1. Unitary equivalences for k-circulant operator matrices with applications.
- Author
-
Abdollahi, Ozra, Karami, Saeed, Rooin, Jamal, and Sattari, Mohammad Hossein
- Subjects
- *
EIGENVALUES , *PERMUTATIONS , *MATRICES (Mathematics) , *INTEGERS - Abstract
Let k and n be two coprime positive integers. In this paper, we show that any $ n\times n $ n × n k-circulant operator matrix $ A_{k,n} $ A k , n with the first row $ A_{1},\dots,A_{n}\in B(H) $ A 1 , ... , A n ∈ B (H) is unitarily equivalent to a generalized permutation operator matrix, an operator matrix that has at most one nonzero entry in each row and in each column. Among other applications in the subject of invertibility, eigenvalues and eigenvectors, using this unitary equivalence in the particular cases of $ k^{2}\pm 1=n $ k 2 ± 1 = n $ ({\rm mod} n) $ (mod n) , we give the following new formulas for computing the numerical radius of these operators: \[ w(A_{k,n})= \begin{cases} \frac{1}{2}\displaystyle \max_{1\leq i\leq n} \sup_{\theta \in \mathbb{R}} \left\| \begin{bmatrix} {\rm e}^{\mathrm{i}\theta}B_{i+1} & B^{*}_{ki+1}\\ B^{*}_{-ki+1} & {\rm e}^{\mathrm{i}\theta}B_{-i+1} \end{bmatrix} \right\|, & {\rm if} \ k^{2}+1\\ & \quad =n \ ({\rm mod}\,n)\\ \displaystyle\max_{1\leq i \leq n}w \left(\begin{bmatrix} 0 & B_{k(i-1)+1}\\ B_{i} & 0 \end{bmatrix} \right), & {\rm if} \ k^{2}-1\\ & \quad =n \ ({\rm mod}\,n), \end{cases} \] w (A k , n) = { 1 2 max 1 ≤ i ≤ n sup θ ∈ R ‖ [ e i θ B i + 1 B ki + 1 ∗ B − ki + 1 ∗ e i θ B − i + 1 ] ‖ , if k 2 + 1 = n (mod n) max 1 ≤ i ≤ n w ([ 0 B k (i − 1) + 1 B i 0 ]) , if k 2 − 1 = n (mod n) , where $ B_{j}=\sum _{s=1}^{n}\omega ^{(s-1)(j-1)}A_{s} $ B j = ∑ s = 1 n ω (s − 1) (j − 1) A s and $ \omega ={\rm e}^{\frac {2\pi \mathrm {i}}{n}} $ ω = e 2 π i n , the nth root of unity. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF