carrageenan injection in rats (T6) for all extracts, with a maximum value of 86.36% for SE at the dose of 200 mg/kg. Regarding the analgesic effect of our plant, the lowest number of abdominal contractions was observed in rats treated with SE at a dose of 400 mg/kg. The FST results show that the lowest immobilization time was observed in rats treated with FE at a dose of 400 mg/kg. The results obtained show that the flowers and stems of P. rhoeas can constitute a rich source of bioactive molecules with potential pharmaceutical applications.
- Published
- 2023
- Full Text
- View/download PDF
12. Correlation between the chemical composition and the antimicrobial properties of seven samples of essential oils of endemic Thymes in Morocco against multi-resistant bacteria and pathogenic fungi
- Author
-
Aziz Drioiche, Fatima Zahra Radi, Atika Ailli, Amal Bouzoubaa, Amale Boutakiout, Soumia Mekdad, Omkulthom AL Kamaly, Asmaa Saleh, Mohamed Maouloua, Dalila Bousta, Server Sahpaz, Fadoua EL Makhoukhi, and Touriya Zair
- Subjects
Thymus vulgaris ,Thymus satureioides ,Thymus zygis ,Carvacrol ,Thymol ,Borneol ,Therapeutics. Pharmacology ,RM1-950 - Abstract
Thymus vulgaris, Thymus satureioides, and Thymus zygis are endemic Moroccan species that are intensively used due to their extensive medications and culinary properties. To enhance and preserve these overexploited species, the effect of provenance on the chemical composition of essential oils and antimicrobial activity against human pathogens were studied. Essential oils (EO) obtained by hydrodistillation from the flowering tops of thyme species were analyzed by GC-SM. The determination of minimum inhibitory (MIC), bactericidal (MBC), and fungicide (MFC) concentrations of EO were studied by microplate microdilution. The correlation between the chemical composition of EO and antimicrobial properties were evaluated using R software. The samples studied gave variable yields, ranging from 0.70 ± 0.03% to 4.12 ± 0.21%. The main constituents of Thymus vulgaris harvested from the municipality of El Hammam are carvacrol (68.8%), γ-terpinene (11.5%), and p-cymene (3.9%), while borneol (41.3% and 31.7%) and carvacrol (14.6% and 9.8%) are the most abundant in Thymus satureioides of the communes of Tata and Tigrigra respectively. For Thymus zygis, the results revealed the dominance of carvacrol (51.7% and 57.5%) for the municipalities of Tigrigra and Ain Aghbal, thymol (47.1% and 42.1%) for the municipalities of Bensmim and Timahdite respectively. These chemical profiles have similarities, but also reveal differences from the results given in the literature. In addition, the essential oils most active towards the microorganisms evaluated were those of Thymus vulgaris, followed by Thymus zygis and Thymus satureioides. These EO have very powerful MIC (MIC ⩽ 300 μg/ml) against Gram-negative bacteria, and in particular, concerning Enterobacters cloacae, Citrobacter koseri, and Acinetobacter baumannii. Thymus zygis EO is the most active on candidates compared to Thymus vulgaris and Thymus satureioides EO, except Candida dubliniensis which was inhibited by Thymus satureioides EO from the commune of Azrou with a MIC = 18.75 μg/ml. The correlation determined between the major components and MIC showed that phenols have the strongest positive effects on antimicrobial properties, followed by terpenes and non-aromatic alcohols. In addition, different sensitivities of pathogens to chemical families have been observed against Enterobacter cloacae, Citrobacter koseri, Candida parapsilosis, Staphylococcus aureus multiresistant, Pseudomonas aeruginosa, Acinetobacter baumannii, and Aspergillus niger. Our results support the idea that these oils could be very useful in flavoring, food preservation, as well as a source of antimicrobial agents of great power against multidrug-resistant strains.
- Published
- 2022
- Full Text
- View/download PDF
13. Chemical Analysis of the Antihyperglycemic, and Pancreatic α-Amylase, Lipase, and Intestinal α-Glucosidase Inhibitory Activities of Cannabis sativa L. Seed Extracts
- Author
-
Salima Haddou, Amal Elrherabi, El Hassania Loukili, Rhizlan Abdnim, Asmae Hbika, Mohamed Bouhrim, Omkulthom Al Kamaly, Asmaa Saleh, Abdelaaty A. Shahat, Mohamed Bnouham, Belkheir Hammouti, and Abdelkrim Chahine
- Subjects
Cannabis sativa L. ,α-amylase ,lipase ,α-glucosidase ,postprandial glycemia ,HPLC-DAD ,Organic chemistry ,QD241-441 - Abstract
Cannabis is considered (Cannabis sativa L.) a sacred herb in many countries and is vastly employed in traditional medicine to remedy numerous diseases, such as diabetes. This research investigates the chemical composition of the aqueous extracts from Cannabis sativa L. seeds. Furthermore, the impact of these extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase enzymes is evaluated, as well as their antihyperglycemic effect. Analysis of the chemical composition of the aqueous extract was conducted using high-performance liquid chromatography with a photodiode array detector (HPLC-DAD). In contrast, the ethanol, hexanic, dichloromethane, and aqueous extract compositions have been established. Additionally, the inhibitory effects of ethanolic, dichloromethane, and aqueous extracts on pancreatic α-amylase and lipase, and intestinal α-glucosidase activities were evaluated in vitro and in vivo. The results of HPLC analysis indicate that the most abundant phenolic compound in the aqueous cannabis seed extract is 3-hydroxycinnamic acid, followed by 4-hydroxybenzoic acid and rutin acid. Moreover, administration of ethanolic and aqueous extracts at a dose of 150 mg/Kg significantly suppressed postprandial hyperglycemia compared to the control group; the ethanolic, dichloromethane, and aqueous extracts significantly inhibit pancreatic α-amylase and lipase, and intestinal α-glucosidase in vitro. The pancreatic α-amylase test exhibited an inhibition with IC50 values of 16.36 ± 1.24 µg/mL, 19.33 ± 1.40 µg/mL, 23.53 ± 1.70 µg/mL, and 17.06 ± 9.91 µg/mL for EAq, EDm, EET, and EHx, respectively. EET has the highest inhibitory capacity for intestinal α-glucosidase activity, with an IC50 of 32.23 ± 3.26 µg/mL. The extracts inhibit porcine pancreatic lipase activity, demonstrating their potential as lipase inhibitors. Specifically, at a concentration of 1 mg/mL, the highest inhibition rate (77%) was observed for EDm. To confirm these results, the inhibitory effect of these extracts on enzymes was tested in vivo. The oral intake of aqueous extract markedly reduced starch- and sucrose-induced hyperglycemia in healthy rats. Administration of the ethanolic extract at a specific dose of 150 mg/kg significantly reduced postprandial glycemia compared with the control group. It is, therefore, undeniable that cannabis extracts represent a promising option as a potentially effective treatment for type 2 diabetes.
- Published
- 2023
- Full Text
- View/download PDF
14. The Protective Potential of Petroselinum crispum (Mill.) Fuss. on Paracetamol-Induced Hepatio-Renal Toxicity and Antiproteinuric Effect: A Biochemical, Hematological, and Histopathological Study
- Author
-
Ghizlane Nouioura, Tayeb Kettani, Meryem Tourabi, Layla Tahiri Elousrouti, Omkulthom Al kamaly, Samar Zuhair Alshawwa, Abdelaaty A. Shahat, Abdulsalam Alhalmi, Badiaa Lyoussi, and Elhoussine Derwich
- Subjects
Petroselinum crispum ,paracetamol ,hepato-renal damage ,proteinuria ,hematological toxicity ,Medicine (General) ,R5-920 - Abstract
Background and Objectives: Paracetamol overdose is a significant global issue due to its widespread use, which can lead to a lack of awareness regarding its potential side effects. Paracetamol can harm the liver, possibly resulting in liver failure. Conversely, this study employed extracts from Petroselinum crispum (PC), known for its rich content of bioactive compounds, with demonstrated antioxidant properties shown in previous research as well as protective effects against various diseases. The primary objective of this study was to investigate the potential protective effects of Petroselinum crispum on altered hematological and biochemical parameters in the blood of rats exposed to paracetamol. Materials and Methods: The study involved twenty Wistar rats divided into four groups. Different groups of male rats were administered PC extract at 200 mg/kg body weight daily for 15 days, along with a standard reference dose of paracetamol at 200 mg/kg. The study assessed hepatoprotection capacity by analyzing liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin, albumin, and lipid profiles. Renal safety was evaluated through creatinine, urea, uric acid, lactate dehydrogenase (LDH), and total protein. Additionally, histopathological examinations of the liver and kidneys were conducted. Results: Following Paracetamol overdose, there were reductions in hemoglobin levels, serum total protein, albumin, and uric acid. Paracetamol overdose also elevated levels of several blood biomarkers, including creatinine, urea, nitrogen, ALT, AST, triglycerides, LDH activity, white blood cell count, and platelet count compared to the control group. However, using an ethanolic extract of Petroselinum crispum significantly mitigated the severity of these alterations and the extent of the effect correlated with the dose administered. Parsley extract helped prevent proteinuria and low hemoglobin, which are common side effects of Paracetamol. Conclusions: Therefore, parsley may hold promise in managing liver and kidney conditions—particularly in addressing proteinuria. Ultimately, these results may have implications for human health by potentially mitigating paracetamol-induced renal, hepatic, and hematological toxicity.
- Published
- 2023
- Full Text
- View/download PDF
15. Phytochemical Composition and Pharmacological Activities of Three Essential Oils Collected from Eastern Morocco (Origanum compactum, Salvia officinalis, and Syzygium aromaticum): A Comparative Study
- Author
-
El Hassania Loukili, Safae Ouahabi, Amine Elbouzidi, Mohamed Taibi, Meryem Idrissi Yahyaoui, Abdeslam Asehraou, Abdellah Azougay, Asmaa Saleh, Omkulthom Al Kamaly, Mohammad Khalid Parvez, Bouchra El Guerrouj, Rachid Touzani, and Mohammed Ramdani
- Subjects
biological activities ,essential oils ,phytochemical composition ,GC/MS ,antioxidant activity ,antimicrobial activity ,Botany ,QK1-989 - Abstract
Throughout history, essential oils have been employed for their pleasing scents and potential therapeutic benefits. These oils have shown promise in various areas, including aromatherapy, personal care products, natural remedies, and even as alternatives to traditional cleaning agents or pest control solutions. The study aimed to explore the chemical makeup, antioxidant, and antibacterial properties of Origanum compactum Benth., Salvia officinalis L., and Syzygium aromaticum (L.) Merr. et Perry. Initially, the composition of the three essential oils, O. compactum (HO), S. officinalis (HS), and S. aromaticum (HC) was analyzed using GC-MS technology, revealing significant differences in the identified compounds. α-thujone emerged as the predominant volatile component in the oils, making up 78.04% of the composition, followed by eugenol, which constituted 72.66% and 11.22% of the HC and HO oils, respectively. To gauge antioxidant capabilities, tests involving DPPH scavenging capacity and total antioxidant capacity were conducted. Antioxidant activity was determined through the phosphomolybdate test and the DPPH• radical scavenging activity, with the HO essential oil displaying significant scavenging capacity (IC50 of 0.12 ± 0.02 mg/mL), similar to ascorbic acid (IC50 of 0.26 ± 0.24 mg/mL). Similarly, the TAC assay for HO oil revealed an IC50 of 1086.81 ± 0.32 µM AAE/mg. Additionally, the oils’ effectiveness against four bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes, and five fungi, Geotrichum candidum, Aspergillus niger, Saccharomyces cerevisiae, Candida glabrata, and Candida albicans, was tested in vitro. The examined essential oils generally exhibited limited antimicrobial effects, with the exception of HC oil, which demonstrated an exceptionally impressive level of antifungal activity. In order to clarify the antioxidant, antibacterial, and antifungal effects of the identified plant compounds, we employed computational methods, specifically molecular docking. This technique involved studying the interactions between these compounds and established protein targets associated with antioxidant, antibacterial, and antifungal activities.
- Published
- 2023
- Full Text
- View/download PDF
16. Curcumin Nanoemulsion: Unveiling Cardioprotective Effects via ACE Inhibition and Antioxidant Properties in Hypertensive Rats
- Author
-
Mohd Ishaq, Mohemmed Faraz Khan, Garima Verma, Akshoo Rathi, Mohammad Adil, Mohammad Faizan, Abul Kalam Najmi, Mohd Akhtar, Omkulthom Al kamaly, Samar Zuhair Alshawwa, Abdelaaty A. Shahat, and Abdulsalam Alhalmi
- Subjects
curcumin ,renin angiotensin aldosterone system ,angiotensin-converting enzyme ,deoxycorticosterone acetate ,uninephrectomy ,Medicine (General) ,R5-920 - Abstract
Background and Objectives: Curcumin, derived from Curcuma longa, is a well-known traditional medicinal compound recognized for its therapeutic attributes. Nevertheless, its efficacy is hampered by limited bioavailability, prompting researchers to explore the application of nanoemulsion as a potential alternative. Materials and Methods: This study delves into the antihypertensive effects of curcumin nanoemulsion (SNEC) by targeting the renin-angiotensin-aldosterone system (RAAS) and oxidative stress in deoxycorticosterone acetate (DOCA) salt-induced hypertensive rats. To gauge the cardio-protective impact of SNEC in DOCA salt-induced hypertension, molecular docking was undertaken, uncovering curcumin’s high affinity and adept binding capabilities to the active site of angiotensin-converting enzyme (ACE). Additionally, the investigation employed uninephrectomized rats to assess hemodynamic parameters via an AD instrument. Serum ACE, angiotensin II, blood urea nitrogen (BUN), and creatinine levels were quantified using ELISA kits, while antioxidant parameters were evaluated through chemical assays. Result: The outcomes of the molecular docking analysis revealed robust binding of curcumin to the ACE active site. Furthermore, oral administration of SNEC significantly mitigated systolic, diastolic, and mean arterial blood pressure in contrast to the DOCA-induced hypertensive group. SNEC administration also led to a reduction in left ventricular end-diastolic pressure (LVEDP) and an elevation in the maximum rate of left ventricular pressure rise (LV (dP/dt) max). Moreover, SNEC administration distinctly lowered serum levels of ACE and angiotensin II compared to the hypertensive DOCA group. Renal markers, including serum creatinine and BUN, displayed a shift toward normalized levels with SNEC treatment. Additionally, SNEC showcased potent antioxidant characteristics by elevating reduced glutathione, catalase, and superoxide dismutase levels, while decreasing the concentration of thiobarbituric acid reactive substances. Conclusions: Collectively, these findings underscore that curcumin nanoemulsion exerts noteworthy cardio-protective effects through ACE activity inhibition and remarkable antioxidant properties.
- Published
- 2023
- Full Text
- View/download PDF
17. Computer-Aided Drug Design of Novel Derivatives of 2-Amino-7,9-dihydro-8H-purin-8-one as Potent Pan-Janus JAK3 Inhibitors
- Author
-
Abdelmoujoud Faris, Ibrahim M. Ibrahim, Omkulthom Al kamaly, Asmaa Saleh, and Menana Elhallaoui
- Subjects
MM/GBSA ,3D-QSAR ,drug discovery ,JAK3 ,computational modeling ,cancer ,Organic chemistry ,QD241-441 - Abstract
Rheumatoid arthritis (RA) remains one of the most prevalent autoimmune diseases worldwide. Janus kinase 3 (JAK3) is an essential enzyme for treating autoimmune diseases, including RA. Molecular modeling techniques play a crucial role in the search for new drugs by reducing time delays. In this study, the 3D-QSAR approach is employed to predict new JAK3 inhibitors. Two robust models, both field-based with R2 = 0.93, R = 0.96, and Q2 = 87, and atom-based with R2 = 0.94, R = 0.97, and Q2 = 86, yielded good results by identifying groups that may readily direct their interaction. A reliable pharmacophore model, DHRRR1, was provided in this work to enable the clear characterization of chemical features, leading to the design of 13 inhibitors with their pIC50 values. The DHRRR1 model yielded a validation result with a ROC value of 0.87. Five promising inhibitors were selected for further study based on an ADMET analysis of their pharmacokinetic properties and covalent docking (CovDock). Compared to the FDA-approved drug tofacitinib, the pharmaceutical features, binding affinity and stability of the inhibitors were analyzed through CovDock, 300 ns molecular dynamics simulations, free energy binding calculations and ADMET predictions. The results show that the inhibitors have strong binding affinity, stability and favorable pharmaceutical properties. The newly predicted molecules, as JAK3 inhibitors for the treatment of RA, are promising candidates for use as drugs.
- Published
- 2023
- Full Text
- View/download PDF
18. Analysis of the Chemical Composition and Evaluation of the Antioxidant, Antimicrobial, Anticoagulant, and Antidiabetic Properties of Pistacia lentiscus from Boulemane as a Natural Nutraceutical Preservative
- Author
-
Aziz Drioiche, Atika Ailli, Firdaous Remok, Soukaina Saidi, Aman Allah Gourich, Ayoub Asbabou, Omkulthom Al Kamaly, Asmaa Saleh, Mohamed Bouhrim, Redouane Tarik, Amale Kchibale, and Touriya Zair
- Subjects
Pistacia lentiscus ,germacrene D ,spathulenol ,3,5-di-O-galloyl quinic acid ,gallic acid ,3,4,5-tri-O-galloyl quinic acid ,Biology (General) ,QH301-705.5 - Abstract
Pistacia lentiscus L. has traditionally been employed as a diuretic and stimulant in the treatment of hypertension. Our interest centered on analyzing the chemical profile of the plant’s leaves and its in vitro, in vivo, and in silico antioxidant, antimicrobial, anticoagulant, and antidiabetic effects in order to valorize this species and prepare new high-value products that can be used in the agro-food and pharmaceutical industries. When this species’ essential oil was hydrodistilled and subjected to GC-MS analysis, the results showed that the principal components were germacrene D (17.54%), spathulenol (17.38%), bicyclogermacrene (12.52%), and terpinen-4-ol (9.95%). The extraction of phenolic compounds was carried out by decoction and Soxhlet. The determination of total polyphenols, flavonoids, and tannins of aqueous and organic extracts by spectrophotometric methods demonstrated the richness of this species in phenolic compounds. Chromatographic analysis by HPLC/UV-ESI-MS of the aqueous extract of P. lentiscus revealed the presence of 3,5-di-O-galloyl quinic acid, gallic acid, and 3,4,5-tri-O-galloyl quinic acid specific to this species. The study of antioxidant activity by three methods (DPPH, FRAP, and Total Antioxidant Capacity) revealed that P. lentiscus is a very promising source of natural antioxidants. The antimicrobial activity of the essential oil and aqueous extract (E0) was studied by microdilution on the microplate. The results revealed the effectiveness of the aqueous extract compared to the essential oil against Gram-negative bacteria (K. pneumoniae, A. baumannii, E. aerogenes, E. cloacae, P. fluorescence, Salmonella sp., Shigella sp., and Y. enterolitica) and candidoses (C. krusei and C. albicans). The measurements of prothrombin time (PT) and activated partial thromboplastin time (aPTT) of the aqueous extract (E0) can significantly prolong these tests from concentrations of 2.875 and 5.750 mg/mL, respectively. The antihyperglycemic effect of the aqueous extract (E0) showed a strong in vitro inhibitory activity of α-amylase and α-glucosidase compared to acarbose. Thus, it significantly inhibited postprandial hyperglycemia in Wistar albino rats. The in-silico study of the major compounds of the essential oil and extract (E0) carried out using PASS, SwissADME, pkCSM, and molecular docking tools confirmed our in vitro and in vivo results. The studied compounds showed a strong ability to be absorbed by the gastrointestinal tract and to passively diffuse through the blood-brain barrier, a similarity to drugs, and water solubility. Molecular docking experiments deduced the probable mode of action of the identified compounds on their respective target proteins, such as NADPH oxidase, thrombin, α-amylase, and α-glucosidase. Furthermore, given the demonstrated antioxidant, antimicrobial, anticoagulant, and antidiabetic effects, we can affirm the richness of P. lentiscus in bioactive molecules and its use in traditional medicine as a source of preservative agent.
- Published
- 2023
- Full Text
- View/download PDF
19. Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Determination of Tramadol and Its Phase I and II Metabolites in Human Urine
- Author
-
Varsha Chauhan, Manu Sharma, Abhishek Tiwari, Varsha Tiwari, Manish Kumar, Tarun Virmani, Girish Kumar, Najla Altwaijry, Omkulthom Al kamaly, Asmaa Saleh, and Abdulsalam Alhalmi
- Subjects
Tramadol ,metabolites ,achiral ,tandem mass spectrometry ,toxicology ,urine matrix ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Tramadol (TD) has been prescribed frequently in many countries for more than 40 years, but there is a risk of its misuse and trafficking. As a result, drug analysis has numerous legal and socially relevant implications, making it an essential part of modern analytical chemistry. Thus, the method for the detection of TD and its phase I and phase II metabolites in human urine has been developed and validated using a rapid and efficient approach combining liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization. The sample preparation was best performed using dispersive liquid–liquid microextraction. Analysis was performed using an HyPRITY Cl8 column, and isocratic elution with methanol: water (35:65) with 0.2% formic acid was used. TD and its metabolites were detected at 264.2 (TD/M0) with a base peak at 58.2, 250.3758 (M1), 250.3124 (M2), 236.3976 (M3), 222.5361 (M4), and 236.4475 (M5) m/z peaks. TD showed linearity between 0.1 and 160 ng/mL (R2 = 0.9981). The accuracy ranged from 95.56 to 100.21% for the three concentration levels, while the between- and within-day RSD ranged from 1.58 to 3.92%. The absolute TD recovery was 96.29, 96.91, and 94.31% for the concentrations of 5, 50, and 150 ng/mL, respectively. TD’s phase I metabolites, M1–5 along with nine phase II metabolites, such as sulfo- and glucurono-conjugated metabolites, oxidative TD derivatives, and sulfo-conjugated metabolites were also identified in the urine samples. The pharmacokinetics and metabolism data given provide information for the design of possible future research disorders, evaluating drug mechanism and neurotoxicity and for the effective application screening of TD.
- Published
- 2023
- Full Text
- View/download PDF
20. Quercetin and Ferulic Acid Elicit Estrogenic Activities In Vivo and In Silico
- Author
-
Meryem Slighoua, Fatima Ez-Zahra Amrati, Mohamed Chebaibi, Ismail Mahdi, Omkulthom Al Kamaly, Khadija El Ouahdani, Aziz Drioiche, Asmaa Saleh, and Dalila Bousta
- Subjects
quercetin ,ferulic acid ,sub-acute toxicity ,female infertility ,estrogenic activity ,docking study ,Organic chemistry ,QD241-441 - Abstract
In this study, we examined the sub-acute toxicity of quercetin and ferulic acid and evaluated their effects on protein, cholesterol, and estrogen levels in vivo. Six groups of female Wistar rats were fed by gavage. The first and second groups represent the positive (Clomiphene citrate 10 mg/kg) and negative (NaCl 0.9%) control groups, while the other groups received quercetin and ferulic acid at doses of 5 and 10 mg/kg/day for 28 days. The sub-acute toxicity was monitored by examining the weights, biochemical parameters (AST, ALT, ALP, urea, and CREA), and histological changes in the kidneys and liver of the treated animals. Furthermore, the in vivo estrogenic effects were studied in terms of the serum and ovarian cholesterol levels, serum estradiol, and uterine proteins. Finally, Docking studies were conducted to evaluate the binding affinity of quercetin and ferulic acid for alpha and beta estrogen receptors. Results showed that both compounds were devoid of any signs of nephrotoxicity or hepatotoxicity. Additionally, quercetin and ferulic acid caused significant estrogenic effects evidenced by an increase of 8.7 to 22.48% in serum estradiol, though to a lesser amount than in the reference drug-treated group (64.21%). Moreover, the two compounds decreased the serum cholesterol levels (12.26–32.75%) as well as the ovarian cholesterol level (11.9% to 41.50%) compared to the negative control. The molecular docking in estrogen alpha and estrogen beta active sites showed high affinity of quercetin (−10.444 kcal/mol for estrogen alpha and −10.662 kcal/mol for estrogen beta) and ferulic acid (−6.377 kcal/mol for estrogen alpha and −6.3 kcal/mol for estrogen beta) to these receptors. This study provides promising insights into the potential use of quercetin as a therapeutic agent for the management of female fertility issues.
- Published
- 2023
- Full Text
- View/download PDF
21. Extraction, HPTLC Analysis and Antiobesity Activity of Jatropha tanjorensis and Fraxinus micrantha on High-Fat Diet Model in Rats
- Author
-
Swati Srivastava, Tarun Virmani, Md. Rafiul Haque, Abdulsalam Alhalmi, Omkulthom Al Kamaly, Samar Zuhair Alshawwa, and Fahd A. Nasr
- Subjects
Jatropha tanjorensis ,Fraxinus micrantha ,HPTLC ,anti-obesity activity ,high-fat diet model ,histological ,Science - Abstract
The accumulation of body fat due to an imbalance between calorie intake and energy expenditure is called obesity. Metabolic syndrome increases the risk of heart disease, type 2 diabetes, and stroke. The purpose of this study was to determine the effect of Jatropha tanjorensis (J.T.) and Fraxinus micrantha (F.M.) leaf extracts on high-fat diet-induced obesity in rats. Normal control, high-fat diet (HFD) control, orlistat standard, and test groups were created using male Albino Wistar rats (n = 6 per group) weighing 190 ± 15 g. Except for the control group, all regimens were administered orally and continued for 6 weeks while on HFD. Evaluation criteria included body weight, food intake, blood glucose, lipid profile, oxidative stress, and liver histology. High-Performance Thin Layer Chromatography (HPTLC) analysis was performed using a solvent system (7:3 hexane: ethyl acetate for sitosterol solution and Jatropha tanjorensis extracts and 6:4 hexane: ethyl acetate: 1 drop of acetic acid for esculetin and Fraxinus micrantha extracts). There were no deaths during the 14 days before the acute toxicity test, indicating that aqueous and ethanolic extracts of both J.T. and F.M. did not produce acute toxicity at any dose (5, 50, 300, and 2000 mg/kg). The ethanolic and aqueous extracts of J.T. and F.M. leaves at 200 and 400 mg/kg/orally showed a reduction in weight gain, feed intake, and significant decreases in serum glucose and lipid profile. As compared to inducer HFD animals, co-treatment of aqueous and ethanolic extract of both J.T. and F.M. and orlistat increased the levels of antioxidant enzymes and decreased lipid peroxidation. The liver’s histological findings showed that the sample had some degree of protection. These results indicate that ethanolic samples of J.T. have antidiabetic potential in diabetic rats fed an HFD. The strong antioxidant potential and restoration of serum lipid levels may be related to this. Co-treatment of samples JTE, JTAQ, FME, FMAQ and orlistat resulted in an increase in antioxidant enzymes and reduction in lipid peroxidation as compared to inducer HFD animals. We report, for the first time, on using these leaves to combat obesity.
- Published
- 2023
- Full Text
- View/download PDF
22. Effects of Pre-Treatments and Conservation Conditions on Seed Viability and Germination of Two Varieties of an Endangered Species Anacyclus pyrethrum (L.) Link (Asteraceae)
- Author
-
Fatima Zahra Jawhari, Hamada Imtara, Abdelfattah El Moussaoui, Hind Khalis, Imane Es-safi, Asmaa Saleh, Omkulthom Al kamaly, Mohammad Khalid Parvez, and Amina Bari
- Subjects
germination ,thermal scarification ,chemical scarification ,seed viability ,Anacyclus pyrethrum L. ,Plant culture ,SB1-1110 - Abstract
This research presents, for the first time, a study of seed germination for two varieties, ‘Anacyclus pyrethrum var. pyrethrum (L.) Link’ and ‘Anacyclus pyrethrum var. depressus (Ball.) Maire’, of an endemic and endangered medicinal species listed in the IUCN red list as Anacyclus pyrethrum (L.) Link. Our objective was to provide information for their protection as well as a sustainable development strategy, by understanding whether the seeds germinate easily or have very specific germination requirements, and whether the storage conditions provided for the seeds were sufficiently favorable for the development of the species. A study of seed germination of the two varieties was conducted on lots of 25 seeds for each variety/treatment. Five treatments were used to break seed dormancy, which were chemical scarification with sulphuric acid (H2SO4), hydrogen peroxide (H2O2) and potassium nitrate (KNO3); hot water (80 °C); and cold scarification at 4 °C. The viability was examined for stored seeds (6 months, 1 year and 2 years) and for those that did not germinate after the germination test at harvest, using the tetrazolium test. The dormancy was broken via cold scarification (4 °C) and chemical scarification (H2O2, H2SO4, NP (KNO3)). The results also showed that a long storage time in wet cold (4 °C) causes a loss of seed viability, whereas a long storage time at −17 °C causes seed dormancy, which can be broken by cold scarification and chemical scarification. It was concluced that the rarity of the species was not due to the reproductive system, but to the overexploitation of the species during the flowering season, which influenced the natural regeneration of the species.
- Published
- 2023
- Full Text
- View/download PDF
23. Identification of Compounds of Crocus sativus by GC-MS and HPLC/UV-ESI-MS and Evaluation of Their Antioxidant, Antimicrobial, Anticoagulant, and Antidiabetic Properties
- Author
-
Aziz Drioiche, Atika Ailli, Nadia Handaq, Firdaous Remok, Mohamed Elouardi, Hajar Elouadni, Omkulthom Al Kamaly, Asmaa Saleh, Mohamed Bouhrim, Hanane Elazzouzi, Fadoua El Makhoukhi, and Touriya Zair
- Subjects
Crocus sativus L. ,phorone ,crocins ,picrocrocin ,safranal ,DPPH ,Medicine ,Pharmacy and materia medica ,RS1-441 - Abstract
In order to valorize the species Crocus sativus from Morocco and to prepare new products with high added value that can be used in the food and pharmaceutical industry, our interest was focused on the phytochemical characterization and the biological and pharmacological properties of the stigmas of this plant. For this purpose, the essential oil of this species, extracted by hydrodistillation and then analyzed by GC-MS, revealed a predominance of phorone (12.90%); (R)-(-)-2,2-dimethyl-1,3-dioxolane-4-methanol (11.65%); isopropyl palmitate (9.68%); dihydro-β-ionone (8.62%); safranal (6.39%); trans-β-ionone (4.81%); 4-keto-isophorone (4.72%); and 1-eicosanol (4.55%) as the major compounds. The extraction of phenolic compounds was performed by decoction and Soxhlet extraction. The results of the determination of flavonoids, total polyphenols, condensed tannins, and hydrolyzable tannins determined by spectrophotometric methods on aqueous and organic extracts have proved the richness of Crocus sativus in phenolic compounds. Chromatographic analysis by HPLC/UV-ESI-MS of Crocus sativus extracts revealed the presence of crocin, picrocrocin, crocetin, and safranal molecules specific to this species. The study of antioxidant activity by three methods (DPPH, FRAP, and total antioxidant capacity) has proved that C. sativus is a potential source of natural antioxidants. Antimicrobial activity of the aqueous extract (E0) was investigated by microdilution on a microplate. The results have revealed the efficacy of the aqueous extract against Acinetobacter baumannii and Shigella sp. with MIC ≤ 600 µg/mL and against Aspergillus niger, Candida kyfer, and Candida parapsilosis with MIC = 2500 µg/mL. Measurements of pro-thrombin time (PT) and activated partial thromboplastin time (aPTT) in citrated plasma obtained from routine healthy blood donors were used to determine the anticoagulant activity of aqueous extract (E0). The anticoagulant activity of the extract (E0) studied showed that this extract can significantly prolong the partial thromboplastin time (p < 0.001) with a 359 µg/mL concentration. The antihyperglycemic effect of aqueous extract was studied in albino Wistar rats. The aqueous extract (E0) showed strong in vitro inhibitory activity of α-amylase and α-glucosidase compared with acarbose. Thus, it very significantly inhibited postprandial hyperglycemia in albino Wistar rats. According to the demonstrated results, we can affirm the richness of Crocus sativus stigmas in bioactive molecules and its use in traditional medicine.
- Published
- 2023
- Full Text
- View/download PDF
24. Review on Characterization, Properties, and Analytical Methods of Cefepime
- Author
-
Omkulthom Al kamaly
- Subjects
Analytical chemistry ,QD71-142 - Abstract
Infection is one of the most important reasons for the increase in the number of deaths worldwide; it can be a bacterial or viral infection. As a result, there are many effective drugs against this infection, especially bacterial ones. Cefepime (CP) is one of the fourth generations of cephalosporins and is distinguished from others in that it can kill both positive and negative bacteria. Therefore, this study focused on the chemical properties of the drug, its uses, and its stability against bacteria. All analysis methods for this drug in pharmaceutical preparations, blood, or plasma were also presented. One of the important problems in these methods is using toxic solvents, which poses a danger to society and the environment. The presentation of these solvents will allow companies to manufacture and use more effective and less toxic solvents.
- Published
- 2022
- Full Text
- View/download PDF
25. Superparamagnetic Iron-Oxide Nanoparticles Synthesized via Green Chemistry for the Potential Treatment of Breast Cancer
- Author
-
Neha Tyagi, Priya Gupta, Zafar Khan, Yub Raj Neupane, Bharti Mangla, Nikita Mehra, Tanya Ralli, Abdulsalam Alhalmi, Asgar Ali, Omkulthom Al Kamaly, Asmaa Saleh, Fahd A. Nasr, and Kanchan Kohli
- Subjects
SPIONs ,green chemistry ,superparamagnetic iron-oxide nanoparticles ,serum albumin ,breast cancer ,tamoxifen ,Organic chemistry ,QD241-441 - Abstract
In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.28 ± 0.02) and zeta potential of −30.2 ± 0.09 mV. FTIR, DSC, X-RD, and elemental analysis confirmed that BSA-SPIONs-TMX were successfully prepared. The saturation magnetization (Ms) of BSA-SPIONs-TMX was found to be ~8.31 emu/g, indicating that BSA-SPIONs-TMX possess superparamagnetic properties for theragnostic applications. In addition, BSA-SPIONs-TMX were efficiently internalized into breast cancer cell lines (MCF-7 and T47D) and were effective in reducing cell proliferation of breast cancer cells, with IC50 values of 4.97 ± 0.42 μM and 6.29 ± 0.21 μM in MCF-7 and T47D cells, respectively. Furthermore, an acute toxicity study on rats confirmed that these BSA-SPIONs-TMX are safe for use in drug delivery systems. In conclusion, green synthesized superparamagnetic iron-oxide nanoparticles have the potential to be used as drug delivery carriers and may also have diagnostic applications.
- Published
- 2023
- Full Text
- View/download PDF
26. Optimization of a New Antioxidant Formulation Using a Simplex Lattice Mixture Design of Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. Grown in Northern Morocco
- Author
-
Ghizlane Nouioura, Meryem Tourabi, Asmae El Ghouizi, Mohammed Kara, Amine Assouguem, Asmaa Saleh, Omkulthom Al Kamaly, Faiçal El Ouadrhiri, Badiaa Lyoussi, and El Houssine Derwich
- Subjects
P. crispum M. ,C. sativum L. ,A. graveolens L. ,mixture design ,antioxidant activity ,Botany ,QK1-989 - Abstract
A statistical Simplex Lattice Mixture design was applied to develop a new formulation based on a combination of three plants grown in northern Morocco: Apium graveolens L., Coriandrum sativum L., and Petroselinum crispum M. We examined the extraction yield, total polyphenol content (TPC), 2′2-diphenyl-l-picrylhydrazyl (DPPH) radical scavenging activity, and total antioxidant capacity (TAC). The results of this screening study showed that C. sativum L. had the highest content of DPPH (53.22%) and TAC (37.46 ± 0.29 mg Eq AA/g DW) compared to the other two plants, while P. crispum M. showed the highest TPC (18.52 ± 0.32 mg Eq GA/g DW). Furthermore, the ANOVA analysis of the mixture design showed that all three responses (DPPH, TAC, and TPC) were statistically significant, with determination coefficients of 97%, 93%, and 91%, respectively, and fit the cubic model. Moreover, the diagnostic plots showed good correlation between the experimental and predicted values. Therefore, the best combination obtained under optimal conditions (P1 = 0.611, P2 = 0.289, P3 = 0.100) was characterized by DPPH, TAC, and TPC of 56.21%, 72.74 mg Eq AA/g DW, and 21.98 mg Eq GA/g DW, respectively. The results of this study reinforce the view of stimulating the effect of plant combinations to achieve better antioxidant activities, thus providing a better formulation using designs of mixtures for the food industry and in cosmetic and pharmaceutical applications. Moreover, our findings support the traditional use of the Apiaceae plant species in managing many disorders cited in the Moroccan pharmacopeia.
- Published
- 2023
- Full Text
- View/download PDF
27. Lipids Fraction from Caralluma europaea (Guss.): MicroTOF and HPLC Analyses and Exploration of Its Antioxidant, Cytotoxic, Anti-Inflammatory, and Wound Healing Effects
- Author
-
Fatima Ez-Zahra Amrati, Meryem Slighoua, Ibrahim Mssillou, Mohamed Chebaibi, Renata Galvão de Azevedo, Smahane Boukhira, Karina Moslova, Omkulthom Al Kamaly, Asmaa Saleh, André Correa de Oliveira, Alice de Freitas Gomes, Gemilson Soares Pontes, and Dalila Bousta
- Subjects
Caralluma europaea ,MicroTOF ,HPLC ,antioxidant ,wound healing ,inflammation ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Caralluma europaea is a medicinal plant used in Morocco to cure a variety of illnesses. This study was conducted to determine the chemical composition, the antioxidant, antiproliferative, anti-inflammatory, and wound healing activities of C. europaea lipids. The chemical composition of C. europaea was analyzed using time-of-flight mass spectrometry and high-performance liquid chromatography. The antioxidant potential was determined using the 2,2-di-phenyl-1-picryl hydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. The antiproliferative effect was evaluated by MTT assay against HL60, K562, Huh-7 cancer cells, and normal Vero cells. The anti-inflammatory potential was conducted against carrageenan-induced paw edema. The wound healing effect was evaluated against skin burns for 21 days. The identified phytochemical compounds were docked for their effect on nicotinamide adenine dinucleotide phosphate oxidase, caspase-3, lipoxygenase, glycogen synthase kinase-3-β, and protein casein kinase-1. The results showed the presence of some lipids, such as linoleic acid and vitamin D3. The DPPH (IC50 = 0.018 mg/mL) and FRAP (EC50 = 0.084 mg/mL) of C. europaea lipids showed an important antioxidant effect. For the anti-inflammatory test, an inhibition of 83.50% was recorded after 6 h of treatment. Our extract showed the greatest wound retraction on the 21st day (98.20%). C. europaea lipids showed a remarkable antitumoral effect against the K562 cell line (IC50 = 37.30 µg/mL), with no effect on Vero cells (IC50 > 100 µg/mL). Lignoceric acid was the most active molecule against caspase-3 (−6.453 kcal/mol). The findings indicate the growing evidence of C. europaea as a potential treatment for several diseases.
- Published
- 2023
- Full Text
- View/download PDF
28. Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils
- Author
-
Rabab Ez-Zriouli, Houda ElYacoubi, Hamada Imtara, Abdelhalim Mesfioui, Aboubaker ElHessni, Omkulthom Al Kamaly, Samar Zuhair Alshawwa, Fahd A. Nasr, Zineb Benziane Ouaritini, and Atmane Rochdi
- Subjects
essential oils ,secondary metabolites ,microbial resistance ,cytotoxicity ,Organic chemistry ,QD241-441 - Abstract
The essential oils yield of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis was different. C. ambrosioides gave a relatively higher yield (2.1 ± 0.1%), while that of C. atlantica was low (1.0 ± 0.1%) and that of E. camaldulensis was lower (0.75 ± 0.1% of dry matter). The active ingredients of the essential oils and some of their biological effects were also determined. The characterization of their chemical compositions showed that the three essences have different chemical profiles: C. atlantica was richer in sesquiterpenes (β-Himachalene (54.21%) and γ -Himachalene (15.54%)), C. ambrosioides was very rich in monoterpene peroxides and monoterpenes (α-Terpinene (53.4%), ascaridole (17.7%) and ρ-Cymene (12.1%)) and E. camaldulensis was very rich in monoterpene compounds and monoterpenols (p-cymene (35.11%), γ-Eudesmol (11.9%), L-linalool (11.51%) and piperitone (10.28%)). The in vitro measurement of antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) reduction assay showed a significant performance of the eucalyptus oil and average performance of the other two (C. atlantica and C. ambrosioides). The in vitro bio-test for their antimicrobial effects showed that the antibacterial activity differed depending on the essential oil and the concentration used, and that their bactericidal efficacy was similar or superior to that of synthetic antibiotics. The toxicity test on rats revealed that the LD50 of the three essential oils was 500 mg/kg body weight, which classifies them as category four cytotoxic natural products at high doses.
- Published
- 2023
- Full Text
- View/download PDF
29. Comparative Study on the Total Phenolics, Total Flavonoids, and Biological Activities of Papaver rhoeas L. Extracts from Different Geographical Regions of Morocco
- Author
-
Anouar Hmamou, Mohammed Kara, Mostafa El Khomsi, Asmaa Saleh, Omkulthom Al Kamaly, Ahmed Bendaoud, Faiçal El Ouadrhiri, Abderrazzak Adachi, Sara Tlemcani, Noureddine Eloutassi, and Amal Lahkimi
- Subjects
Papaver rhoeas L. ,geographical region ,polyphenols ,flavonoids ,anthocyanins ,biological activities ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
In this research, a comparative analysis was carried out to characterize the content of phenolics and biological activities of the whole plant of Papaver rhoeas L. (P. rhoeas) from different geographical regions of Morocco, as well as to determine the synergistic antimicrobial and antioxidant effects of all parts of P. rhoeas. The determination of total polyphenol content (TPC), total flavonoid content (TFC), and total anthocyanin content (TA) in extracts of whole plants of P. rhoeas from three different geographical regions: Taounate (P1E), Fez (P2E), and Sefrou (P3E) were estimated by the Folin–Ciocalteu reaction, the aluminum trichloride method and the differential pH absorption technique, respectively. Two tests were used to evaluate the antioxidant power of our samples: the DPPH test and the TAC test. Using two methods, disk diffusion and microdilution, antimicrobial activity was studied against four pathogenic bacteria and one yeast. The results of TPC, TFC, and TA show that the P3E sample is the richest in polyphenols, flavonoids, and anthocyanins, with values 37.33 ± 1.307 mg GAE/g, 4.72 ± 0.346 QE/g, and 1.77 ± 0.026 CGE/g, respectively. In addition, P3E showed the best antioxidant activity with an IC50 = 0.27 ± 0.001 mg/mL and TAC = 9.99 ± 0.768 mg AAE/g, respectively. The results of antimicrobial activity showed significant activity on almost all the tested strains. The lowest MIC was recorded for P3E against E. coli ATCC 25922 and E. coli CIP 53126 strains at 0.78 and 0.78 mg/mL, respectively. These results show that the geographical region can influence the plant’s phytochemistry and then these biological activities.
- Published
- 2023
- Full Text
- View/download PDF
30. LC-MS/MS and GC/MS Profiling of Petroselinum sativum Hoffm. and Its Topical Application on Burn Wound Healing and Related Analgesic Potential in Rats
- Author
-
Meryem Slighoua, Ismail Mahdi, Fatima Zahrae Moussaid, Omkulthom Al Kamaly, Fatima Ez-zahra Amrati, Raffaele Conte, Aziz Drioiche, Asmaa Saleh, Abdelilah Iraqi Housseini, Amina Bari, and Dalila Bousta
- Subjects
Petroselinum sativum Hoffm. ,LC-MS/MS ,GC-MS ,analgesic activity ,burn wound healing ,Microbiology ,QR1-502 - Abstract
Parsley (Petroselinum sativum Hoffm.) is renowned for its ethnomedicinal uses including managing pain, wound, and dermal diseases. We previously highlighted the estrogenic and anti-inflammatory properties of parsley and profiled the phytochemistry of its polyphenolic fraction using HPLC-DAD. To extend our investigation, we here characterized the phytochemical composition of the hydro-ethanolic extract using LC-MS/MS and GC-MS upon silylation, and evaluated the antioxidant, analgesic, antimicrobial, and wound healing activities of its hydro-ethanolic and polyphenolic fraction. The antioxidant property was assessed using FRAP, DPPH, and TAC assays. The antimicrobial activity was tested against four wound infectious microbes (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans). The analgesic effect was studied using acetic acid (counting the number of writhes) and formalin (recording the licking and biting times) injections while the wound healing activity was evaluated using burn model in vivo. The LC-MS/MS showed that the hydro-ethanolic contains four polyphenols (oleuropein, arbutin, myricetin, and naringin) while GC-MS revealed that it contains 20 compounds including malic acid, D-glucose, and galactofuranoside. The hydro-ethanolic (1000 mg/kg) decreased abdominal writhes (38.96%) and licking time (37.34%). It also elicited a strong antioxidant activity using DPPH method (IC50 = 19.38 ± 0.15 µg/mL). Polyphenols exhibited a good antimicrobial effect (MIC = 3.125–12.5 mg/mL). Moreover, both extracts showed high wound contraction by 97.17% and 94.98%, respectively. This study provides evidence that P. sativum could serve as a source of bio-compounds exhibiting analgesic effect and their promising application in mitigating ROS-related disorders, impeding wound infections, and enhancing burn healing.
- Published
- 2023
- Full Text
- View/download PDF
31. Central Composite Design Implemented Azilsartan Medoxomil Loaded Nanoemulsion to Improve Its Aqueous Solubility and Intestinal Permeability: In Vitro and Ex Vivo Evaluation
- Author
-
Girish Kumar, Tarun Virmani, Kamla Pathak, Omkulthom Al Kamaly, and Asmaa Saleh
- Subjects
azilsartan medoxomil ,nanoemulsion ,aqueous solubility ,bioavailability ,central composite design ,optimization ,Medicine ,Pharmacy and materia medica ,RS1-441 - Abstract
The present research attempted to design and develop a nanoemulsion formulation of azilsartan medoxomil to improve its aqueous solubility and intestinal permeability. Based on the solubility profile, ethyl oleate, tween 80, and Transcutol P were selected as the oil phase, surfactant, and co-surfactant, respectively. Central composite design (CCD) suggested an optimized azilsartan medoxomil- nanoemulsion formulation (optimized AZL-NE formulation) with 1.25% oil, 15.73% Smix, and 90 s ultrasonication time; it was found to have the droplet size, percentage transmittance, and % cumulative drug release (%CDR) of 71.5 nm, 93.46 ± 1.13%, and 90.14 ± 0.94%, respectively. Furthermore, it exhibited a 0.141 polydispersity index, 34.05 mV zeta potential, a 1.413 ± 0.03 refractive index, 6.68 ± 0.22 pH, 28.17 ± 0.52 cps viscosity, and a 96.98 ± 0.94% percentage drug content. Transmission electron microscopy (TEM) assessed the nano-sized spherical shape, and a differential scanning calorimeter (DSC) assessed the solubilization of the drug in the optimized formulation. The %CDR was 1.71 times higher and the % cumulative drug permeation was 2.1 times higher for the optimized AZL-NE formulation than for the drug suspension through an intestinal segment of a rat, which was also supported by confocal laser scanning microscopy (CLSM) studies. Thus, the nanoemulsion formulation of azilsartan medoxomil ensured the enhancement of the drug availability in the body.
- Published
- 2022
- Full Text
- View/download PDF
32. Reproductive Biology of the Two Varieties of Anacyclus pyrethrum L.—Anacyclus pyrethrum var. pyrethrum (L.) Link and Anacyclus pyrethrum var. depressus (Ball.) Maire—An Endemic Endangered Species
- Author
-
Fatima Zahra Jawhari, Hamada Imtara, Abdelfattah El Moussaoui, Hind Khalis, Imane Es-Safi, Omkulthom Al Kamaly, Asmaa Saleh, Mohammad Khalid Parvez, Raja Guemmouh, and Amina Bari
- Subjects
breeding system ,pollinators ,phenology of flowering ,seed dispersal ,Botany ,QK1-989 - Abstract
The reproductive system is essential for the structuring and transmission of genetic diversity. Understanding the reproductive biology of threatened endemic species is considered to be a crucial element for the implementation of effective conservation strategies. Given the lack of information and the insufficient state of knowledge on the reproductive system of Anacyclus pyrethrum L., a threatened medicinal species endemic to Morocco, we are the first to study the reproductive biology of two varieties of Anacyclus pyrethrum L.: Anacyclus pyrethrum var. pyrethrum (L.) Link and Anacyclus pyrethrum var. depressus (Ball.) Maire. The reproductive biology of the two varieties was examined in detail by studying the development of the inflorescence, phenology of flowering, breeding system, pollinators, production, and seed dispersal. The experimental results described in this work suggest that Anacyclus pyrethrum L. is a gynomonic species, with a mixed autogamy–allogamy reproductive regime with a high predominance of allogamy. It appears to be partially self-incompatible, with allogamy rates for Anacyclus pyrethrum var. depressus (Ball.) Maire and Anacyclus pyrethrum var. pyrethrum (L.) Link of 78.70% and 79.01%, respectively. It depends on pollination vectors to produce a large number of seeds. This study on the breeding system of Anacyclus pyrethrum L. provides a tool for developing management strategies and adequate conservation measures.
- Published
- 2022
- Full Text
- View/download PDF
33. Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies
- Author
-
Abdulsalam Alhalmi, Saima Amin, Zafar Khan, Sarwar Beg, Omkulthom Al kamaly, Asmaa Saleh, and Kanchan Kohli
- Subjects
raloxifene ,naringin ,acute toxicity study ,combination ,nanostructured lipid carriers ,central composite design ,Pharmacy and materia medica ,RS1-441 - Abstract
This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol 888 ATO and oleic acid using a hot homogenization–sonication method and optimized using central composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm, polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of 91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in comparison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance.
- Published
- 2022
- Full Text
- View/download PDF
34. Total Polyphenols Content, Antioxidant and Antimicrobial Activities of Leaves of Solanum elaeagnifolium Cav. from Morocco
- Author
-
Mohammed Bouslamti, Azeddine El Barnossi, Mohammed Kara, Badriyah S. Alotaibi, Omkulthom Al Kamaly, Amine Assouguem, Badiaa Lyoussi, and Ahmed Samir Benjelloun
- Subjects
Solanum elaeagnifolium ,polyphenols ,flavonoids ,antimicrobial activity ,antioxidant activity ,Organic chemistry ,QD241-441 - Abstract
Solanum elaeagnifolium is among the invasive plants of Morocco; studies on its chemical composition and biological activities are few in number in Morocco. S. elaeagnifolium has shown molluscicidal and nematicidal and cancer-inhibitory effects, anti-inflammatory, analgesic activity, and antibacterial activity. The objective of this research is to improve this plant and assess its antibacterial and antioxidant properties as well as its total polyphenolic content (TPC) and total flavonoid content (TFC). The Folin-Ciocalteu method and the aluminium-trichloride method were used to determine TPC and TFC in hydro-ethanolic (HEE) and hydro-acetonic (HAE) leaf extract. Three assays were performed to determine the antioxidant activity: the DPPH test (radical 2,2’-diphenyl-1-picrylhydrazyl), the FRAP test (Ferric Reducing Antioxidant Power), and the TAC test. Disk diffusion and microdilution were used to test antibacterial activity against four pathogenic bacteria and Candida albicans. The hydro-ethanolic extract 2.54 ± 0.4 mg EAG/g has a greater polyphenol concentration than the hydro-acetonic extract 1.58 ± 0.03 mg EAG/g. Although the flavonoid content of the hydro-acetonic extract (0.067 ± 0.001 mg EQ/g) is larger than that of the hydro-ethanolic extract (0.012 ± 0.001 mg EQ/g), the flavonoid content of the hydro-ethanolic extract (0.012 ± 0.001 mg EQ/g). The DPPH values were IC-50 = 0.081 ± 0.004 mg/mL for hydro-ethanoic extract and 0.198 ± 0.019 mg/mL for hydro-acetonic extract, both extracts superior to BHT (0.122 ± 0.021 g/mL). While the FRAP assay showed a low iron-reducing power values for both extracts compared to BHT), the overall antioxidant activity of the two extracts was found to be considerable. The overall antioxidant activity of the hydro-ethanolic extract was 8.95 ± 0.42 mg EAA/g, whereas the total antioxidant activity of the hydro-acetonic extract was 6.44 ± 0.61 mg EAA/g. In comparison with the antibiotic Erythromycin, HAE and HEE from S. elaeagnifolium leaves demonstrated significant antibacterial action. HAE had the best inhibitory efficacy against Bacillus subtilis DSM 6333, with an inhibition diameter of 10.5 ± 0.50 mm and a MIC of 7.5 ± 0.00 mg/mL, as well as against Proteus mirabilis ATCC 29906, with an inhibitory diameter of 8.25 ± 0.75 mm and a MIC of 15 ± 0.00 mg/mL.
- Published
- 2022
- Full Text
- View/download PDF
35. Chemical Composition and Anti-Urolithiatic Activity of Extracts from Argania spinosa (L.) Skeels Press-Cake and Acacia senegal (L.) Willd
- Author
-
Fatima Ezzahra El oumari, Dalila Bousta, Hamada Imtara, Anissa Lahrichi, Radouane Elhabbani, Ghita El mouhri, Omkulthom Al kamaly, Asmaa Saleh, Mohammad Khalid Parvez, Andriy Grafov, and Tarik Sqalli Houssaini
- Subjects
litholytic activity ,calcium oxalate crystallization ,optical density ,gas chromatograph ,Organic chemistry ,QD241-441 - Abstract
Ethnobotanical studies have reported the traditional medicinal uses of Acacia senegal (L.) Willd. and Argania spinosa (L.) Skeels against kidney stone formation and other chronic kidney diseases. The present work is undertaken to study the litholytic activity and the inhibiting activity of calcium oxalate crystallization by bioactive compounds identified in Argania spinosa (L.) Skeels press-cake (residue of Argan oil) and in Acacia senegal (L.) Willd. The litholytic activity was studied in vitro on cystine and uric acid stones using a porous bag and an Erlenmeyer glass. The study of the inhibiting activity of calcium oxalate crystallization, was based on temporal measurements of the optical density, registered at a 620 nm wavelength for 30 min using an ultraviolet–visible spectrophotometer. The silylation method was performed to identify phytochemicals, followed by gas chromatography coupled with mass spectrophotometry (GC/MS) analysis. The results show significant litholytic activity of Argania Spinosa press-cake hydro-ethanolic extract on uric acid and cystine stones, respectively, with dissolution rates (DR) of 86.38% and 60.42% versus 3.23% and 9.48% for the hydro-ethanolic extract of Acacia senegal exudate. Furthermore, the percentages of nucleation inhibition are 83.78% and 43.77% (p ˂ 0.05) for Argania spinosa and Acacia senegal, respectively. The results point to the detection of 17 phytochemicals in Argania spinosa press-cake extract, the majority of which are phenolic acids and have potent anti-urolithiatic action.
- Published
- 2022
- Full Text
- View/download PDF
36. In Vitro Studies on the Antimicrobial and Antioxidant Activities of Total Polyphenol Content of Cynara humilis from Moulay Yacoub Area (Morocco)
- Author
-
Mostafa El Khomsi, Mohammed Kara, Anouar Hmamou, Amine Assouguem, Omkulthom Al Kamaly, Asmaa Saleh, Sezai Ercisli, Hafize Fidan, and Driss Hmouni
- Subjects
Cynara humilis L. ,antimicrobial activity ,antioxidant activity ,in vitro ,total polyphenols ,2.2-diphenyl-1-picrylhdrazyl ,Botany ,QK1-989 - Abstract
In Morocco, Cynara humilis L. is used in traditional medicine. The objective of this research was to research the antioxidant and antimicrobial properties of hydroethanolic extracts from the C. humilis plant’s leaves and roots. The content of polyphenols and flavonoids was evaluated using Folin–Ciocalteu’s and aluminum chloride assays. Two techniques were used to evaluate antioxidant properties: antioxidant capacity in total (TAC) and 2,2-diphenyl-1-picrylhdrazyl (DPPH). In antimicrobial assays, five pathogenic microbial strains were studied including two Escherichia coli, one coagulase-negative Staphylococcus and Klebsiella pneumoniae, and one Candida albicans, by two techniques: agar disk diffusion and microdilution. Leaves had a greater content of flavonoids 27.07 mg QE/g of extract and the polyphenols 38.84 mg GAE/g of extract than root 24.39 mg QE/g of extract and 29.39 mg GAE/g of extract, respectively. The TAC test value of the 0.77 mg AAE/g extract in the leaf extract was found to be significantly greater than that of the 0.60 mg EAA/g extract in the root extract. The DPPH antioxidant assay IC50 values of the root and leaf extract were 0.23 and 0.93 µg/mL, respectively. C. humilis extracts showed an antimicrobial effect against all tested strains, the inhibitory zone (DIZ) have values in the range between 12 and 15 mm. Moreover, the root extract showed the lowest minimum inhibitory concentration (MIC) against coagulase-negative Staphylococcus with an IC50 value of 6.25 mg/mL. The higher content of flavonoids and polyphenols in the hydroethanolic extracts of C. humilis leaves and roots demonstrates that they have a significant antimicrobial and antioxidant effect, as found in this study.
- Published
- 2022
- Full Text
- View/download PDF
37. Phytonutrient Composition of Two Phenotypes of Physalis alkekengi L. Fruit
- Author
-
Venelina Popova, Nadezhda Mazova, Tanya Ivanova, Nadezhda Petkova, Magdalena Stoyanova, Albena Stoyanova, Sezai Ercisli, Amine Assouguem, Mohammed Kara, Samar Zuhair Alshawwa, and Omkulthom Al Kamaly
- Subjects
Physalis alkekengi L. ,nutritional composition ,minerals ,pigments ,DPPH ,FRAP ,Plant culture ,SB1-1110 - Abstract
Physalis alkekengi L. is the only representative of the genus Physalis (Solanaceae) that is native to Bulgaria, found in wild habitats under different climatic and soil conditions. The plant is poisonous, but produces edible fruit, which are a source of functional nutrients—vitamins, phenolic antioxidants, minerals, etc. Therefore, the objective of this work was to determine the presence of certain nutrient and bioactive substances in two phenotypes of P. alkekengi fruit from Bulgaria, in order to better reveal the prospects of fruit use in nutrition. Different macro and micronutrients were determined in the fruit—protein, ash, lipids, fiber, natural pigments, sugars, amino acids, minerals—and the results showed differences between the phenotypes. Fruit energy values were low and identical in the samples, 43 kcal/100 g. The fruits were rich in extractable phenolics (TPC, 17.74–20.25 mg GAE/100 g FW; flavonoids, 15.84–18.03 mg QE/100 g FW) and demonstrated good antioxidant activity (DPPH, 171.55–221.26 mM TE/g; FRAP, 193.18–256.35 mM TE/g). P. alkekengi fruits were processed to obtain a dry extract with ethanol (yield 47.92–58.6%), and its individual composition was identified (GC-MS). The results in this study supported the presumed phytonutritive potential of P. alkekengi fruit, thus, opening doors for further research.
- Published
- 2022
- Full Text
- View/download PDF
38. Bio-Augmentation as an Emerging Strategy to Improve the Textile Compost Quality Using Identified Autochthonous Strains
- Author
-
Saloua Biyada, Hamada Imtara, Karima Elkarrach, Omar Laidi, Asmaa Saleh, Omkulthom Al Kamaly, and Mohammed Merzouki
- Subjects
bio-augmentation ,composting time ,organic matter ,textile solid waste ,composting ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The present investigation is devoted, for the first time, to the potential of autochthonous inoculums through bio-augmentation tests to improve the compost quality and to decrease the composting time during composting of textile waste. For this reason, three strains were isolated from a mixture of textile waste, green waste, paper, and cardboard waste, and therefore identified as Streptomyces cellulosae, Achromobacter xylosoxidans, and Serratia liquefaciens, employed using bio-augmentation test. The organic matter decaying was assessed according to three different inoculums doses, separately and in consortium (4%, 6%, and 8%), to describe the effect of bio-augmentation process on the organic matter decaying. Indeed, these three strains and their consortium have shown a strong potential of organic matter degradation, equally the bacterial consortium showed a total organic carbon degradation of 20.3%, total Kjeldahl nitrogen of 1.52%, and a Carbon/Nitrogen ratio of 13.36. Compost maturity has been completed after only 12 weeks of treatment instead of 44 weeks using the classical treatment by composting. Ultimately, according to these results, bio-augmentation could be an emerging and promising strategy to accelerate the composting process of solid waste, especially in the case of industrial waste. Equally, it could be an effective tool to avoid the accumulation of industrial waste disposal in public landfills and/or nature while allowing their treatment.
- Published
- 2022
- Full Text
- View/download PDF
39. Anti-Anemic Effect of Antioxidant-Rich Apple Vinegar against Phenylhydrazine-Induced Hemolytic Anemia in Rats
- Author
-
Driss Ousaaid, Asmae El Ghouizi, Hassan Laaroussi, Meryem Bakour, Hamza Mechchate, Imane Es-safi, Omkulthom Al Kamaly, Asmaa Saleh, Raffaele Conte, Badiaa Lyoussi, and Ilham El Arabi
- Subjects
natural products ,apple vinegar ,anemia ,phenylhydrazine ,antioxidant activity ,LC-MS/MS ,Science - Abstract
This study aims to examine the ability of apple vinegar on phenylhydrazine (PHZ)-induced hemolytic anemia in Wistar rats. In vitro, phenolic and flavonoid content and antioxidant activity were determined. In vivo, phenylhydrazine (10 mg/kg) was injected intravenously into rats for 4 days and then treated with apple vinegar daily by gavage (1 mL/kg) for five weeks. high level of polyphenols and flavonoids (90 ± 1.66 mg GAE/100 mL and 7.29 ± 0.23 mg QE/100 mL, respectively) were found in the apple vinegar which gives it a good ability to scavenge free radicals (TAC = 4.22 ± 0.18 mg AAE/100 mL and DPPH, IC50 = 0.49 ± 0.004 µL/ml). The phytochemical composition of apple vinegar revealed the presence of numerous bioactive compounds including arbutin, apigenin, sinapic, ferulic and trans-ferulic acids. The major antioxidant components in apple vinegar were ferulic and trans-ferulic acids (40% and 43%, respectively). PHZ treatment induced changes in platelets, blood cell count, mean corpuscular volume, hemoglobin concentration and mean capsulated hemoglobin. However, the co-administration of apple vinegar revealed its capacity to ameliorate the changes induced by phenylhydrazine. Therefore, apple vinegar use could have a positive impact on the prevention of hemolytic anemia induced by phenylhydrazine due to the antioxidant properties of its major components.
- Published
- 2022
- Full Text
- View/download PDF
40. Brocchia cinerea (Delile) Vis. Essential Oil Antimicrobial Activity and Crop Protection against Cowpea Weevil Callosobruchus maculatus (Fab.)
- Author
-
Abdelkrim Agour, Ibrahim Mssillou, Hamza Mechchate, Imane Es-safi, Aimad Allali, Azeddin El Barnossi, Omkulthom Al Kamaly, Samar Zuhair Alshawwa, Abdelfattah El Moussaoui, Amina Bari, Badiaa Lyoussi, and Elhoussine Derwich
- Subjects
Brocchia cinerea ,essential oil ,antimicrobial activity ,Callosobruchus maculatus ,pest control ,insecticidal ,Botany ,QK1-989 - Abstract
Antibiotics and synthetic pesticides are now playing a role in the spread of resistant pathogens. They continue to have negative consequences for animal and plant health. The goal of this work is to identify the chemical composition of Brocchia cinerea (Delile) Vis. essential oil (EO) using GC-MS(Gas Chromatography-Mass Spectrometer), evaluate its antimicrobial properties, and investigate its insecticidal and repellent effectiveness against Callosobruchus maculatus (C. maculatus). The GC-MS indicated the presence of 21 chemicals, with thujone (24.9%), lyratyl acetate (24.32%), camphor (13.55%), and 1,8-cineole (10.81%) being the most prominent. For the antimicrobial assay, the yeast Candida albicans was very sensitive to the EO with a growth inhibition diameter of (42.33 mm), followed by Staphylococcus aureus (31.33 mm). Fusarium oxysporum is the mycelia strain that appeared to be extremely sensitive to the utilized EO (88.44%) compared to the two species of Aspergillus (A. flavus (48.44%); A. niger (36.55%)). The results obtained in the microdilution method show that Pseudomonas aeruginosa was very sensitive to the EO, inhibited by a very low dose (0.0018 mg/mL). The minimum inhibitory concentration (MIC) results were between 0.0149 and 0.06 mg/mL. B. cinerea EO also demonstrated a potent insecticidal effect and a medium repulsive effect against C. maculatus. Thus, the LC50 value in the contact test was 0.61 μL/L of air, lower than that observed in the inhalation test (0.72 μL/L of air). The present study reveals that B. cinerea EO has the potential to be an antimicrobial and insecticidal agent with a better performance against several pathogenic microorganisms.
- Published
- 2022
- Full Text
- View/download PDF
41. Lavandula pedunculata (Mill.) Cav. Aqueous Extract Antibacterial Activity Improved by the Addition of Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl and Origanum compactum Benth
- Author
-
Salima Boutahiri, Bruno Eto, Mohamed Bouhrim, Hamza Mechchate, Asmaa Saleh, Omkulthom Al kamaly, Aziz Drioiche, Firdaous Remok, Jennifer Samaillie, Christel Neut, Bernard Gressier, Ferdinand Kouoh Elombo, Laila Nassiri, Touriya Zair, and Sevser Sahpaz
- Subjects
Lavandula pedunculata (Mill.) Cav. ,Salvia rosmarinus Spenn. ,Salvia lavandulifolia Vahl. ,Origanum compactum Benth. ,polyphenols ,antibacterial activity ,Science - Abstract
Lavender aqueous extracts are widely used in the Moroccan traditional medicine for their antibacterial properties. However, previous research have generally focused on investigating the antibacterial activity of lavender essential oils. The aim of this study is to evaluate the antibacterial activity of the Moroccan Lavandula pedunculata (Mill.) Cav. aqueous extract, alone, as well as in combination with extracts of other plant species known for their antibacterial activity: Salvia rosmarinus Spenn., Salvia lavandulifolia Vahl. and Origanum compactum Benth. We have tested the antibacterial activity of L. pedunculata, S. rosmarinus, S. lavandulifolia and O. compactum aqueous extracts individually and in combination against 34 strains using the agar dilution method. The combination effect was evaluated using the fractional inhibitory concentration (FIC). Polyphenol and tannin contents were determined using Folin-Ciocalteu reagent, and then some phenolic compounds were identified using UHPLC-MS. All the extracts displayed a large spectrum of antibacterial activity, especially against staphylococci, streptococci, Mycobacterium smegmatis and Proteus mirabilis. The minimum inhibitory concentration (MIC) values reached 0.15 ± 0.00 mg/mL for Staphylococcus warneri tested with S. lavandulifolia and 0.20 ± 0.07 mg/mL for Staphylococcus epidermidis tested with L. pedunculata or S. rosmarinus. Association of the L. pedunculata extract with S. rosmarinus, S. lavandulifolia and O. compactum showed synergistic effects (FIC ≤ 1). Moreover, the association of L. pedunculata with S. lavandulifolia was active against most of the Gram-negative strains resistant to the individual extracts. Determination of polyphenol and tannin contents showed the richness of the studied plants in these compounds. Additionally, chromatographic analysis demonstrated the high presence of rosmarinic acid in all the studied plant extracts. To our knowledge, this is the first study that shows the enhancing effect of the antibacterial activity of L. pedunculata aqueous extract combined with S. rosmarinus, S. lavandulifolia and O. compactum. These results confirm the effectiveness of the plant mixtures commonly used by traditional healers in Morocco and suggest that L. pedunculata might be used as an antibacterial agent either alone or, more efficiently, in combination with S. rosmarinus, S. lavandulifolia and O. compactum.
- Published
- 2022
- Full Text
- View/download PDF
42. Ointment-Based Combination of Dittrichia viscosa L. and Marrubium vulgare L. Accelerate Burn Wound Healing
- Author
-
Ibrahim Mssillou, Abdelkrim Agour, Meryem Slighoua, Mohamed Chebaibi, Fatima Ez-Zahra Amrati, Samar Zuhair Alshawwa, Omkulthom Al kamaly, Abdelfattah El Moussaoui, Badiaa Lyoussi, and Elhoussine Derwich
- Subjects
D. viscosa ,M. vulgare ,analgesic ,anti-inflammatory ,wound healing ,Medicine ,Pharmacy and materia medica ,RS1-441 - Abstract
Burns constitute a major challenge in medical science, and plants can be part of the solution. Dittrichia viscosa L. (Asteraceae) and Marrubium vulgare L. (Lamiaceae) are widely used in Moroccan traditional medicine to treat several diseases and possess high potency to cure wounds. This study aimed to investigate in vivo the analgesic, anti-inflammatory, and burn-healing effects of both plants and their mixture. The hydro-ethanolic extract of both plants was analyzed using high-performance liquid chromatography with diode-array detection (HPLC-DAD). Burns were conducted on dorsal part of rats, and the wound healing process was evaluated during 21 days. Gallic acid, caffeic acid, ferulic acid, and quercetin were identified in M. vulgare extract. The analysis recorded the presence of caffeic acid, rosmarinic acid, rutin, and quercetin in D. viscosa. The group treated with the mixture showed the lowest abdominal contractions (30.4 ± 7.52) with the highest percentage of inhibition (69.12 ± 7.04%). The inhibition of paw inflammation for M. vulgare was 47.65%, followed by D. viscosa (33.86%) and the mixture (30.41%). The mixture showed the highest wound contraction at day 7 (33.16 ± 14.33%) and day 14 (87.54 ± 3.98%). D. viscosa showed the highest wound contraction on the 21st day (99.28 ± 0.44%). In conclusion, both plants and their combination showed promising results for burn healing.
- Published
- 2022
- Full Text
- View/download PDF
43. Contribution to the Evaluation of Physicochemical Properties, Total Phenolic Content, Antioxidant Potential, and Antimicrobial Activity of Vinegar Commercialized in Morocco
- Author
-
Mohammed Kara, Amine Assouguem, Mohamed El Fadili, Safaâ Benmessaoud, Samar Zuhair Alshawwa, Omkulthom Al Kamaly, Hamza Saghrouchni, Abdou Rachid Zerhouni, and Jamila Bahhou
- Subjects
vinegar ,polyphenols ,fermented fruits ,antioxidant activity ,antimicrobial activity ,bioactive molecules ,Organic chemistry ,QD241-441 - Abstract
Vinegar is a natural product widely used in food and traditional medicine thanks to its physicochemical properties and its richness in bioactive molecules. However, its direct use by consumers can have complications and undesirable effects. Therefore, this study contributes to investigating the physicochemical and biological properties of eleven vinegars marketed in Morocco. Determination of pH, acetic acid, conductivity, total soluble solids and alcohol content in vinegar was carried out. The polyphenols (TP), flavonoids (TF), and condensed tannins (CT) content was determined, and their antioxidant activities were evaluated using 2,2-diphenyl-1-picryl Hydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP) and Phosphomolybdenum Reduction Assay (TAC). Then, the antimicrobial activity was studied against four pathogenic bacteria and two fungal strains, using the disk diffusion and the microdilution method. This study showed a wide range of acetic acid values from 0.65 ± 0.29 to 5.15 ± 0.20%. The high value of TP, TF, and CT in our samples V10, V9, and V4 was 655.00 ± 22.2 µgGAE/mL, 244.53 ± 11.32 µgQE/mL and 84.63 ± 1.00 µgTAE/mL, respectively. The tested strains showed variable sensitivities to the different samples with inhibition zones ranging from 6.33 ± 2.08 to 34.33 ± 0.58 mm. The lowest minimum inhibition concentrations were recorded against Staphylococcus aureus ATCC29213 ranging from 1.95 to 7.81 µL/mL. While Aspergillus niger ATCC16404 showed resistance against all of the analyzed samples. In general, vinegar commercialized in Morocco presents a variable range of products with variable properties. Indeed, must take into account this diversity when using it. A future study is needed to identify the phytochemical composition that will further the comprehension of this variability and contribute to its valorization.
- Published
- 2022
- Full Text
- View/download PDF
44. Total Phenolic Content and Antioxidant and Antimicrobial Activities of Papaver rhoeas L. Organ Extracts Growing in Taounate Region, Morocco
- Author
-
Anouar Hmamou, Noureddine Eloutassi, Samar Zuhair Alshawwa, Omkulthom Al kamaly, Mohammed Kara, Ahmed Bendaoud, El-Mehdi El-Assri, Sara Tlemcani, Mostafa El Khomsi, and Amal Lahkimi
- Subjects
Papaver rhoeas L. ,total polyphenol content ,total flavonoid content ,antioxidant activity ,antimicrobial activity ,Organic chemistry ,QD241-441 - Abstract
The objective of this study is to valorize Papaver rhoeas L. from the Taounate region of Morocco by determining the total polyphenol content (TPC), the total flavonoid content (TFC) and the antioxidant and antimicrobial activities of four organs. The quantification of TPC and TFC in root, stem, leaf and flower extracts (RE, SE, LE and FE, respectively) was estimated by the Folin–Ciocalteu reaction and the aluminum trichloride method, respectively. Two tests were used to assess antioxidant power: the DPPH test and TAC assay. The antimicrobial activity was studied against five pathogenic bacteria and yeast, using two methods: disk diffusion and microdilution. The TPC in LE and LF was twice as high as that in RE and SE (24.24 and 22.10 mg GAE/g, respectively). The TFC values in the four extracts were very close and varied between 4.50 mg QE/g in the FE and 4.38 mg QE/g in the RE. The LE and FE showed low DPPH values with IC50 = 0.50 and 0.52 mg/mL, respectively. The TAC measurement revealed the presence of a significant amount of antioxidants in the studied extracts, mainly in LE and FE (6.60 and 5.53 mg AAE/g, respectively). The antimicrobial activity results revealed significant activity on almost all of the tested strains. The MIC of FE and SE against E. coli 57 was 1.56 and 0.78 mg/mL, respectively, while against the S. aureus it was 50 and 25 mg/mL, respectively. The low MLC value (1.56 mg/mL) was recorded against E. coli 57 by RE and SE.
- Published
- 2022
- Full Text
- View/download PDF
45. Evaluation of the toxicity of Caralluma europaea (C.E) extracts and their effects on apoptosis and chemoresistance in pancreatic cancer cells
- Author
-
Fatima Ez-Zahra Amrati, Omer Hany Miligy Elmadbouh, Mohamed Chebaibi, Badr Soufi, Raffaele Conte, Meryem Slighoua, Asmaa Saleh, Omkulthom Al Kamaly, Aziz Drioiche, Touria Zair, Mouad Edderkaoui, and Dalila Bousta
- Subjects
Structural Biology ,General Medicine ,Molecular Biology - Published
- 2022
- Full Text
- View/download PDF
46. Separation and evaluation of potential antioxidant, analgesic, and anti-inflammatory activities of limonene-rich essential oils from Citrus sinensis (L.)
- Author
-
Omkulthom Al Kamaly, Omar Numan, Omer M. A. Almrfadi, Ashwag S. Alanazi, and Raffaele Conte
- Subjects
Materials Chemistry ,General Chemistry - Abstract
The peel of Citrus sinensis (L.) Osbeck is a source of essential oils, particularly limonene, which is this plant’s characteristic molecule. The main goal of this study was to test the potential analgesic and anti-inflammatory properties of limonene-rich essential oils derived from the peel of C. sinensis L. (orange) in vivo, as well as their antioxidant activity in vitro. Carrageenan-induced paw edema in Wistar rats and the formalin test in Swiss albino mice were used to examine anti-inflammatory activity. The analgesic activity was assessed using hot plate and acetic acid writhing tests, while the antioxidant activity was assessed using the 1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power methods. The essential oil (EO) safety was determined using an acute toxicity experiment on mice. The phytochemical analysis confirmed the existence of limonene as the primary molecule (88.94%), and in vivo experiments revealed that the EO had a significant pain and inflammation-relieving effect, especially at the dose of 50 mg/kg, when compared to the used control drugs. The acute toxicity evaluation reported this EO’s safety. This study contributes to the pharmacological valorization of the peel of C. sinensis L., confirming that, in addition to its numerous cosmetic and industrial uses, it may be effective in the treatment of inflammatory and pain-related illnesses.
- Published
- 2022
- Full Text
- View/download PDF
47. Characterization, Chemical Compounds and Biological Activities of Marrubium vulgare L. Essential Oil
- Author
-
Sara Rached, Hamada Imatara, Amar Habsaoui, Khaoula Mzioud, Sara Haida, Asmaa Saleh, Omkulthom Al kamaly, Ahmad Alahdab, Mohammad Khalid Parvez, Samah Ourras, and Souad El Fartah
- Subjects
Marrubium vulgare L ,essential oil ,GC-MS ,physicochemical characterization ,antifungal ,antioxidant ,Process Chemistry and Technology ,Chemical Engineering (miscellaneous) ,Bioengineering - Abstract
As consumer trends shift towards more natural and ecological consumption patterns, industrialists are actively working towards substituting synthetic chemicals with natural and vegan products that contain bioactive properties. Thus, considering the shifts in customer demand and the growing concern around vegetable sourced productions, this work aims to contribute to the valorization of aromatic and medicinal Moroccan plants. By focusing on the Marrubium vulgare L. species, our objective is to carry out a physicochemical characterization to determine its chemical composition and biological activities. The volatile fraction collected by hydrodistillation (0.61%) and analyzed by GC-MS (gas chromatography coupled to mass spectrometry) contains five main compounds: 3-Thujanone, Eugenol, Topanol, Menthone and Piperitone. The antioxidant activity has been estimated by applying the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging test and the ferric reducing antioxidant power (FRAP). The values of inhibitory concentration prove that our oil is a good antioxidant, with values of IC50 = 1.136 mg/mL and IC50 = 2.998 mg/mL, respectively, for the DPPH and FRAP tests. The results of the antifungal activity indicate a significant inhibition of mycelial growth for both tested molds, as well as a total inhibition of spore production at a concentration of 0.25 µL/mL.
- Published
- 2022
- Full Text
- View/download PDF
48. In Vivo and In Silico Investigation of the Anti-Obesity Effects of Lactiplantibacillus plantarum Combined with Chia Seeds, Green Tea, and Chitosan in Alleviating Hyperlipidemia and Inflammation
- Author
-
Dalia Elebeedy, Aml Ghanem, Asmaa Saleh, Mona H. Ibrahim, Omkulthom Al Kamaly, Mohammed A. S. Abourehab, Mohamed A. Ali, Ahmed I. Abd El Maksoud, Mahmoud A. El Hassab, and Wagdy M. Eldehna
- Subjects
Inorganic Chemistry ,Lactiplantibacillus plantarum ,prebiotics ,chia seeds ,green tea ,chitosan ,obesity ,nutrition ,docking ,Organic Chemistry ,General Medicine ,Physical and Theoretical Chemistry ,Molecular Biology ,Spectroscopy ,Catalysis ,Computer Science Applications - Abstract
The increasing prevalence of obesity has become a demanding issue in both high-income and low-income countries. Treating obesity is challenging as the treatment options have many limitations. Recently, diet modification has been commonly applied to control or prevent obesity and its risks. In this study, we investigated novel therapeutic approaches using a combination of a potential probiotic source with prebiotics. Forty-eight adult male Sprague–Dawley rats were selected and divided into seven groups (eight rats per group). The first group was fed a high-fat diet, while the second group was a negative control. The other five groups were orally administered with a probiotic, Lactiplantibacillus plantarum (L. plantarum), and potential prebiotics sources (chia seeds, green tea, and chitosan) either individually or in combination for 45 days. We collected blood samples to analyze the biochemical parameters and dissected organs, including the liver, kidney, and pancreas, to evaluate obesity-related injuries. We observed a more significant decrease in the total body weight by combining these approaches than with individual agents. Moreover, treating the obese rats with this combination decreased serum catalase, superoxide dismutase, and liver malondialdehyde levels. A histopathological examination revealed a reduction in obesity-related injuries in the liver, kidney, and pancreas. Further docking studies indicated the potential role of chia seeds and green tea components in modulating obesity and its related problems. Therefore, we suggest that the daily administration of a pre- and probiotic combination may reduce obesity and its related problems.
- Published
- 2022
- Full Text
- View/download PDF
49. Insight into Membrane Stability and Physiological Responses of Selected Salt-Tolerant and Salt-Sensitive Cell Lines of Troyer Citrange (Citrus sinensis [L.] x Citrus trifoliata [L.] Raf.) under Salt Stress
- Author
-
Houda ElYacoubi, Fatine Mouhssine, Hamada Imtara, Imane Ouallal, Sara Ech-cheddadi, Ayolié Koutoua, Mohamed Lagzouli, Badriyah S. Alotaibi, Omkulthom Al kamaly, Mohammad Khalid Parvez, and Atmane Rochdi
- Subjects
Renewable Energy, Sustainability and the Environment ,Geography, Planning and Development ,Building and Construction ,Management, Monitoring, Policy and Law ,citrus rootstock ,in vitro culture ,electrolyte leakage ,ion accumulation ,physiological parameters ,salt tolerance ,tolerant cell lines - Abstract
The aim of this study was to evaluate the membrane integrity and some physiological responses of rootstock citrus calli under exposure to different concentrations of NaCl. Selected salt-tolerant cell lines were compared with salt-sensitive calli of Troyer’s citrange (Citrus sinensis [L.] x Citrus trifoliata [L.] Raf.) (TC) with respect to growth, water content, Na+, K+ and Cl− ion content as well as cell membrane stability under exposure to different NaCl concentrations. The results show that the stressed sensitive lines have a consistently high ion efflux. The values recorded for these sensitive calli are 3 to 6 times higher than those of the tolerant calli. Thus, only selected halotolerant calli were able to maintain the integrity of their membranes under salt stress conditions. In the sensitive calli, NaCl always induces a slowing down of growth even from 4 g L−1, and the reduction in the relative growth rate is higher than 50% and reaches more than 90% for the three culture durations at 8 g L−1 NaCl. For the salt-tolerant selected lines, the relative growth rate seems to be slightly slowed down until the second month of culture but becomes equal to that of the control at the third month, whether at 4 or 8 g L−1 NaCl. At the end of the third month, the relative growth rate of the selected calli is 100% at 8 g L−1 NaCl. The water content is twice as high in the selected tolerant calli as in the sensitive ones after three months of salt treatment at 8 g L−1 NaCl. After long-term culture, the halotolerant calli absorbed similar or even higher amounts of Na+ and Cl− than the salt-sensitive lines. However, by the 3rd month, the recorded accumulation rate dropped in the unselected but continued to increase in the tolerant calli (4-fold higher at 12 g L−1 NaCl than the control). Furthermore, exposure of both types of calli (salt-sensitive and salt-tolerant) to equal concentrations of NaCl resulted in greater loss of K+ by the NaCl-sensitive lines. However, for tolerant lines, K+ uptake is not affected at 4 g L−1 NaCl and the decrease in tissue content is less than 25% at 8 g L−1 NaCl. From this observation, it can be concluded that growth and the ability to retain high levels of internal K+ are correlated.
- Published
- 2022
- Full Text
- View/download PDF
50. Cedrus atlantica (Endl.) Manetti ex Carrière Essential Oil Alleviates Pain and Inflammation with No Toxicity in Rodent
- Author
-
Omkulthom Al Kamaly, Asmaa Saleh, Aisha Al Sfouk, Ashwag S. Alanazi, Mohammad Khalid Parvez, Driss Ousaaid, Amine Assouguem, Hamza Mechchate, Mohamed Bouhrim, and Department of Chemistry
- Subjects
in vivo testing ,cedarwood ,natural products ,cedar ,analgesia ,acute toxicity ,Process Chemistry and Technology ,116 Chemical sciences ,Bioengineering ,MOUSE MODEL ,INHALATION ,CHEMICAL-COMPOSITION ,Chemical Engineering (miscellaneous) ,SYSTEM ,ANTIMICROBIAL ACTIVITY - Abstract
Cedrus atlantica (Endl.) Manetti ex Carrière is an endemic tree with spiritual value, and it was used since immemorial time in folk medicine. The present study aims to evaluate the anti-inflammatory (carrageenan-induced paw edema and formalin tests) and analgesic effects (hot plate and acetic acid writhing tests) of the cedarwood essential oil, as well as inspect any toxicity (acute toxicity), using several in vivo assays. Following the acetic acid writhing test and the hot plate test, the EO presented an excellent analgesic effect compared to the controls, especially with the dose of 50 mg/kg. Similar results were found while assessing the anti-inflammatory potential in the carrageenan-induced paw edema and formalin assays. The acute toxicity assessment and the subsequent monitoring of the animals, the biochemical analysis, and the relative organ weight, demonstrated a total safety of the EO. The GC/MS analysis of the composition revealed that the major compounds contained in this EO are beta-himachalene (51.95%), followed by alpha-himachalene (15.82%), and gamma-himachalene (12.15%). This study supports the usage of this tree EO to alleviate pain and inflammation.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.