21 results on '"P. Delinikolas"'
Search Results
2. Advanced schemes for underdense plasma photocathode wakefield accelerators: pathways towards ultrahigh brightness electron beams.
- Author
-
Manahan, GG, Habib, AF, Scherkl, P, Ullmann, D, Beaton, A, Sutherland, A, Kirwan, G, Delinikolas, P, Heinemann, T, Altuijri, R, Knetsch, A, Karger, O, Cook, NM, Bruhwiler, DL, Sheng, Z-M, Rosenzweig, JB, and Hidding, B
- Subjects
Nuclear and Plasma Physics ,Physical Sciences ,plasma wakefield acceleration ,underdense plasma photocathode ,simultaneous spatial and temporal focusing ,energy spread compensation ,General Science & Technology - Abstract
The 'Trojan Horse' underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
- Published
- 2019
3. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams.
- Author
-
Manahan, GG, Habib, AF, Scherkl, P, Delinikolas, P, Beaton, A, Knetsch, A, Karger, O, Wittig, G, Heinemann, T, Sheng, ZM, Cary, JR, Bruhwiler, DL, Rosenzweig, JB, and Hidding, B
- Abstract
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread-an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.
- Published
- 2017
4. Laser-plasma-based Space Radiation Reproduction in the Laboratory.
- Author
-
Hidding, B, Karger, O, Königstein, T, Pretzler, G, Manahan, GG, McKenna, P, Gray, R, Wilson, R, Wiggins, SM, Welsh, GH, Beaton, A, Delinikolas, P, Jaroszynski, DA, Rosenzweig, JB, Karmakar, A, Ferlet-Cavrois, V, Costantino, A, Muschitiello, M, and Daly, E
- Subjects
Biochemistry and Cell Biology ,Other Physical Sciences - Abstract
Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.
- Published
- 2017
5. EuPRAXIA Conceptual Design Report
- Author
-
Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Bründermann, E., Büscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chancé, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D’Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitégi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrøm, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouillé, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Müller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valléau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Published
- 2020
- Full Text
- View/download PDF
6. Erratum to: EuPRAXIA Conceptual Design Report: Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
- Author
-
Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Bründermann, E., Büscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chancé, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D’Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitégi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrøm, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouillé, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Müller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valléau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Published
- 2020
- Full Text
- View/download PDF
7. EuPRAXIA conceptual design report
- Author
-
Ke Wang, A. Y. Molodozhentsev, L. Boulton, Barbara Marchetti, Maria Weikum, Giuseppe Dattoli, Ulrich Schramm, P. Delinikolas, Victor Malka, T. L. Audet, Anna Giribono, Cristina Vaccarezza, Erik Bründermann, Marco Bellaveglia, Fernando Brandi, Vladimir Shpakov, F. Massimo, Dimitris N. Papadopoulos, D. Ullmann, Manuel Kirchen, Christophe Simon-Boisson, Axel Bernhard, Luca Piersanti, Marco Galimberti, Masaki Kando, Federico Nguyen, Suming Weng, Dario Giove, Thomas M. Spinka, Barbara Patrizi, A. Ghigo, R. Pattathil, M. A. Pocsai, Arie Irman, A. Chancé, Y. Zhao, Hao Zhang, Zulfikar Najmudin, Vladimir Litvinenko, Fabrice Marteau, G. Kirwan, U. Rotundo, Florian Grüner, L. O. Silva, F. Falcoz, Joana Luis Martins, D. Alesini, D. Khikhlukha, Francesco Iungo, Z. Mazzotta, Angelo Biagioni, A. F. Habib, Wim Leemans, S. Jaster-Merz, Alessandro Vannozzi, Leonida A. Gizzi, Fabien Briquez, S. Bartocci, Petra Koester, Tamina Akhter, Phu Anh Phi Nghiem, G. C. Bussolino, Jorge Vieira, Adolfo Esposito, D. Di Giovenale, Jens Osterhoff, Sergio Cantarella, Kristjan Poder, Bernhard Holzer, Nicolas Delerue, Brigitte Cros, Fabio Villa, Igor Andriyash, Alessandro Stecchi, Paul Crump, Sally Wiggins, Constantin Haefner, A. Del Dotto, Oscar Jakobsson, Alessandro Gallo, Emily Sistrunk, G. Di Pirro, Olena Kononenko, Yang Li, P. Campana, A. Martinez de la Ossa, Anke-Susanne Müller, Christoph Lechner, Brendan A. Reagan, Stuart Mangles, Andrew Sutherland, D. Kocon, E. N. Svystun, Simon M. Hooker, Ruggero Ricci, Javier Resta-López, C. D. Murphy, R. Walczak, Dino A. Jaroszynski, M. Yabashi, Chan Joshi, P. Santangelo, Maria Pia Anania, Konstantin Kruchinin, C. Simon, M. Hübner, C. A. Lindstrøm, Markus Büscher, Ulrich Dorda, J. Wolfenden, Alvin C. Erlandson, G. Korn, Sergey Mironov, Alessandro Rossi, Carl Schroeder, Zheng-Ming Sheng, Olle Lundh, T. Silva, Lucas Schaper, A. Ferran Pousa, M. Del Franco, Audrey Beluze, M. H. Bussmann, Alberto Marocchino, Gilles Maynard, Min Chen, Andrea Mostacci, Alexander Knetsch, Renato Fedele, M. Rossetti Conti, Amin Ghaith, G. Costa, R. Brinkmann, Gaetano Fiore, Claes-Göran Wahlström, J. Fils, Luca Serafini, Fabrizio Bisesto, J. Cowley, X. Li, Andreas Lehrach, Augusto Marcelli, Vittoria Petrillo, M. Ibison, Antonio Falone, A. Beck, Bruno Buonomo, D. Oumbarek Espinos, Daria Pugacheva, Stefan Karsch, A. Beaton, A. Nutter, Carsten Welsch, F. Mathieu, Christophe Szwaj, R. Fiorito, Paul Scherkl, C. Le Blanc, Arie Zigler, J. Scifo, Malte C. Kaluza, Craig W. Siders, Angelo Stella, Mathieu Valléau, Ujjwal Sinha, M. J. V. Streeter, A. Welsch, Efim A. Khazanov, Eléonore Roussel, Gianluca Sarri, Lucia Sabbatini, Silvia Morante, T. Heinemann, A. Aschikhin, G. Di Raddo, L. Pribyl, S. Romeo, Alberto Bacci, N. E. Andreev, Matteo Vannini, A. Bonatto, Francesco Filippi, Klaus Ertel, Riccardo Pompili, Ricardo Fonseca, Olivier Marcouillé, E. Di Pasquale, Jason Cole, M. Artioli, R. D'Arcy, Giovanni Franzini, Marco Diomede, Andreas Maier, I. Kostyukov, A. Specka, Serge Bielawski, Wei Lu, F. Cioeta, A. Mosnier, Grace Manahan, S. Vescovi, Alessandro Cianchi, P. Niknejadi, Francesco Stellato, Luigi Pellegrino, Oliver Karger, A. Helm, Bernhard Hidding, Paolo Tomassini, J. A. Clarke, A. Petralia, Davide Terzani, Enrica Chiadroni, Ralph Assmann, Alexandra Alexandrova, Paul Mason, R. Rossmanith, Jun Zhu, Thomas C. Galvin, R. Torres, Agustin Lifschitz, M. E. Couprie, Massimo Ferrario, F. Brottier, S. De Nicola, Kevin Cassou, Tomonao Hosokai, Andy J. Bayramian, J. L. Paillard, Gabriele Tauscher, P. A. Walker, Geetanjali Sharma, P. Lee, Guido Toci, Farzad Jafarinia, Simona Incremona, Imre Ferenc Barna, Charles Kitegi, D. R. Symes, M. Croia, Vladyslav Libov, J. M. Dias, Guoxing Xia, L. Labate, Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Brundermann, E., Buscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chance, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D'Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Gruner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hubner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitegi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrom, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouille, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Muller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valleau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlstrom, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., Zigler, A., Deutsches Elektronen-Synchrotron [Hamburg] (DESY), Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (INFN, Sezione di Napoli), Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati (LNF), Laboratoire d'optique appliquée (LOA), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Engineering & Physical Science Research Council (EPSRC), Science and Technology Facilities Council (STFC), and EuPRAXIA
- Subjects
Technology ,electron: energy ,AMPLIFIED SPONTANEOUS-EMISSION ,wake field [plasma] ,General Physics and Astronomy ,costs ,plasma: wake field ,free electron laser ,GeV ,01 natural sciences ,7. Clean energy ,wake field [acceleration] ,010305 fluids & plasmas ,law.invention ,Laser technology ,acceleration: wake field ,Conceptual design ,FREE-ELECTRON LASER ,AT-SPARC-LAB ,law ,IN-CELL CODE ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,PLASMA-WAKEFIELD ACCELERATION ,General Materials Science ,LATERAL SHEARING INTERFEROMETRY ,media_common ,Applied Physics ,Settore FIS/01 ,02 Physical Sciences ,T1 ,light source ,Physics ,Settore FIS/07 ,accelerator: plasma ,Schedule (project management) ,Physical Sciences ,Systems engineering ,positron ,Plasma acceleration ,X rays ,compact accelerators ,performance ,WAKE-FIELD ACCELERATION ,X-RAY SOURCE ,Project implementation ,Fluids & Plasmas ,Physics, Multidisciplinary ,accelerator [electron] ,Physics and Astronomy(all) ,HIGH PEAK POWER ,electron: accelerator ,horizon ,medicine: imaging ,X-ray ,accelerators ,Materials Science(all) ,0103 physical sciences ,media_common.cataloged_instance ,ddc:530 ,European union ,Physical and Theoretical Chemistry ,010306 general physics ,energy [electron] ,01 Mathematical Sciences ,plasma: acceleration ,acceleration [plasma] ,Electron energy ,Science & Technology ,imaging [medicine] ,plasma [accelerator] ,Particle accelerator ,plasmas ,Accelerators and Storage Rings ,laser ,Automatic Keywords ,gamma ray ,linear collider ,ddc:600 ,CHIRPED-PULSE AMPLIFICATION - Abstract
European physical journal special topics 229(24), 3675 - 4284 (2020). doi:10.1140/epjst/e2020-000127-8, This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8—10 years., Published by Springer, Heidelberg
- Published
- 2020
- Full Text
- View/download PDF
8. Erratum to: EuPRAXIA Conceptual Design Report – Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
- Author
-
Arie Zigler, Manuel Kirchen, Ruggero Ricci, Javier Resta-López, Eléonore Roussel, Dario Giove, A. Ghaith, Arie Irman, Vladyslav Libov, J. M. Dias, Fabio Villa, Fabrizio Bisesto, Augusto Marcelli, Bruno Buonomo, Matteo Vannini, R. Pattathil, Wim Leemans, S. Jaster-Merz, Audrey Beluze, G. C. Bussolino, Anna Giribono, Riccardo Pompili, P. Lee, Farzad Jafarinia, A. Del Dotto, Alberto Marocchino, Oscar Jakobsson, J. Scifo, R. Fiorito, Mathieu Valléau, Constantin Haefner, T. L. Audet, T. Spinka, Ujjwal Sinha, P. Santangelo, Carsten Welsch, F. Mathieu, Z. Mazzotta, Barbara Marchetti, M. A. Pocsai, Lucia Sabbatini, L. Labate, Silvia Morante, S. Romeo, Alberto Bacci, T. Heinemann, Francesco Filippi, Angelo Biagioni, A. F. Habib, D. Ullmann, Axel Bernhard, M. Artioli, Craig W. Siders, Sergio Cantarella, Alessandro Gallo, D. Kocon, C. A. Lindstrøm, Ulrich Dorda, M. Croia, Sally Wiggins, E. N. Svystun, Gabriele Tauscher, Suming Weng, Francesco Iungo, F. Massimo, Malte C. Kaluza, A. Ghigo, P. A. Walker, Fernando Brandi, Vladimir Shpakov, Anke-Susanne Müller, Ricardo Fonseca, Marie-Emmanuelle Couprie, Luca Piersanti, D. Khikhlukha, Guoxing Xia, Olle Lundh, Brendan A. Reagan, Stuart Mangles, Y. Zhao, S. Vescovi, D. Alesini, Brigitte Cros, Sergey Mironov, Andreas Lehrach, Zulfikar Najmudin, Fabrice Marteau, Oliver Karger, Kevin Cassou, Tomonao Hosokai, Markus Büscher, Vittoria Petrillo, Thomas C. Galvin, Geetanjali Sharma, C. D. Murphy, R. Walczak, Paul Crump, G. Di Pirro, Min Chen, R. Torres, A. Aschikhin, Emily Sistrunk, G. Di Raddo, Lucas Schaper, L. O. Silva, Zheng-Ming Sheng, M. Del Franco, Guido Toci, G. Kirwan, Alessandro Cianchi, Florian Grüner, M. Yabashi, Chan Joshi, Andy J. Bayramian, Marco Diomede, J. L. Paillard, Simona Incremona, Giovanni Franzini, Adolfo Esposito, D. Di Giovenale, Agustin Lifschitz, F. Falcoz, Alessandro Vannozzi, Kristjan Poder, Bernhard Holzer, Nicolas Delerue, Serge Bielawski, Olena Kononenko, Alvin C. Erlandson, G. Korn, J. Cowley, R. Brinkmann, Imre Ferenc Barna, Gaetano Fiore, Luca Serafini, Dino A. Jaroszynski, C. Simon, Enrica Chiadroni, M. Rossetti Conti, Francesco Stellato, D. Pugacheva, M. Ibison, R. Rossmanith, A. Beck, Alexandra Alexandrova, Paul Mason, Jun Zhu, Andrew Sutherland, Gianluca Sarri, Yang Li, Fabien Briquez, R. D'Arcy, Charles Kitegi, Klaus Ertel, Claes-Göran Wahlström, M. Hübner, Leonida A. Gizzi, Tamina Akhter, D. R. Symes, Stefan Karsch, A. Nutter, P. Delinikolas, J. A. Clarke, Paul Scherkl, Antonio Falone, C. Le Blanc, P. Campana, A. Martinez de la Ossa, Jason Cole, Marco Bellaveglia, G. Costa, Maria Pia Anania, Massimo Ferrario, M. J. V. Streeter, Nikolay Andreev, Konstantin Kruchinin, Ke Wang, M. H. Bussmann, Grace Manahan, Gilles Maynard, Igor Andriyash, I. Kostyukov, Dimitris N. Papadopoulos, Wei Lu, Christophe Simon-Boisson, A. Mosnier, F. Brottier, Barbara Patrizi, Alessandro Stecchi, A. Ferran Pousa, Bernhard Hidding, S. De Nicola, J. Wolfenden, Federico Nguyen, A. Y. Molodozhentsev, D. Oumbarek Espinos, Simon M. Hooker, A. Helm, Paolo Tomassini, A. Chancé, Hao Zhang, Phu Anh Phi Nghiem, A. Welsch, L. Pribyl, Christophe Szwaj, Joana Luis Martins, Maria Weikum, Efim A. Khazanov, Giuseppe Dattoli, Jens Osterhoff, A. Bonatto, S. Bartocci, Petra Koester, L. Boulton, Carl Schroeder, Angelo Stella, E. Di Pasquale, Cristina Vaccarezza, Davide Terzani, Victor Malka, P. Niknejadi, Andrea Mostacci, A. Petralia, Ralph Assmann, Christoph Lechner, U. Rotundo, Olivier Marcouillé, F. Cioeta, T. Silva, Luigi Pellegrino, J. Fils, X. Li, Jorge Vieira, Andreas Maier, A. Specka, Alessandro Rossi, Alexander Knetsch, Renato Fedele, Ulrich Schramm, Erik Bründermann, Vladimir Litvinenko, Marco Galimberti, Masaki Kando, and A. Beaton
- Subjects
Technology ,Applied physics ,Conceptual design ,Calculus ,General Physics and Astronomy ,General Materials Science ,Physical and Theoretical Chemistry ,ddc:600 ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,GeneralLiterature_MISCELLANEOUS - Abstract
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
- Published
- 2020
- Full Text
- View/download PDF
9. A novel Hemi-Body Irradiation technique using electron beams (HBIe−)
- Author
-
Vassilios Kouloulias, Agapi Plousi, Kalliopi Platoni, Efstathios P. Efstathopoulos, Maria Dilvoi, Georgios Patatoukas, and P. Delinikolas
- Subjects
Materials science ,Biophysics ,General Physics and Astronomy ,Electrons ,Radiotherapy Dosage ,General Medicine ,Radiation ,Skin Diseases ,Linear particle accelerator ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,030220 oncology & carcinogenesis ,Electromagnetic shielding ,Homogeneity (physics) ,Perpendicular ,Electron beam processing ,Humans ,Radiology, Nuclear Medicine and imaging ,Irradiation ,Hemibody Irradiation ,QC ,Beam (structure) ,Biomedical engineering - Abstract
Purpose Certain radiation responsive skin diseases may develop symptoms on the upper or the lower half of the body. The concept of a novel Hemi-Body Electron Irradiation (HBIe−) technique, described in this work, provides a low cost, LINAC based, intermediate treatment option in between extremely localized and Total Skin irradiation techniques. Materials and methods The HBIe− technique, developed in our department, incorporates a custom crafted treatment chamber equipped with adjustable Pb shielding and a single electron beam in extended Source-Skin Distance (SSD) setup. The patient is positioned in ‘Stanford’ technique positions. The geometrical setup provides both optimal dose homogeneity and dose deposition up to a depth of 2 cm. To confirm this, the following characteristics were measured and evaluated: a) percentage depth dose (PDD) on the treatment plane produced by a single electron beam at perpendicular incidence for six fields at ‘Stanford’ angles, b) 2D profile of the entrance dose on the treatment plane produced by a single field and c) the total surface dose on an anthropomorphic phantom delivered by all 6 fields. Results The resulting homogeneity of the surface dose in the treatment plane for an average patient was 5–6%, while surface dose homogeneity on the anthropomorphic phantom was 7% for both the upper and the lower HBIe− variants. The total PDD exhibits an almost linear decrease to a practical range of 2 g/cm2. Conclusion In conclusion, HBIe− was proven effective in delivering the prescribed dose to the target area, while protecting the healthy skin.
- Published
- 2018
- Full Text
- View/download PDF
10. Prospective randomized comparison of laparoscopic ultrasonography using a flexible-tip ultrasound probe and intraoperative dynamic cholangiography during laparoscopic cholecystectomy
- Author
-
Birth, M., Ehlers, K. U., Delinikolas, K., and Weiser, H.-F.
- Published
- 1998
- Full Text
- View/download PDF
11. EuPRAXIA - A Compact, Cost-Efficient Particle and Radiation Source
- Author
-
C. D. Murphy, Markus Büscher, Gabriele Tauscher, Malte C. Kaluza, Dino A. Jaroszynski, O. Delferrière, P. A. Walker, C. Simon, M. Hübner, Petra Koester, Bernhard Hidding, Paolo Tomassini, Arnaud Beck, F. Filippi, J. A. Clarke, Arie Irman, Daria Pugacheva, Alessandro Cianchi, Marco Galimberti, P. Gastinel, S. De Nicola, G. C. Bussolino, Paul Scherkl, M. J. V. Streeter, Enrica Chiadroni, Feiyu Li, Joana Luis Martins, Efim A. Khazanov, Masaki Kando, Barbara Marchetti, S. Romeo, Alberto Bacci, R. Rossmanith, Jason Cole, O. Kononenko, J. Scifo, Grace Manahan, P. D. Alesini, Maria Weikum, A. Ferran Pousa, Tomonao Hosokai, Gilles Maynard, A. F. Habib, J. C. Chanteloup, Jorge Vieira, Stuart Mangles, Cristina Vaccarezza, Alexandra Alexandrova, Anna Giribono, Paul Mason, Jun Zhu, N.R. Thompson, A. Lifschitz, Ujjwal Sinha, Lucas Schaper, La Gizzi, Stefan Karsch, Axel Bernhard, L. Pribyl, Ulrich Schramm, Florian Grüner, Christoph Lechner, Federico Nguyen, Andreas Maier, Timon Mehrling, F. Massimo, A. Beluze, Andreas Lehrach, A. Aschikhin, M. Yabashi, David Garzella, Erik Bründermann, T. Silva, Simon M. Hooker, Brigitte Cros, A. Chancé, Vittoria Petrillo, Aakash A. Sahai, Gaetano Fiore, Fabrizio Bisesto, Alexander Knetsch, Renato Fedele, X. Li, A. Martinez de la Ossa, Maria Pia Anania, Konstantin Kruchinin, Kristjan Poder, I. Kostyukov, Wei Lu, G. Korn, Vladimir Litvinenko, Phu Anh Phi Nghiem, Bernhard Holzer, P. Niknejadi, Nicolas Delerue, Massimo Ferrario, Gianluca Sarri, Igor Andriyash, A. Marocchino, Z. Mazzotta, N. E. Andreev, Wim Leemans, S. Jaster-Merz, Carl Schroeder, Andrea Mostacci, C. Joshi, Fabio Villa, Ralph Assmann, R. Torres, Serge Bielawski, P. P. Rajeev, Farzad Jafarinia, Dario Giove, Michael Bussmann, J. Fils, Ulrich Dorda, M. Croia, J. Schwindling, O. Bringer, Guoxing Xia, T. Akhter, D. Terzani, J. Wolfenden, D. Kocon, Carsten Welsch, M. E. Couprie, F. Mathieu, E. N. Svystun, R. Brinkmann, Claes-Göran Wahlström, Ricardo Fonseca, Oliver Karger, C. Szwaj, T. L. Audet, D. Ullmann, Anke-Susanne Müller, Min Chen, A. Gallo, A. Specka, Barbara Patrizi, Jens Osterhoff, P. Delinikolas, Luca Serafini, T. Heinemann, A. Beaton, Arie Zigler, A. Y. Molodozhentsev, Eléonore Roussel, Matteo Vannini, Riccardo Pompili, Giuseppe Dattoli, Victor Malka, M. A. Pocsai, M. Rossetti Conti, D. Khikhlukha, Fernando Brandi, Lujie Yu, Zulfikar Najmudin, Luis O. Silva, Paul Crump, Zheng-Ming Sheng, Guido Toci, Imre Ferenc Barna, D. R. Symes, Vladyslav Libov, L. Labate, Roman Walczak, Andrea Rossi, D. Papadopoulos, João Dias, K. Wang, Olle Lundh, Floyd McDaniel, Gary Glass, Barney Doyle, Arlyn Antolak and Yongqiang Wang, Weikum, M. K., Akhter, T., Alesini, P. D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Aschikhin, A., Assmann, R. W., Audet, T., Bacci, A., Barna, I. F., Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F. G., Brandi, F., Bringer, O., Brinkmann, R., Bründermann, E., Büscher, M., Bussmann, M., Bussolino, G. C., Chance, A., Chanteloup, J. C., Chen, M., Chiadroni, E., Cianchi, A., Clarke, J., Cole, J., Couprie, M. E., Croia, M., Cros, B., Crump, P., Dattoli, G., Delerue, N., Delferriere, O., Delinikolas, P., De Nicola, S., Dias, J., Dorda, U., Fedele, R., Pousa, A. Ferran, Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fonseca, R. A., Galimberti, M., Gallo, A., Garzella, D., Gastinel, P., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Heinemann, T., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Irman, A., Jafarinia, F., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M. C., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O., Korn, G., Kostyukov, I., Kruchinin, K., Labate, L., Lechner, C., Leemans, W. P., Lehrach, A., Li, F. Y., Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marchetti, B., Marocchino, A., de la Ossa, A. Martinez, Martins, J. L., Mason, P., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mehrling, T. J., Molodozhentsev, A. Y., Mostacci, A., Müller, A. S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Osterhoff, J., Papadopoulos, D., Patrizi, B., Petrillo, V., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Romeo, S., Rajeev, P. P., Conti, M. Rossetti, Rossi, A. R., Rossmanith, R., Roussel, E., Sahai, A. A., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Schwindling, J., Scifo, J., Serafini, L., Sheng, Z. M., Silva, L. O., Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M. J. V., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G., Terzani, D., Thompson, N., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Vannini, M., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, C. P., Wolfenden, J., Xia, G., Yabashi, M., Yu, L., Zhu, J., Zigler, A., Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique des gaz et des plasmas (LPGP), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Département des Accélérateurs, de Cryogénie et de Magnétisme (ex SACM) (DACM), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Brundermann, E., Buscher, M., Pousa, A. F., Gruner, F. J., Hubner, M., De La Ossa, A. M., Muller, A. S., Conti, M. R., and Wahlstrom, C. -G.
- Subjects
Cost efficiency ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Radiation ,Plasma acceleration ,7. Clean energy ,01 natural sciences ,Plasmas, accelerators ,010305 fluids & plasmas ,Particle acceleration ,Conceptual design ,13. Climate action ,0103 physical sciences ,Systems engineering ,Particle ,ddc:530 ,Laser beam quality ,010306 general physics ,Plasmas (physics) | Lasers | Laser wakefield ,Electrical efficiency ,QC - Abstract
25th International Conference on the Application of Accelerators in Research and Industry, CAARI 2018, Texas, USA, 12 Aug 2018 - 17 Aug 2018; AIP conference proceedings 2160(1), 040012-1 - 040012-9 (2019). doi:https://doi.org/10.1063/1.5127692, Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA (“European Plasma Research Accelerator with eXcellence In Applications”) aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure., Published by AIP Publishing, Melville, NY
- Published
- 2019
- Full Text
- View/download PDF
12. Recognition of laparoscopic bile duct injuries by intraoperative ultrasonography
- Author
-
Birth, M., Carroll, B. J., Delinikolas, K., Eichler, M., and Weiser, H. F.
- Published
- 1996
- Full Text
- View/download PDF
13. Preliminary diagnostic reference levels for endoscopic retrograde cholangio-pancreatography in Greece
- Author
-
Konstantina D. Paraskeva, I.A.G. Paspatis, N. Athanasopoulos, J.A. Karagiannis, P. Delinikolas, Virginia Tsapaki, I. Lydakis, N. Angelogiannakopoulou, Evangelos Voudoukis, N. Mathou, P. Georgopoulos, P. Finou, H. Scotiniotis, A. Giannakopoulos, and Chariklia Triantopoulou
- Subjects
Cholangiopancreatography, Endoscopic Retrograde ,Greece ,business.industry ,Statistical relation ,Statistical index ,Biophysics ,General Physics and Astronomy ,General Medicine ,Reference Standards ,030218 nuclear medicine & medical imaging ,QC350 ,03 medical and health sciences ,0302 clinical medicine ,Quartile ,Fluoroscopy ,030220 oncology & carcinogenesis ,Humans ,Medicine ,Radiology, Nuclear Medicine and imaging ,Patient dose ,Nuclear medicine ,business ,Reference standards ,RC ,Endoscopic retrograde cholangio-pancreatography - Abstract
The main objective of this study was to determine the preliminary Diagnostic Reference Levels (DRLs) in terms of Kerma Area Product (KAP) and fluoroscopy time (Tf) during Endoscopic Retrograde Cholangio-Pancreatography (ERCP) procedures. Additionally, an investigation was conducted to explore the statistical relation between KAP and Tf. Data from a set of 200 randomly selected patients treated in 4 large hospitals in Greece (50 patients per hospital) were analyzed in order to obtain preliminary DRLs for KAP and Tf during therapeutic ERCP procedures. Non-parametric statistic tests were performed in order to determine a statistically significant relation between KAP and Tf. The resulting third quartiles for KAP and Tf for hospitals (A, B, C and D) were found as followed: KAPA = 10.7 Gy cm^2, TfA = 4.9 min; KAPB = 7.5 Gy cm^2, TfB = 5.0 min; KAPC = 19.0 Gy cm^2, TfC = 7.3 min; KAPD = 52.4 Gy cm^2, TfD = 15.8 min. The third quartiles, calculated for the total 200 cases sample, are: KAP = 18.8 Gy cm^2 and Tf = 8.2 min. For 3 out of 4 hospitals and for the total sample, p-values of statistical indices (correlation of KAP and Tf) are less than 0.001, while for the Hospital A p-values are ranging from 0.07 to 0.08. Using curve fitting, we finally determine that the relation of Tf and KAP is deriving from a power equation (KAP = Tf^1.282) with R^2 = 0.85. The suggested Preliminary DRLs (deriving from the third quartiles of the total sample) for Greece are: KAP = 19 Gy cm^2 and Tf = 8 min, while the relation between KAP and Tf is efficiently described by a power equation
- Published
- 2016
- Full Text
- View/download PDF
14. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams
- Author
-
Paul Scherkl, Bernhard Hidding, Grace Manahan, Zheng-Ming Sheng, A. Beaton, A. F. Habib, Alexander Knetsch, David L. Bruhwiler, James Rosenzweig, Oliver Karger, G. Wittig, John R. Cary, T. Heinemann, and P. Delinikolas
- Subjects
Brightness ,Science ,General Physics and Astronomy ,Electron ,7. Clean energy ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,Photocathode ,010305 fluids & plasmas ,Acceleration ,Optics ,Affordable and Clean Energy ,0103 physical sciences ,Thermal emittance ,010306 general physics ,QC ,Physics ,Multidisciplinary ,Waves in plasmas ,business.industry ,General Chemistry ,Plasma ,Orders of magnitude (time) ,Physics::Accelerator Physics ,ddc:500 ,business - Abstract
Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams., Controlling and improving electron beam parameters are crucial for their application in free electron laser and X-ray sources. Here the authors generate quality electron beams with reduced energy spread from plasma accelerators by using a tailored escort electron bunch with the main accelerating bunch.
- Published
- 2017
- Full Text
- View/download PDF
15. Laser-plasma-based Space Radiation Reproduction in the Laboratory
- Author
-
Michele Muschitiello, Gregor H. Welsh, Paul McKenna, A. Costantino, Oliver Karger, A. Beaton, Ross Gray, Robbie Wilson, James Rosenzweig, A. Karmakar, T. Königstein, Sally Wiggins, G. Pretzler, Dino A. Jaroszynski, E. Daly, Grace Manahan, Bernhard Hidding, Veronique Ferlet-Cavrois, and P. Delinikolas
- Subjects
space radiation ,Radiation ,Space (mathematics) ,01 natural sciences ,7. Clean energy ,Space exploration ,Article ,symbols.namesake ,0103 physical sciences ,Broadband ,Electronics ,Aerospace engineering ,010306 general physics ,Radiation hardening ,QC ,magnetospheric physics ,Physics ,plasma based accelerators ,Multidisciplinary ,010308 nuclear & particles physics ,business.industry ,Plasma ,Other Physical Sciences ,Van Allen radiation belt ,Physics::Space Physics ,symbols ,Biochemistry and Cell Biology ,business - Abstract
Space radiation is a great danger to electronics and astronauts onboard space vessels. The spectral flux of space electrons, protons and ions for example in the radiation belts is inherently broadband, but this is a feature hard to mimic with conventional radiation sources. Using laser-plasma-accelerators, we reproduced relativistic, broadband radiation belt flux in the laboratory, and used this man-made space radiation to test the radiation hardness of space electronics. Such close mimicking of space radiation in the lab builds on the inherent ability of laser-plasma-accelerators to directly produce broadband Maxwellian-type particle flux, akin to conditions in space. In combination with the established sources, utilisation of the growing number of ever more potent laser-plasma-accelerator facilities worldwide as complementary space radiation sources can help alleviate the shortage of available beamtime and may allow for development of advanced test procedures, paving the way towards higher reliability of space missions.
- Published
- 2017
- Full Text
- View/download PDF
16. Advanced schemes for underdense plasma photocathode wakefield accelerators: pathways towards ultrahigh brightness electron beams
- Author
-
A. Beaton, Alexander Knetsch, Bernhard Hidding, N. M. Cook, Paul Scherkl, D. Ullmann, J. B. Rosenzweig, R. Altuijri, G. Kirwan, Andrew Sutherland, Oliver Karger, Grace Manahan, Zheng-Ming Sheng, A. F. Habib, David L. Bruhwiler, T. Heinemann, and P. Delinikolas
- Subjects
Physics ,Brightness ,General Science & Technology ,business.industry ,General Mathematics ,simultaneous spatial and temporal focusing ,General Engineering ,General Physics and Astronomy ,Articles ,Electron ,Plasma ,plasma wakefield acceleration ,Plasma acceleration ,Photocathode ,Controllability ,Optics ,underdense plasma photocathode ,energy spread compensation ,Physics::Accelerator Physics ,business ,QC - Abstract
The ‘Trojan Horse’ underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.
- Published
- 2019
- Full Text
- View/download PDF
17. A novel Hemi-Body Irradiation technique using electron beams (HBIe−).
- Author
-
Delinikolas, Panagiotis, Patatoukas, Georgios, Kouloulias, Vasilios, Dilvoi, Maria, Plousi, Agapi, Efstathopoulos, Efstathios, and Platoni, Kalliopi
- Abstract
Purpose Certain radiation responsive skin diseases may develop symptoms on the upper or the lower half of the body. The concept of a novel Hemi-Body Electron Irradiation (HBIe − ) technique, described in this work, provides a low cost, LINAC based, intermediate treatment option in between extremely localized and Total Skin irradiation techniques. Materials and methods The HBIe − technique, developed in our department, incorporates a custom crafted treatment chamber equipped with adjustable Pb shielding and a single electron beam in extended Source-Skin Distance (SSD) setup. The patient is positioned in ‘Stanford’ technique positions. The geometrical setup provides both optimal dose homogeneity and dose deposition up to a depth of 2 cm. To confirm this, the following characteristics were measured and evaluated: a) percentage depth dose (PDD) on the treatment plane produced by a single electron beam at perpendicular incidence for six fields at ‘Stanford’ angles, b) 2D profile of the entrance dose on the treatment plane produced by a single field and c) the total surface dose on an anthropomorphic phantom delivered by all 6 fields. Results The resulting homogeneity of the surface dose in the treatment plane for an average patient was 5–6%, while surface dose homogeneity on the anthropomorphic phantom was 7% for both the upper and the lower HBIe − variants. The total PDD exhibits an almost linear decrease to a practical range of 2 g/cm 2 . Conclusion In conclusion, HBIe − was proven effective in delivering the prescribed dose to the target area, while protecting the healthy skin. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
18. Preliminary diagnostic reference levels for endoscopic retrograde cholangio-pancreatography in Greece.
- Author
-
Tsapaki, V., Delinikolas, P., Paraskeva, K.D., Paspatis, I.A.G., Scotiniotis, H., Georgopoulos, P., Voudoukis, E., Finou, P., Athanasopoulos, N., Lydakis, I., Giannakopoulos, A., Mathou, N., Angelogiannakopoulou, N., Triantopoulou, C., and Karagiannis, J.A.
- Abstract
The main objective of this study was to determine the preliminary Diagnostic Reference Levels (DRLs) in terms of Kerma Area Product (KAP) and fluoroscopy time (Tf) during Endoscopic Retrograde Cholangio-Pancreatography (ERCP) procedures. Additionally, an investigation was conducted to explore the statistical relation between KAP and Tf. Data from a set of 200 randomly selected patients treated in 4 large hospitals in Greece (50 patients per hospital) were analyzed in order to obtain preliminary DRLs for KAP and Tf during therapeutic ERCP procedures. Non-parametric statistic tests were performed in order to determine a statistically significant relation between KAP and Tf. The resulting third quartiles for KAP and Tf for hospitals (A, B, C and D) were found as followed: KAP A = 10.7 Gy cm 2 , Tf A = 4.9 min; KAP B = 7.5 Gy cm 2 , Tf B = 5.0 min; KAP C = 19.0 Gy cm 2 , Tf C = 7.3 min; KAP D = 52.4 Gy cm 2 , Tf D = 15.8 min. The third quartiles, calculated for the total 200 cases sample, are: KAP = 18.8 Gy cm 2 and Tf = 8.2 min. For 3 out of 4 hospitals and for the total sample, p -values of statistical indices (correlation of KAP and Tf) are less than 0.001, while for the Hospital A p -values are ranging from 0.07 to 0.08. Using curve fitting, we finally determine that the relation of Tf and KAP is deriving from a power equation (KAP = Tf 1.282 ) with R 2 = 0.85. The suggested Preliminary DRLs (deriving from the third quartiles of the total sample) for Greece are: KAP = 19 Gy cm 2 and Tf = 8 min, while the relation between KAP and Tf is efficiently described by a power equation. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
19. Pathology of the Katholikon of Hosios Loukas Monastery and Preliminary Structural Analysis
- Author
-
Miltiadou-Fezans, A., Vintzileou, E., and Delinikolas, N.
- Abstract
This paper summarizes the work carried out in the Katholikon of Hosios Loukas Monastery with the aim to study the pathology of the monument. The load bearing structure of the church is briefly presented along with its historical pathology and damages observed after the 1981 earthquake of Boeotia and slightly deteriorated since then. Finally, the results of a preliminary analytical study performed with the purpose to interpret the observed pathology are also presented.
- Published
- 2010
- Full Text
- View/download PDF
20. Advanced schemes for underdense plasma photocathode wakefield accelerators: pathways towards ultrahigh brightness electron beams.
- Author
-
Manahan GG, Habib AF, Scherkl P, Ullmann D, Beaton A, Sutherland A, Kirwan G, Delinikolas P, Heinemann T, Altuijri R, Knetsch A, Karger O, Cook NM, Bruhwiler DL, Sheng ZM, Rosenzweig JB, and Hidding B
- Abstract
The 'Trojan Horse' underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
- Published
- 2019
- Full Text
- View/download PDF
21. First application of hemi-body electron beam irradiation for Kaposi sarcoma at the lower extremities.
- Author
-
Platoni K, Diamantopoulos S, Dilvoi M, Delinikolas P, Kypraiou E, Efstathopoulos E, and Kouloulias V
- Subjects
- Humans, Lower Extremity pathology, Lower Extremity radiation effects, Male, Middle Aged, Sarcoma, Kaposi pathology, Tomography, X-Ray Computed instrumentation, Sarcoma, Kaposi radiotherapy, Tomography, X-Ray Computed methods
- Abstract
Kaposi's sarcoma (KS) is a systemic neoplastic disease that can present cutaneous symptoms and is usually treated with a systematic approach due to its extent. Due to its radiosensitivity, radiotherapy is considered one of its main treatments, for palliation and local control of the skin and mucosal lesions. The aim of this paper was to report the first case of KS treated by hemi-body electron irradiation protocol in Greece. A fractionated 40 Gy hemi-body electron irradiation was prescribed to a 60-year-old male patient with KS at his legs. Dose uniformity was verified on a daily basis by thermoluminescence dosimetry (TLD). The treatment resulted to complete clinical response. Limited irradiation-derived side effects appeared. This is the first case ever to be treated with hemi-body electron irradiation protocol in Greece. To the best of our knowledge, this is also the first time that a single field hemi-body electron beam irradiation at a total skin electron beam (TSEB)-like configuration is reported to be used for KS.
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.