1. Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives
- Author
-
Hanson, Alex, Tu, Allen, Lin, Geng, Singla, Vasu, Zwicker, Matthias, and Goldstein, Tom
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Graphics - Abstract
3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians. However, its rendering speed and model size still present bottlenecks, especially in resource-constrained settings. In this paper, we identify and address two key inefficiencies in 3D-GS, achieving substantial improvements in rendering speed, model size, and training time. First, we optimize the rendering pipeline to precisely localize Gaussians in the scene, boosting rendering speed without altering visual fidelity. Second, we introduce a novel pruning technique and integrate it into the training pipeline, significantly reducing model size and training time while further raising rendering speed. Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $6.71\times$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets with $10.6\times$ fewer primitives than 3D-GS.
- Published
- 2024