1. Reaction kinetics formulation with explicit radiation absorption effects of the photo-Fenton degradation of paracetamol under natural pH conditions
- Author
-
Leandro Oscar Conte, Bárbara Natalí Giménez, Agustina Violeta Schenone, and Orlando Mario Alfano
- Subjects
Reaction mechanism ,Iron ,Health, Toxicology and Mutagenesis ,Analytical chemistry ,010501 environmental sciences ,01 natural sciences ,Oxalate ,Catalysis ,Chemical kinetics ,chemistry.chemical_compound ,Environmental Chemistry ,Irradiation ,Absorption (electromagnetic radiation) ,Hydrogen peroxide ,Acetaminophen ,0105 earth and related environmental sciences ,Hydroquinone ,Absorption, Radiation ,Hydrogen Peroxide ,General Medicine ,Hydrogen-Ion Concentration ,Pollution ,Kinetics ,chemistry ,Oxidation-Reduction ,Water Pollutants, Chemical - Abstract
The degradation of paracetamol (PCT) in an aqueous medium using the Fenton and photo-Fenton reactions was investigated. The aim of this research was the development of a kinetic model based on a reaction mechanism, which includes two main intermediates of PCT degradation and the local volumetric rate of photon absorption (LVRPA). Ferrioxalate was used as a catalyst and the working pH was adjusted to 5.5 (natural pH). Experimental work was planned through a D-optimal experimental design and performed in a flat plate reactor irradiated by a solar simulator. Hydrogen peroxide (HP) concentration, reaction temperature, and radiation level were the operating parameters. The photo-Fenton reaction allowed to reach a minimum relative PCT concentration of 2.01% compared to 5.04% achieved with Fenton reaction. Moreover, the photo-Fenton system required a 50% shorter reaction time and lower HP concentration than in dark conditions (90 min and 189 mg L-1 vs. 180 min and 334 mg L-1, respectively). The experimental results were used to estimate the kinetic parameters of the proposed kinetic model employing a nonlinear, multi-parameter regression method. The values obtained from the normalized root-mean-square error (14.52, 1.96, 4.36, 13.16, and 8.72 % for PCT, benzoquinone, hydroquinone, HP, and oxalate, respectively) showed a good agreement between the predicted and experimental data.
- Published
- 2021
- Full Text
- View/download PDF