10 results on '"Orwin, K.H."'
Search Results
2. Dominant native and non-native graminoids differ in key leaf traits irrespective of nutrient availability
- Author
-
Broadbent, A.A.D., Firn, J., McGree, J.M., Borer, E.T., Buckley, Y.M., Harpole, W.S., Komatsu, K.J., MacDougall, A.S., Orwin, K.H., Ostle, N.J., Seabloom, E.W., Bakker, J.D., Biederman, L., Caldeira, M.C., Eisenhauer, N., Hagenah, N., Hautier, Y., Moore, J.L., Nogueira, C., Peri, P.L., Risch, A.C., Roscher, C., Schütz, M., Stevens, C.J., Broadbent, A.A.D., Firn, J., McGree, J.M., Borer, E.T., Buckley, Y.M., Harpole, W.S., Komatsu, K.J., MacDougall, A.S., Orwin, K.H., Ostle, N.J., Seabloom, E.W., Bakker, J.D., Biederman, L., Caldeira, M.C., Eisenhauer, N., Hagenah, N., Hautier, Y., Moore, J.L., Nogueira, C., Peri, P.L., Risch, A.C., Roscher, C., Schütz, M., and Stevens, C.J.
- Abstract
Aim: Nutrient enrichment is associated with plant invasions and biodiversity loss. Functional trait advantages may predict the ascendancy of invasive plants following nutrient enrichment but this is rarely tested. Here, we investigate (a) whether dominant native and non-native plants differ in important morphological and physiological leaf traits, (b) how their traits respond to nutrient addition, and (c) whether responses are consistent across functional groups. Location: Australia, Europe, North America and South Africa. Time period: 2007–2014. Major taxa studied: Graminoids and forbs. Methods: We focused on two types of leaf traits connected to resource acquisition: morphological features relating to light-foraging surfaces and investment in tissue (specific leaf area, SLA) and physiological features relating to internal leaf chemistry as the basis for producing and utilizing photosynthate. We measured these traits on 503 leaves from 151 dominant species across 27 grasslands on four continents. We used an identical nutrient addition treatment of nitrogen (N), phosphorus (P) and potassium (K) at all sites. Sites represented a broad range of grasslands that varied widely in climatic and edaphic conditions. Results: We found evidence that non-native graminoids invest in leaves with higher nutrient concentrations than native graminoids, particularly at sites where native and non-native species both dominate. We found little evidence that native and non-native forbs differed in the measured leaf traits. These results were consistent in natural soil fertility levels and nutrient-enriched conditions, with dominant species responding similarly to nutrient addition regardless of whether they were native or non-native. Main conclusions: Our work identifies the inherent physiological trait advantages that can be used to predict non-native graminoid establishment, potentially because of higher efficiency at taking up crucial nutrients into their leaves. Most importantly, the
- Published
- 2020
3. Global trait–environment relationships of plant communities
- Author
-
Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez‐Alfaro, B., Hennekens, S.M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F., Kattge, J., Pillar, V.D., Schrodt, F., Mahecha, M.D., Peet, R.K., Sandel, B., van Bodegom, P., Altman, J., Alvarez-Dávila, E., Khan, M.A.S.A., Attorre, F., Aubin, I., Baraloto, C., Barroso, J.G., Bauters, M., Bergmeier, E., Biurrun, I., Bjorkman, A.D., Blonder, B., Čarni, A., Cayuela, L., Černý, T., Cornelissen, J.H.C., Craven, Dylan, Dainese, M., Derroire, G., De Sanctis, M., Díaz, S., Doležal, J., Farfan-Rios, W., Feldpausch, T.R., Fenton, N.J., Garnier, E., Guerin, G.R., Gutiérrez, A.G., Haider, S., Hattab, T., Henry, G., Hérault, B., Higuchi, P., Hölzel, N., Homeier, J., Jentsch, A., Jürgens, N., Kącki, Z., Karger, D.N., Kessler, M., Kleyer, M., Knollová, I., Korolyuk, A.Y., Kühn, Ingolf, Laughlin, D.C., Lens, F., Loos, J., Louault, F., Lyubenova, M.I., Malhi, Y., Marcenò, C., Mencuccini, M., Müller, J.V., Munzinger, J., Myers-Smith, I.H., Neill, D.A., Niinemets, Ü., Orwin, K.H., Ozinga, W.A., Penuelas, J., Pérez-Haase, A., Petřík, P., Phillips, O.L., Pärtel, M., Reich, P.B., Römermann, C., Rodrigues, A.V., Sabatini, F.M., Sardans, J., Schmidt, M., Seidler, G., Silva Espejo, J.E., Silveira, M., Smyth, A., Sporbert, M., Svenning, J.-C., Tang, Z., Thomas, R., Tsiripidis, I., Vassilev, K., Violle, C., Virtanen, Risto, Weiher, E., Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez‐Alfaro, B., Hennekens, S.M., Botta-Dukát, Z., Chytrý, M., Field, R., Jansen, F., Kattge, J., Pillar, V.D., Schrodt, F., Mahecha, M.D., Peet, R.K., Sandel, B., van Bodegom, P., Altman, J., Alvarez-Dávila, E., Khan, M.A.S.A., Attorre, F., Aubin, I., Baraloto, C., Barroso, J.G., Bauters, M., Bergmeier, E., Biurrun, I., Bjorkman, A.D., Blonder, B., Čarni, A., Cayuela, L., Černý, T., Cornelissen, J.H.C., Craven, Dylan, Dainese, M., Derroire, G., De Sanctis, M., Díaz, S., Doležal, J., Farfan-Rios, W., Feldpausch, T.R., Fenton, N.J., Garnier, E., Guerin, G.R., Gutiérrez, A.G., Haider, S., Hattab, T., Henry, G., Hérault, B., Higuchi, P., Hölzel, N., Homeier, J., Jentsch, A., Jürgens, N., Kącki, Z., Karger, D.N., Kessler, M., Kleyer, M., Knollová, I., Korolyuk, A.Y., Kühn, Ingolf, Laughlin, D.C., Lens, F., Loos, J., Louault, F., Lyubenova, M.I., Malhi, Y., Marcenò, C., Mencuccini, M., Müller, J.V., Munzinger, J., Myers-Smith, I.H., Neill, D.A., Niinemets, Ü., Orwin, K.H., Ozinga, W.A., Penuelas, J., Pérez-Haase, A., Petřík, P., Phillips, O.L., Pärtel, M., Reich, P.B., Römermann, C., Rodrigues, A.V., Sabatini, F.M., Sardans, J., Schmidt, M., Seidler, G., Silva Espejo, J.E., Silveira, M., Smyth, A., Sporbert, M., Svenning, J.-C., Tang, Z., Thomas, R., Tsiripidis, I., Vassilev, K., Violle, C., Virtanen, Risto, and Weiher, E.
- Abstract
Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait–environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.
- Published
- 2018
4. A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions
- Author
-
Orwin, K.H., primary, Dickie, I.A., additional, Holdaway, R., additional, and Wood, J.R., additional
- Published
- 2018
- Full Text
- View/download PDF
5. Impact of plant species evenness, dominant species identity and spatial arrangement on the structure and functioning of soil microbial communities in a model grassland
- Author
-
Massaccesi, L., Bardgett, R.D., Agnelli, A., Ostle, N., Wilby, A., Orwin, K.H., Massaccesi, L., Bardgett, R.D., Agnelli, A., Ostle, N., Wilby, A., and Orwin, K.H.
- Abstract
Plant communities, through species richness and composition, strongly influence soil microorganisms and the ecosystem processes they drive. To test the effects of other plant community attributes, such as the identity of dominant plant species, evenness, and spatial arrangement, we set up a model mesocosm experiment that manipulated these three attributes in a full factorial design, using three grassland plant species (Anthoxanthum odoratum, Plantago lanceolata, and Lotus corniculatus). The impact of the three community attributes on the soil microbial community structure and functioning was evaluated after two growing seasons by ester-linked phospholipid fatty-acids analysis, substrate-induced respiration, basal respiration, and nitrogen mineralization and nitrification rates. Our results suggested that the dominant species identity had the most prevalent influence of the three community attributes, with significant effects on most of the measured aspects of microbial biomass, composition and functioning. Evenness had no effects on microbial community structure, but independently influenced basal respiration. Its effects on nitrogen cycling depended on the identity of the dominant plant species, indicating that interactions among species and their effects on functioning can vary with their relative abundance. Systems with an aggregated spatial arrangement had a different microbial community composition and a higher microbial biomass compared to those with a random spatial arrangement, but rarely differed in their functioning. Overall, it appears that dominant species identity was the main driver of soil microorganisms and functioning in these model grassland communities, but that other plant community attributes such as evenness and spatial arrangement can also be important.
- Published
- 2015
6. Effect of soil moisture and bovine urine on microbial stress
- Author
-
Bertram, J.E., primary, Orwin, K.H., additional, Clough, T.J., additional, Condron, L.M., additional, Sherlock, R.R., additional, and O’Callaghan, M., additional
- Published
- 2012
- Full Text
- View/download PDF
7. Impact of bovine urine deposition on soil microbial activity, biomass, and community structure
- Author
-
Orwin, K.H., primary, Bertram, J.E., additional, Clough, T.J., additional, Condron, L.M., additional, Sherlock, R.R., additional, O’Callaghan, M., additional, Ray, J., additional, and Baird, D.B., additional
- Published
- 2010
- Full Text
- View/download PDF
8. Short-term consequences of spatial heterogeneity in soil nitrogen concentrations caused by urine patches of different sizes
- Author
-
Orwin, K.H., primary, Bertram, J.E., additional, Clough, T.J., additional, Condron, L.M., additional, Sherlock, R.R., additional, and O’Callaghan, M., additional
- Published
- 2009
- Full Text
- View/download PDF
9. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances
- Author
-
Orwin, K.H., primary and Wardle, D.A., additional
- Published
- 2004
- Full Text
- View/download PDF
10. Global trait–environment relationships of plant communities
- Author
-
Esteban Álvarez-Dávila, Maurizio Mencuccini, Zhiyao Tang, Norbert Jürgens, Christopher Baraloto, Robert K. Peet, Jérôme Munzinger, Josep Peñuelas, Peter M. van Bodegom, Erwin Bergmeier, Wim A. Ozinga, Isabelle Aubin, Yadvinder Malhi, Michele De Sanctis, William Farfan-Rios, Marten Winter, Benjamin Blonder, Jordi Sardans, Christian Wirth, Valério D. Pillar, Nicole J. Fenton, Ilona Knollová, Jiří Doležal, Miguel D. Mahecha, Jens Kattge, Marijn Bauters, Zoltán Botta-Dukát, Francesco Maria Sabatini, Jonathan Lenoir, Peter B. Reich, Florian Jansen, Jorcely Barroso, Frédérique Louault, Anne D. Bjorkman, Alvaro G. Gutiérrez, Michael Kleyer, Matteo Dainese, Dylan Craven, Andraž Čarni, Anita K. Smyth, Gunnar Seidler, Idoia Biurrun, Ted R. Feldpausch, Javier Silva Espejo, Helge Bruelheide, Risto Virtanen, Tarek Hattab, Franziska Schrodt, Greg R. Guerin, Sandra Díaz, Anke Jentsch, Jürgen Dengler, Borja Jiménez-Alfaro, J. Hans C. Cornelissen, Kate H. Orwin, Bruno Hérault, Tomáš Černý, Stephan M. Hennekens, Erik Welk, Frederic Lens, Mohammed Abu Sayed Arfin Khan, Jacqueline Loos, Kiril Vassilev, Milan Chytrý, Jonas V. Müller, Christine Römermann, Sylvia Haider, Géraldine Derroire, Marcos Silveira, Greg H. R. Henry, Petr Petřík, Ülo Niinemets, Zygmunt Kącki, Isla H. Myers-Smith, Michael Kessler, Dirk Nikolaus Karger, Evan Weiher, Andrey Yu. Korolyuk, Richard Field, Raquel Thomas, Eric Garnier, Luis Cayuela, Brody Sandel, Cyrille Violle, Jens-Christian Svenning, Corrado Marcenò, Aaron Pérez-Haase, Daniel C. Laughlin, Pedro Higuchi, Jürgen Homeier, Ute Jandt, Fabio Attorre, Karsten Wesche, Norbert Hölzel, Oliver L. Phillips, Ingolf Kühn, Marco Schmidt, Meelis Pärtel, David A. Neill, Maria Sporbert, Mariyana Lyubenova, Oliver Purschke, Arthur Vinicius Rodrigues, Ioannis Tsiripidis, Jan Altman, Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-Universität Halle Wittenberg (MLU), Universität Bayreuth, German Centre for Integrative Biodiversity Research (iDiv), UR Ecol & Dynam Syst Anthropises EDYSAN, UMR CNRS 7058, Université de Picardie Jules Verne (UPJV), Department of Botany and Zoology, Masaryk University, ALTERRA Wageningen, ALTERRA, Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft, Universidade Federal do Rio Grande do Norte [Natal] (UFRN), Universiteit Leiden [Leiden], Fundación Con-Vida, Ecologie des forêts de Guyane (ECOFOG), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université des Antilles et de la Guyane (UAG)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Acre (UFAC), Ecology and Evolutionary Biology [Tucson] (EEB), University of Arizona, National Institute of Biology [Ljubljana], Universidad Rey Juan Carlos [Madrid] (URJC), Vrije Universiteit Amsterdam [Amsterdam] (VU), Royal Institute of Technology (KTH), Department of Microelectronics and Information Technology, Kista Photonics Research Center (KPRC) (KTH), Royal Institute of Technology [Stockholm] (KTH ), AgroParisTech, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UM3)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Ecosystèmes et Ressources Aquatiques (UR03AGRO1), Institut National Agronomique de Tunisie, Westfälische Wilhelms-Universität Münster (WWU), Georg-August-Universität Göttingen, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Zurich, Landscape Ecology Group, University of Oldenburg, Helmholtz Zentrum für Umweltforschung (UFZ), Netherlands Centre for Biodiversity Naturalis, Institute of Ecology, Leuphana University, Unité Mixte de Recherche sur l'Ecosystème Prairial - UMR (UREP), Institut National de la Recherche Agronomique (INRA)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS), Environmental Change Institute, University of Oxford [Oxford], School of Geosciences [Edinburgh], University of Edinburgh, Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Universidad Estatal Amazonica, Estonian University of Life Sciences, University of Nijmegen, Global Ecology Unit CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona [Barcelona] (UAB), Institute of Ecology and Earth Sciences, University of Tartu, University of Tartu, Department of Forest Resources, University of Minnesota [Twin Cities], University of Minnesota System-University of Minnesota System, Universität Regensburg (REGENSBURG), Universität Regensburg, Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Dept Biol Sci, Ecoinformat & Biodivers Grp, Aarhus University [Aarhus], Aristotle University of Thessaloniki, Dept Biol, University of Oulu, University of Wisconsin-Eau Claire, Department of Botany, Senckenberg Natural History Museum, Synthesis Centre for Biodiversity Sciences, German Centre for Integrative Biodiversity Research, Universität Leipzig [Leipzig], Philips Research Europe - Hamburg, Sector Medical Imaging Systems, Philips Research, Ecologie et Dynamique des Systèmes Anthropisés - UMR CNRS 7058 (EDYSAN), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Masaryk University [Brno] (MUNI), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut de Recherche pour le Développement (IRD [France-Sud]), MARine Biodiversity Exploitation and Conservation (UMR MARBEC), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Georg-August-University [Göttingen], Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD [France-Sud]), Universitat Autònoma de Barcelona (UAB), University of Minnesota [Twin Cities] (UMN), Martin-Luther-University Halle-Wittenberg, Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Wageningen University and Research Centre [Wageningen] (WUR), Chercheur indépendant, Department of Ecological Modelling [UFZ Leipzig], Helmholtz Centre for Environmental Research (UFZ), Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Hawkesbury Institute for the Environment [Richmond] (HIE), Western Sydney University (UWS), Bruelheide H., Dengler J., Purschke O., Lenoir J., Jimenez-Alfaro B., Hennekens S.M., Botta-Dukat Z., Chytry M., Field R., Jansen F., Kattge J., Pillar V.D., Schrodt F., Mahecha M.D., Peet R.K., Sandel B., van Bodegom P., Altman J., Alvarez-Davila E., Arfin Khan M.A.S., Attorre F., Aubin I., Baraloto C., Barroso J.G., Bauters M., Bergmeier E., Biurrun I., Bjorkman A.D., Blonder B., Carni A., Cayuela L., Cerny T., Cornelissen J.H.C., Craven D., Dainese M., Derroire G., De Sanctis M., Diaz S., Dolezal J., Farfan-Rios W., Feldpausch T.R., Fenton N.J., Garnier E., Guerin G.R., Gutierrez A.G., Haider S., Hattab T., Henry G., Herault B., Higuchi P., Holzel N., Homeier J., Jentsch A., Jurgens N., Kacki Z., Karger D.N., Kessler M., Kleyer M., Knollova I., Korolyuk A.Y., Kuhn I., Laughlin D.C., Lens F., Loos J., Louault F., Lyubenova M.I., Malhi Y., Marceno C., Mencuccini M., Muller J.V., Munzinger J., Myers-Smith I.H., Neill D.A., Niinemets U., Orwin K.H., Ozinga W.A., Penuelas J., Perez-Haase A., Petrik P., Phillips O.L., Partel M., Reich P.B., Romermann C., Rodrigues A.V., Sabatini F.M., Sardans J., Schmidt M., Seidler G., Silva Espejo J.E., Silveira M., Smyth A., Sporbert M., Svenning J.-C., Tang Z., Thomas R., Tsiripidis I., Vassilev K., Violle C., Virtanen R., Weiher E., Welk E., Wesche K., Winter M., Wirth C., Jandt U., Systems Ecology, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), and Institut de Recherche pour le Développement (IRD [France-Sud])-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0106 biological sciences ,[SDV]Life Sciences [q-bio] ,Bos- en Landschapsecologie ,01 natural sciences ,Ecosystem services ,forests ,grassland ,life history traits ,plant dispersal ,plants ,Forest and Landscape Ecology ,Environmental planning ,OT PB Vredepeel ,[SDV.EE]Life Sciences [q-bio]/Ecology, environment ,diversité fonctionnelle ,Ecology ,Vegetation ,Plants ,Grassland ,économie foliaire ,Biogeography ,Community Ecology ,Ecosystems Research ,[SDE]Environmental Sciences ,Trait ,Vegetatie, Bos- en Landschapsecologie ,F40 - Écologie végétale ,F60 - Physiologie et biochimie végétale ,[SDE.MCG]Environmental Sciences/Global Changes ,education ,[SDV.BID]Life Sciences [q-bio]/Biodiversity ,Life History Trait ,Biology ,Sustainability Science ,010603 evolutionary biology ,température ,Life Science ,prédiction ,Ecosystem ,Forest ,577: Ökologie ,Vegetatie ,Ecology, Evolution, Behavior and Systematics ,climat ,Plant Dispersal ,Niche differentiation ,Plant community ,15. Life on land ,Disturbance (ecology) ,Vegetation, Forest and Landscape Ecology ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Scale (map) ,010606 plant biology & botany - Abstract
International audience; Plant functional traits directly affect ecosystem functions. At the species level, trait combinations depend on trade-offs representing different ecological strategies, but at the community level trait combinations are expected to be decoupled from these trade-offs because different strategies can facilitate co-existence within communities. A key question is to what extent community-level trait composition is globally filtered and how well it is related to global versus local environmental drivers. Here, we perform a global, plot-level analysis of trait-environment relationships, using a database with more than 1.1 million vegetation plots and 26,632 plant species with trait information. Although we found a strong filtering of 17 functional traits, similar climate and soil conditions support communities differing greatly in mean trait values. The two main community trait axes that capture half of the global trait variation (plant stature and resource acquisitiveness) reflect the trade-offs at the species level but are weakly associated with climate and soil conditions at the global scale. Similarly, within-plot trait variation does not vary systematically with macro-environment. Our results indicate that, at fine spatial grain, macro-environmental drivers are much less important for functional trait composition than has been assumed from floristic analyses restricted to co-occurrence in large grid cells. Instead, trait combinations seem to be predominantly filtered by local-scale factors such as disturbance, fine-scale soil conditions, niche partitioning and biotic interactions.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.