9 results on '"PATAZCA, E."'
Search Results
2. Model of the inactivation of bacterial spores by moist heat and high pressure
- Author
-
Rodriguez, A.C., Larkin, J.W., and Patazca, E.
- Subjects
Food contamination -- Prevention ,Food research ,Business ,Food/cooking/nutrition - Abstract
Formulae for the prediction of inactivation and accumulated lethality of bacterial spores under moist heat and high pressures were derived on the basis of classic thermodynamic and kinetics principles. The capability of the model to describe the inactivation of bacterial spores was verified using two independent data sets corresponding to Clostridium botulinum processed at 60 degree Celsius to 75 degree Celsius and Bacillus stearothermophilus processed at 90 degree Celsius to 100 degree Celsius.
- Published
- 2004
3. Effect of high pressure processing on migration characteristics of polypropylene used in food contact materials.
- Author
-
Song YS, Koontz JL, Juskelis RO, Patazca E, Limm W, and Zhao K
- Subjects
- Biphenyl Compounds chemistry, Chloroform chemistry, Diffusion, Food Packaging, Gas Chromatography-Mass Spectrometry, Hot Temperature, Humans, Molecular Weight, Pressure, Salicylates chemistry, Solvents chemistry, Time Factors, Toluene chemistry, Food Contamination analysis, Polypropylenes analysis
- Abstract
The migration of small molecular mass organic compounds from polypropylene (PP) copolymer films into food simulants during and after high pressure processing (HPP) was studied. An overlapping temperature profile was developed to isolate the pressure effect of HPP (700 MPa, 71°C, 5 min) from equivalent thermal processing (TP) at atmospheric pressure (0.1 MPa). Chloroform, toluene, methyl salicylate, and phenylcyclohexane were chosen as surrogate compounds, and were spiked into test polymer films at concentrations of 762-1152 mg kg
-1 by a solvent soaking technique. Migration (w/w) of surrogate compounds from loaded PP films into Miglyol 812 (a medium-chain triglyceride mixture) and 10% ethanol was quantified by headspace GC/MS during HPP and TP, and subsequent storage at 25°C for up to 10 days. HPP significantly delayed migration of the surrogates from PP into both food simulants relative to TP. The average migrations into Miglyol after TP and HPP were 92.2-109% and 16-60.6%, respectively. Diffusion coefficients estimated by migration modelling showed a reduction of more than two orders of magnitude for all surrogate compounds under high pressure at 700 MPa ( A P ' = 8.0) relative to equivalent TP at 0.1 MPa ( A P ' = 13.1). The relative Tg increase of PP copolymer under compression at 700 MPa was estimated as Tg +94°C. For 10% ethanol, average migrations after TP and HPP were 9.3-50.9% and 8.6-22.8%, respectively. During extended storage, migration into both simulants from HPP-treated samples was initially slower than that from untreated or TP-treated films. However, after 8-24 hours of storage, the differences in percent migration of selected surrogates were not significant ( p > .05) among the treated PP films. Therefore, the physical changes of PP films that occur during HPP appear to be reversible with a return to their original dimensions and diffusion properties after decompression.- Published
- 2021
- Full Text
- View/download PDF
4. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F.
- Author
-
Skinner GE, Morrissey TR, Patazca E, Loeza V, Halik LA, Schill KM, and Reddy NR
- Subjects
- Hot Temperature, Pressure, Spores, Bacterial physiology, Clostridium botulinum physiology
- Abstract
The impact of high pressure processing on the inactivation of spores of nonproteolytic Clostridium botulinum is important in extended shelf life chilled low-acid foods. The three most resistant C. botulinum strains (Ham-B, Kap 9-B, and 610-F) were selected for comparison of their thermal and pressure-assisted thermal resistance after screening 17 nonproteolytic C. botulinum strains (8 type B, 7 type E, and 2 type F). Spores of strains Ham-B, Kap 9-B, and 610-F were prepared using a biphasic media method, diluted in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) buffer (0.05 M, pH 7.00) to 10
5 to 106 CFU/mL, placed into a modified sterile transfer pipette, heat sealed, and subjected to a combination of high pressures (600 to 750 MPa) and high temperatures (80 to 91°C) using laboratory and pilot-scale pressure test systems. Diluted spores from the same crops were placed in nuclear magnetic resonance tubes, which were heat sealed, and subjected to 80 to 91°C in a Fluke 7321 high precision bath with Duratheram S oil as the heat transfer fluid. After incubation for 3 months, survivors in both studies were determined by the five-tube most-probable-number method using Trypticase-peptone-glucose-yeast extract broth. The highest (>5.0) log reductions in spore counts for Ham-B, Kap 9-B, and 610-F occurred at the highest temperature and pressure combination tested (91°C and 750 MPa). Thermal D-values of Ham-B, Kap 9-B, and 610-F decreased as the process temperature increased from 80 to 87°C, decreasing to <1.0 min at 87°C for these strains. Pressure-assisted thermal D-values of Ham-B, Kap 9-B, and 610-F decreased as the process temperature increased from 80 to 91°C with any pressure combination and decreased to <1.0 min as the pressure increased from 600 to 750 MPa at 91°C. Based on the pressure-assisted thermal D-values, pressure exerted a more protective effect on spores of Ham-B, Kap 9-B, and 610-F when processed at 83 to 91°C combined with pressures of 600 to 700 MPa when compared with thermal treatment only. No protective effect was observed when the spores of Ham-B, Kap9-B, and 610-F were treated at lower temperatures (80 to 83°C) in combination with 750 MPa. However, at higher temperatures (87 to 91°C) in combination with 750 MPa, a protective effect was seen for Ham-B, Kap9-B, and 610-F spores based on the calculated pressure-assisted thermal D-values.- Published
- 2018
- Full Text
- View/download PDF
5. Thermal and Pressure-Assisted Thermal Destruction Kinetics for Spores of Type A Clostridium botulinum and Clostridium sporogenes PA3679.
- Author
-
Reddy NR, Patazca E, Morrissey TR, Skinner GE, Loeza V, Schill KM, and Larkin JW
- Subjects
- Clostridium chemistry, Clostridium botulinum type A drug effects, Clostridium botulinum type A growth & development, Disinfection instrumentation, Food Microbiology, Hot Temperature, Kinetics, Pressure, Spores, Bacterial chemistry, Clostridium growth & development, Disinfection methods, Spores, Bacterial growth & development
- Abstract
The purpose of this study was to determine the inactivation kinetics of the spores of the most resistant proteolytic Clostridium botulinum strains (Giorgio-A and 69-A, as determined from an earlier screening study) and of Clostridium sporogenes PA3679 and to compare the thermal and pressure-assisted thermal resistance of these spores. Spores of these strains were prepared using a biphasic medium method. C. sporogenes PA3679 spores were heat treated before spore preparation. Using laboratory-scale and pilot-scale pressure test systems, spores of Giorgio-A, 69-A, and PA3679 suspended in ACES [N-(2-acetamido)-2-aminoethanesulfonic acid] buffer (pH 7.0) were exposed to various combinations of temperature (93 to 121°C) and pressure (0.1 to 750 MPa) to determine their resistance. More than a 5-log reduction occurred after 3 min at 113°C for spores of Giorgio-A and 69-A and after 5 min at 117°C for spores of PA3679. A combination of high temperatures (93 to 121°C) and pressures yielded greater log reductions of spores of Giorgio-A, 69-A, and PA3679 compared with reduction obtained with high temperatures alone. No survivors from initial levels (>5.0 log CFU) of Giorgio-A and 69-A were detected when processed at a combination of high temperature (117 and 121°C) and high pressure (600 and 750 MPa) for <1 min in a pilot-scale pressure test system. Increasing pressure from 600 to 750 MPa at 117°C decreased the time from 2.7 to 1 min for a >4.5-log reduction of PA3679 spores. Thermal D-values of Giorgio-A, 69-A, and PA3679 spores decreased (i.e., 29.1 to 0.33 min for Giorgio-A, 40.5 to 0.27 min for 69-A, and 335.2 to 2.16 min for PA3679) as the temperature increased from 97 to 117°C. Pressure-assisted thermal D-values of Giorgio-A, 69-A, and PA3679 also decreased as temperature increased from 97 to 121°C at both pressures (600 and 750 MPa) (i.e., 17.19 to 0.15 min for Giorgio-A, 9.58 to 0.15 min for 69-A, and 12.93 to 0.33 min for PA3679 at 600 MPa). At higher temperatures (117 or 121°C), increasing pressure from 600 to 750 MPa had an effect on pressure-assisted thermal D-values of PA3679 (i.e., at 117°C, pressure-assisted thermal D-value decreased from 0.55 to 0.28 min as pressure increased from 600 to 750 MPa), but pressure had no effect on pressure-assisted thermal D-values of Giorgio-A and 69-A. When compared with Giorgio-A and 69-A, PA3679 had higher thermal and pressure-assisted thermal D-values. C. sporogenes PA3679 spores were generally more resistant to combinations of high pressure and high temperature than were the spores of the C. botulinum strains tested in this study.
- Published
- 2016
- Full Text
- View/download PDF
6. Combined high pressure and thermal processing on inactivation of type E and nonproteolytic type B and F spores of Clostridium botulinum.
- Author
-
Skinner GE, Marshall KM, Morrissey TR, Loeza V, Patazca E, Reddy NR, and Larkin JW
- Subjects
- Colony Count, Microbial, Electrophoresis, Gel, Pulsed-Field, Food Handling methods, Hydrogen-Ion Concentration, Species Specificity, Clostridium botulinum physiology, Food Microbiology methods, Hot Temperature, Pressure, Spores, Bacterial physiology
- Abstract
The aim of this study was to determine the resistance of multiple strains of the three nonproteolytic types of Clostridium botulinum (seven strains of type E, eight of type B, and two of type F) spores exposed to combined high pressure and thermal processing. The resistance of spores suspended in N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) buffer (0.05 M, pH 7) was determined at a process temperature of 80°C with high pressures of 600, 650, and 700 MPa using a laboratory-scale pressure test system. Spores of C. botulinum serotype E strains demonstrated less resistance than nonproteolytic spores of type B or F strains when processed at 80°C and 600 MPa for up to 15 min. All C. botulinum type E strains were reduced by . 6.0 log units within 5 min under these conditions. Among the nonproteolytic type B strains, KAP 9-B was the most resistant, resulting in reductions of 2.7, 5.3, and 5.5 log, coinciding with D-values of 7.7, 3.4, and 1.8 min at 80°C and 600, 650, and 700 MPa, respectively. Of the two nonproteolytic type F strains, 610F was the most resistant, showing 2.6-, 4.5-, and 5.3-log reductions with D-values of 8.9, 4.3, and 1.8 min at 80°C and 600, 650, and 700 MPa, respectively. Pulsed-field gel electrophoresis was performed to examine the genetic relatedness of strains tested and to determine if strains with similar banding patterns also exhibited similar D-values. No correlation between the genetic fingerprint of a particular strain and its resistance to high pressure processing was observed.
- Published
- 2014
- Full Text
- View/download PDF
7. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum.
- Author
-
Reddy NR, Marshall KM, Morrissey TR, Loeza V, Patazca E, Skinner GE, Krishnamurthy K, and Larkin JW
- Subjects
- Bacillus physiology, Clostridium physiology, Colony Count, Microbial, Food Microbiology, Hydrogen-Ion Concentration, Microbial Viability, Spores, Bacterial growth & development, Clostridium botulinum physiology, Food Preservation methods, Hot Temperature, Hydrostatic Pressure
- Abstract
The aim of this study was to determine the resistance of multiple strains of Clostridium botulinum type A and proteolytic type B spores exposed to combined high pressure and thermal processing and compare their resistance with Clostridium sporogenes PA3679 and Bacillus amyloliquefaciens TMW-2.479-Fad-82 spores. The resistance of spores suspended in N-(2acetamido)-2-aminoethanesulfonic acid (ACES) buffer (0.05 M, pH 7.0) was determined at a process temperature of 105°C, with high pressures of 600, 700, and 750 MPa by using a laboratory-scale pressure test system. No surviving spores of the proteolytic B strains were detected after processing at 105°C and 700 MPa for 6 min. A . 7-log reduction of B. amyloliquefaciens spores was observed when processed for 4 min at 105°C and 700 MPa. D-values at 105°C and 700 MPa for type A strains ranged from 0.57 to 2.28 min. C. sporogenes PA3679 had a D-value of 1.48 min at 105°C and 700 MPa. Spores of the six type A strains with high D-values along with C. sporogenes PA3679 and B. amyloliquefaciens were further evaluated for their pressure resistance at pressures 600 and 750 MPa at 105°C. As the process pressure increased from 600 to 750 MPa at 105°C, D-values of some C. botulinum strains and C. sporogenes PA3679 spores decreased (i.e., 69-A, 1.91 to 1.33 min and PA3679, 2.35 to 1.29 min). Some C. botulinum type A strains were more resistant than C. sporogenes PA3679 and B. amyloliquefaciens to combined high pressure and heat, based on D-values determined at 105°C. Pulsed-field gel electrophoresis (PFGE) was also performed to establish whether strains with a similar restriction banding pattern also exhibited similar D-values. However, no correlation between the genomic background of a strain and its resistance to high pressure processing was observed, based on PFGE analysis. Spores of proteolytic type B strains of C. botulinum were less resistant to combined high pressure and heat (700 MPa and 105°C) treatment when compared with spores of type A strains.
- Published
- 2013
- Full Text
- View/download PDF
8. Effect of packaging systems and pressure fluids on inactivation of Clostridium botulinum spores by combined high pressure and thermal processing.
- Author
-
Patazca E, Morrissey TR, Loeza V, Reddy NR, Skinner GE, and Larkin JW
- Subjects
- Consumer Product Safety, Food Microbiology, Humans, Industrial Microbiology, Spores, Bacterial growth & development, Clostridium botulinum physiology, Food Handling methods, Food Packaging methods, Hot Temperature, Hydrostatic Pressure
- Abstract
Several studies have been published on the inactivation of bacterial spores by using high pressure processing in combination with heat. None of the studies investigated the effect of the packaging system or the pressurizing fluid on spore inactivation. The objective of this study was to select and validate an appropriate packaging system and pressure transfer fluid for inactivation of Clostridium botulinum spores by using high pressure processing in combination with thermal processing. Inactivation of spores packaged in three packaging systems (plastic pouches, cryovials, and transfer pipettes) was measured in two pressure test systems (laboratory-scale and pilot-scale) at 700 MPa and >105°C. Total destruction (>6.6-log reduction) of the spores packaged in the graduated tube part of transfer pipettes was obtained after processing for up to 10 min at 118°C and 700 MPa in both pressure test systems, compared with the spores packaged either in plastic pouches or cryovials. Reduction of spores packaged in plastic pouches was lowest (<4.8 log) for both pressure test systems when processed at the same conditions (i.e., 700 MPa and 118°C). Within the pilot-scale pressure system, increasing the process temperature from 118 to 121°C at 700 MPa for 10 min resulted in only a small increase in spore reduction (<5.1 log) for spores packaged in plastic pouches, whereas there were no recoverable spores for either of the other two packaging systems. Use of plastic pouches for packaging spores in inactivation kinetic studies could lead to erroneous conclusions about the effect of high pressure in combination with heat. BioGlycol is the pressure-heat transfer fluid of choice, as compared with Duratherm oil, to maximize the temperature response rate during pressurization within the laboratory-scale pressure test system.
- Published
- 2013
- Full Text
- View/download PDF
9. Effect of high-pressure processing and milk on the anthocyanin composition and antioxidant capacity of strawberry-based beverages.
- Author
-
Tadapaneni RK, Banaszewski K, Patazca E, Edirisinghe I, Cappozzo J, Jackson L, and Burton-Freeman B
- Subjects
- Animals, Ascorbic Acid analysis, Chromatography, Liquid, Food Microbiology, Freeze Drying, Fruit chemistry, Hot Temperature, Hydrogen-Ion Concentration, Linear Models, Polyphenols analysis, Pressure, Tandem Mass Spectrometry, Anthocyanins analysis, Antioxidants analysis, Beverages analysis, Food Handling methods, Fragaria chemistry, Milk
- Abstract
The present study investigated processing strategies and matrix effects on the antioxidant capacity (AC) and polyphenols (PP) content of fruit-based beverages: (1) strawberry powder (Str) + dairy, D-Str; (2) Str + water, ND-Str; (3) dairy + no Str, D-NStr. Beverages were subjected to high-temperature-short-time (HTST) and high-pressure processing (HPP). AC and PP were measured before and after processing and after a 5 week shelf-life study. Unprocessed D-Str had significantly lower AC compared to unprocessed ND-Str. Significant reductions in AC were apparent in HTST- compared to HPP-processed beverages (up to 600 MPa). PP content was significantly reduced in D-Str compared to ND-Str and in response to HPP and HTST in all beverages. After storage (5 weeks), AC and PP were reduced in all beverages compared to unprocessed and week 0 processed beverages. These findings indicate potentially negative effects of milk and processing on AC and PP of fruit-based beverages.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.