18 results on '"Pacific warm pool"'
Search Results
2. Rapid Surface Warming of the Pacific Asian Marginal Seas Since the Late 1990s.
- Author
-
Wang, You‐Lin and Wu, Chau‐Ron
- Subjects
WALKER circulation ,WESTERLIES ,OCEAN temperature ,TRADE winds ,ATMOSPHERIC circulation ,KUROSHIO - Abstract
The East Asian marginal seas gain heat from the warm pool via intrusion of the Kuroshio Current and play an important role in regulating regional climate. Here, we show that the sea surface temperature rise of the East Asian marginal seas, especially in areas where the Kuroshio intrudes, has far exceeded the rate of global ocean warming. We attribute this to warming of the Pacific Warm Pool since the 1990s. Intensified trade winds warmed the Pacific Warm Pool and caused the surface Kuroshio and the regions where it intrudes into marginal seas to warm rapidly in the late 1990s. Plain Language Summary: In the late 1990s, surface warming signal of the Pacific warm pool entered the East Asia marginal seas via intrusion of the Kuroshio, causing these seas to warm rapidly. The warming of the warm pool is due to an increase in equatorial trade winds, which is attributed to the acceleration of the Walker circulation. The weakening of the mid‐latitude westerly winds in the Pacific produced a positive wind stress curl anomaly in the subtropics, and finally weakened the Kuroshio intensity, prompting it to intrude the marginal seas increasingly. Key Points: Rapid warming of the East Asian marginal seas was attributed to the warming of the Pacific warm pool via Kuroshio intrusionPacific warm pool warming is due to the acceleration of the Walker circulationAnomalous atmospheric circulation in the mid‐latitude Pacific enhanced the Kuroshio intrusion into the marginal seas [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Global trends in atmospheric layer thickness since 1940 and relationships with tropical and extratropical climate forcing
- Author
-
Chibuike Chiedozie Ibebuchi and Cameron C Lee
- Subjects
atmospheric layer thickness ,trend ,Pacific warm pool ,sea surface temperature ,climate modes ,Environmental technology. Sanitary engineering ,TD1-1066 ,Environmental sciences ,GE1-350 ,Science ,Physics ,QC1-999 - Abstract
Global warming necessitates continual insights into changing atmospheric temperatures to enhance climate change monitoring and prediction. The thickness of an atmospheric layer serves as an effective proxy for the average temperature of that layer, playing a pivotal role in weather forecasting, understanding atmospheric dynamics, and detecting shifts in extreme weather conditions. This study investigates the global trends in thickness of the layer between 1000 hPa and 500 hPa, from 1940 to the present and evaluates the impact of tropical and extra-tropical climate modes on these trends. Our findings reveal a consistent, statistically significant positive trend in atmospheric layer thickness. However, the magnitude of this trend varies both regionally and seasonally. The most substantial absolute changes are observed in the high latitudes during their respective winter seasons; however, when considering global changes relative to each location’s unique historical variability, the most pronounced increase occurs in the tropics, specifically over central Africa, with a standard deviation increase of up to 0.03 σ yr ^−1 . Based on the relative changes, the thickness over the Southern Hemisphere’s high-latitude landmasses is increasing at a faster pace during its winter compared to the Northern Hemisphere during its winter. Furthermore, our analysis of the impact of dominant tropical and extra-tropical climate modes revealed a strong correlation ( R ∼ 0.9) between sea surface temperature changes in the Pacific warm pool region and the global average thickness. This relationship accounts for about 76% to 78% variance of the inter-annual variability in thickness. Consequently, we identify the increase in sea surface temperature in the Indo-Pacific warm pool as a significant controller of the rate and magnitude of atmospheric layer thickness changes globally. This underscores the crucial role of oceanic-atmospheric interactions in driving global climate variations and extremes.
- Published
- 2023
- Full Text
- View/download PDF
4. Identification of Central-Pacific and Eastern-Pacific types of ENSO in CMIP3 Models
- Author
-
Yu, Jin-Yi and Kim, Seon T.
- Subjects
Climate research ,Climate simulation ,Coupled Model Intercomparison Project ,Empirical orthogonal function methods ,ENSO events ,Intensity ratio ,Interannual ,Pacific warm pool ,Pre-industrial ,Sea surface temperatures ,Southern Oscillation - Abstract
[1] Much understanding of the El Niño-Southern Oscillation (ENSO) has been obtained from the analyses of the climate simulations produced for World Climate Research Programme's Coupled Model Intercomparison Project phase 3 (CMIP3). However, most of these analyses do not consider the existence of the Eastern-Pacific (EP) and Central-Pacific (CP) types of ENSO events, which have been increasingly recognized as two distinct types of interannual sea surface temperature (SST) variation in the tropical Pacific. This study uses a regression-Empirical Orthogonal Function method to identify how well these two ENSO types are captured in the pre-industrial simulations of nineteen CMIP3 models. It is concluded that most CMIP3 models (13 out of 19) can produce realistically strong CP ENSOs, but only a few of them (9 out of 19) can produce realistically strong EP ENSOs. Six models that realistically simulate both the EP and CP ENSOs and their intensity ratio are identified. By separating the SST variability into these two types, it is further revealed that the leading periodicity of the simulated EP ENSO is linearly related to the latitudinal width of SST variability and varies from 1 to 5 years. As for the simulated CP ENSO, its leading periodicity is either 2 or 4 years depending on whether its SST variability is located to the east of the dateline or in the western-Pacific warm pool, respectively. The identification produced in this study offers useful information to further understand the two types of ENSO using the CMIP3 models.
- Published
- 2010
5. Seasonal-to-interannual variability of the barrier layer in the western Pacific warm pool associated with ENSO.
- Author
-
Wang, Xidong and Liu, Hailong
- Subjects
- *
SEASONAL temperature variations , *SOUTHERN oscillation , *ORTHOGONAL functions ,EL Nino - Abstract
This study investigates the seasonal-to-interannual variability of the barrier layer (BL) associated with El Niño/Southern Oscillation (ENSO) using in situ temperature-salinity observations and simple ocean assimilation data (SODA). The comparisons with the BL derived from the in situ observations show that SODA successfully captures the variability of the BL in the Pacific warm pool. On seasonal timescale, based on the empirical orthogonal function (EOF) analysis, we identify that three seasonal leading modes of the BL along the equatorial Pacific are closely associated with the transition, resurgence and onset of ENSO, respectively. We also confirm that two interannual leading modes of the BL are related to different flavors of ENSO events. EOF1 mainly embodies a combined response to the central and east Pacific ENSO events while EOF2 is related to the central Pacific ENSO events. We especially focus on the contrast of the BL between east Pacific El Niño (EPEN) and central Pacific El Niño (CPEN). During EPEN, the abnormally thick BL appears in the east of the dateline. It follows the sea surface salinity front to shift zonally with the evolution of EPEN event, and propagates toward the central Pacific. It can be attributed to horizontal ocean advection, heavy precipitation and the downwelling Kelvin waves. In contrast, during CPEN, the abnormally thick BL is confined to the region between 160°E and 180°E around the SSS front without significant west-east displacement. It is mainly dominated by the local processes including Ekman pumping, precipitation, and zonal ocean advection. Different from the BL in the EPEN events, it has no evident basin-scale propagating signal. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
6. Unraveling glacial hydroclimate in the Indo‐Pacific Warm Pool: perspectives from water isotopes
- Author
-
Jessica E. Tierney, Grace Windler, Christopher J. Poulsen, and Jiang Zhu
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,Pleistocene ,water isotopes ,Indo‐ ,proxy‐ ,Paleontology ,010502 geochemistry & geophysics ,Oceanography ,leaf wax ,01 natural sciences ,13. Climate action ,model comparison ,Environmental science ,Pacific Warm Pool ,Glacial period ,Indo-Pacific ,0105 earth and related environmental sciences - Abstract
The Indo‐Pacific Warm Pool (IPWP) is home to the warmest sea surface temperatures in the world oceans, favoring strong tropospheric convection and heavy rainfall. The mechanisms controlling long‐term change in the region’s hydroclimate are still uncertain. Here, we present a 450,000‐year record of precipitation δD from southern Sumatra that records a consistent pattern of glacial isotopic enrichment and interglacial depletion. We synthesize existing paleo‐indicators of precipitation δD and δ18O in the IPWP and compare results with water isotope‐enabled climate simulations of the Last Glacial Maximum (LGM). The simulations show glacial isotopic enrichment over the eastern Indian Ocean extending into the southern IPWP and isotopic depletion over southeast Asia, the west Pacific, and Australia. The pattern of simulated LGM isotopic change agrees generally well with our proxy synthesis. We conclude that reorganization of regional circulation under glacial conditions controls precipitation isotope variability in the IPWP: low‐level tropospheric convergence dominates the signal in the north/east, whereas divergence controls the response in the south/west. Additional sensitivity simulations suggest that the LGM ice sheets and the associated lowering in sea level, rather than decreased greenhouse gases, are responsible for the distinctive spatial pattern in glacial changes of precipitation isotopes and hydroclimate across the IPWP.
- Published
- 2020
7. Coastal upwelling along the north coast of Papua New Guinea and SST cooling over the pacific warm pool: A case study for the 2002/03 El Niño event.
- Author
-
Hasegawa, Takuya, Ando, Kentaro, Mizuno, Keisuke, and Lukas, Roger
- Subjects
OCEAN currents ,OCEAN circulation ,WATER currents ,OCEANOGRAPHY ,UPWELLING (Oceanography) ,EL Nino - Abstract
We investigate an overlooked mechanism—coastal upwelling—for sea surface temperature (SST) cooling in the western side of the mean location of the Pacific warm pool (WSWP: 5°S–5°N, 140°E–150°E) prior to El Niño onset. We analyze various observed data such as the TRIangle Trans-Ocean buoy Network (TRITON) moored buoy data, Conductivity-Temperature-Depth (CTD) data, satellite data and a hindcast experiment output by a high-resolution ocean general circulation model (OGCM). We focus on the precondition of the 2002/03 El Niño event, for which many datasets are available. Relatively cool water upwelled along the north coast of Papua New Guinea (PNG) during December 2001, prior to the onset of the 2002/03 El Niño event, and then spread out over a wider area to the northeast. Simultaneously, strong west-northerly surface winds occur along the north coast. Heat budget analysis of TRITON buoy data in the WSWP reveals that negative zonal heat advection due to eastward current is the main factor for cooling the mixed layer in the WSWP in contrast to the warming effect of the surface heat flux during the period. This cooling requires a source of colder water to the west. Similar analysis of OGCM outputs also suggests that the upwelled relatively cool water along the PNG north coast, and its northeastward extension to the equatorial region, contributes to cooling of the surface water over the WSWP mainly via negative zonal heat advection. Similar mechanisms are confirmed also for the 1982/83 and 1997/98 El Niño events by analyses of OGCM outputs and historical SST data. The low SST in the WSWP generated a positive zonal SST gradient together with high SST east of the WSWP. It may contribute to enhancement of the westerly surface wind in this region, leading to the onset of the 2002/03 El Niño event. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
8. Geochemistry of coral from Papua New Guinea as a proxy for ENSO ocean–atmosphere interactions in the Pacific Warm Pool
- Author
-
Ayliffe, Linda K., Bird, Michael I., Gagan, Michael K., Isdale, Peter J., Scott-Gagan, Heather, Parker, Bruce, Griffin, David, Nongkas, Michael, and McCulloch, Malcolm T.
- Subjects
- *
PORITES , *WATER pollution , *HYDROLOGIC cycle , *RUNOFF - Abstract
Abstract: A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977–1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5–1.0°C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño – Southern Oscillation (ENSO) events of 1982–1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific Warm Pool ocean–atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian–Australian monsoon cycle. Sudden cooling of SSTs by ∼1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
9. Two Modes of Salinity and Temperature Variation in the Surface Layer of the Pacific Warm Pool.
- Author
-
Ando, Kentaro and Kuroda, Yoshifumi
- Abstract
The characteristics of temperature and salinity variation in the Pacific warm pool were investigated using Empirical Orthogonal Function (EOF) analysis on one year's temperature and salinity data in the surface layer (0–50 m) obtained from the Triangle Trans-Ocean Buoy Network (TRITON) buoy array. Two dominant modes of surface temperature and salinity variation were found. One is a positive correlation mode where temperature and salinity were scattered almost parallel to isopycnal lines in a T-S diagram, which has little effect on the density field. The other is a negative correlation mode where temperature and salinity were distributed across isopycnal lines, which has a substantial impact on the density field. In particular, we found that the negative correlation mode at 5°N, 156°E was predominant on a seasonal time scale and contributed to the surface dynamic height variation, and therefore to surface geostrophic current. [ABSTRACT FROM AUTHOR]
- Published
- 2002
- Full Text
- View/download PDF
10. Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era
- Author
-
Emile-Geay, Julien, McKay, Nicholas P., Kaufman, Darrell S., Von Gunten, Lucien, Wang, Jianghao, Anchukaitis, Kevin J., Abram, Nerilie J., Addison, Jason A., Curran, Mark A J, Evans, Michael N., Henley, Benjamin J., Hao, Zhixin, Martrat, Belen, McGregor, Helen V., Neukom, Raphael, Pederson, Gregory T., Stenni, Barbara, Thirumalai, Kaustubh, Werner, Johannes P., Xu, Chenxi, Divine, Dmitry V., Dixon, Bronwyn C., Gergis, Joelle, Mundo, Ignacio A., Nakatsuka, Takeshi, Phipps, Steven J., Routson, Cody C., Steig, Eric J., Tierney, Jessica E., Tyler, Jonathan J., Allen, Kathryn J., Bertler, Nancy A. N., Bjorklund, Jesper, Chase, Brian M., Chen, Min-Te, Cook, Ed, de Jong, Rixt, DeLong, Kristine L., Dixon, Daniel A., Ekaykin, Alexey A., Ersek, Vasile, Filipsson, Helena L., Francus, Pierre, Freund, Mandy B., Frezzotti, Massimo, Gaire, Narayan P., Gajewski, Konrad, Ge, Quansheng, Goosse, Hugues, and Seidenkrantz, Marit-Solveig
- Subjects
TROPICAL CLIMATE VARIABILITY ,ICE-CORE RECORDS ,SEA-SURFACE TEMPERATURE ,PAST 3 CENTURIES ,HIGH-RESOLUTION PALEOCLIMATOLOGY ,NORTH-ATLANTIC OSCILLATION ,TREE-RING WIDTH ,OXYGEN-ISOTOPE RECORD ,SUMMER TEMPERATURE ,PACIFIC WARM POOL - Abstract
Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike.
- Published
- 2017
- Full Text
- View/download PDF
11. Surpact: A SMOS Surface Wave Rider for Air-Sea Interaction
- Author
-
Jacqueline Boutin, Joaquín Salvador, Simon Morisset, Gilles Reverdin, Antonio Lourenço, Nicolas Martin, Jordi Font, Denis Bourras, Christophe Caudoux, Échanges dans la couche de surface : des pôles aux tropiques (SURF), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), ESTER - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Développement Instrumental et Techniques Marines (DITM), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institute of Marine Sciences / Institut de Ciències del Mar [Barcelona] (ICM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636))
- Subjects
Salinity measurements ,010504 meteorology & atmospheric sciences ,Meteorology ,Temperature salinity diagrams ,SSMIS ,Wind stress ,Sea state ,Oceanography ,7. Clean energy ,01 natural sciences ,Wind speed ,lcsh:Oceanography ,Wind shear ,lcsh:GC1-1581 ,wave rider ,Pacific warm pool ,0105 earth and related environmental sciences ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,010505 oceanography ,drifter ,Mooring ,Surpact ,Drifter ,13. Climate action ,Environmental science ,sea state ,atmospheric sea level pressure - Abstract
10 pages, 4 figures, A new small wave rider called Surpact was developed for air-sea investigations. It was designed to attach to a drifter or a mooring and to float upon the surface waves in order to measure sea state and atmospheric sea level pressure as well as temperature and salinity at a small fixed depth from the surface. Wind speed is derived from Surpact sea state measurements, and the data are calibrated with colocated Special Sensor Microwave Imager Sounder (SSMIS) wind retrievals during a four-month deployment in the North Atlantic subtropics. Individual 15-minute wind estimates present a root mean square difference on the order of 15% with the SSMIS wind retrievals for wind speeds less than 12 m s-1. The wind retrievals might lag the actual wind changes for moderate to strong winds by an hour. This article discusses the accuracy of these wind retrievals based on in situ data collected during the Strasse cruise in August and September 2012. Temperature and salinity data are also examined. The authors find, under some sunny conditions, radiative warming of the temperature probe reduces the accuracy of some of the daytime temperature data and also affects corresponding salinity estimates. Nonetheless, small realistic daily cycles of near-surface salinity (0.01 psu amplitude) were observed. Also, examples of wind time series collected during salinity drops caused by rainfall during late 2012 in the North Atlantic subtropics indicate no intensification of wind during these rain events, This effort is part of ESA SMOS cal-val projects, and is supported nationally in France by CNES/TOSCA with the Gloscal project, and in Spain at ICM/CSIC by the Spanish national R+D plan (project AYA2010-22062-C05)
- Published
- 2013
- Full Text
- View/download PDF
12. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability
- Author
-
Ludovic Brucker, Andrea Santos-Garcia, Tong Lee, Jacqueline Boutin, Alexander Soloviev, Emmanuel P. Dinnat, Brian Ward, Wenqing Tang, Nicolas Reul, William E. Asher, Nadya T. Vinogradova, Nicolas Kolodziejczyk, Julian Schanze, Kyla Drushka, Jessica Anderson, Thomas Meissner, Yi Chao, Christophe Maes, Thierry Delcroix, W.L. Jones, R. Drucker, Lisan Yu, Gilles Reverdin, Interactions et Processus au sein de la couche de Surface Océanique (IPSO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), UCLA Joint Institute for Regional Earth System Science and Engineering (JIFRESSE), University of California [Los Angeles] (UCLA), University of California-University of California-NASA, Remote Sensing Solutions, University of Washington [Seattle], Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), School of Oceanography [Seattle], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Ifremer, Centre de Toulon, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Earth and Space Research Institute [Seattle] (ESR), Nova Southeastern University (NSU), Woods Hole Oceanographic Institution (WHOI), Universities Space Research Association (USRA), GSFC Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center (GSFC), Electrical and Computer Engineering Department [Orlando], University of Central Florida [Orlando] (UCF), Laboratoire de physique des océans (LPO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Remote Sensing Systems [Santa Rosa] (RSS), Atmospheric and Environmental Research, Inc. (AER), National University of Ireland [Galway] (NUI Galway), CNES, Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), University of California (UC)-University of California (UC)-NASA, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Atmospheric Science ,010504 meteorology & atmospheric sciences ,0211 other engineering and technologies ,Mesoscale meteorology ,Stratification (water) ,02 engineering and technology ,[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology ,Atmospheric sciences ,01 natural sciences ,western equatorial pacific ,barrier layer ,tropical oceans ,north-atlantic ,ocean salinity ,14. Life underwater ,Water cycle ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,021101 geological & geomatics engineering ,0105 earth and related environmental sciences ,Remote sensing ,Radiometer ,boundary-layer ,pacific warm pool ,Salinity ,Ocean dynamics ,band radiometer/scatterometer observations ,13. Climate action ,polar-regions ,air-sea interaction ,Environmental science ,Satellite ,Microwave - Abstract
Remote sensing of salinity using satellite-mounted microwave radiometers provides new perspectives for studying ocean dynamics and the global hydrological cycle. Calibration and validation of these measurements is challenging because satellite and in situ methods measure salinity differently. Microwave radiometers measure the salinity in the top few centimeters of the ocean, whereas most in situ observations are reported below a depth of a few meters. Additionally, satellites measure salinity as a spatial average over an area of about 100 × 100 km2. In contrast, in situ sensors provide pointwise measurements at the location of the sensor. Thus, the presence of vertical gradients in, and horizontal variability of, sea surface salinity complicates comparison of satellite and in situ measurements. This paper synthesizes present knowledge of the magnitude and the processes that contribute to the formation and evolution of vertical and horizontal variability in near-surface salinity. Rainfall, freshwater plumes, and evaporation can generate vertical gradients of salinity, and in some cases these gradients can be large enough to affect validation of satellite measurements. Similarly, mesoscale to submesoscale processes can lead to horizontal variability that can also affect comparisons of satellite data to in situ data. Comparisons between satellite and in situ salinity measurements must take into account both vertical stratification and horizontal variability.
- Published
- 2016
- Full Text
- View/download PDF
13. Small-scale features of temperature and salinity surface fields in the Coral Sea
- Author
-
Maes, C., Dewitte, B., Sudre, J., Garcon, V., Varillon, D., DYNBIO LEGOS, Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Echanges Côte-Large (ECOLA), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
TEMPERATURE DE SURFACE ,MESURE IN SITU ,MECHANISM ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,SALINITE ,SSS ,PACIFIC WARM POOL ,SST ,VARIABILITY ,VARIATION TEMPORELLE ,in situ observations ,OCEAN ,EASTERN EDGE ,EL-NINO ,ONSET ,INTERACTION OCEAN ATMOSPHERE ,BARRIER LAYER ,NETWORK ,Coral Sea ,TROPICAL PACIFIC ,DISTRIBUTION SPATIALE ,ANALYSE STATISTIQUE - Abstract
ISI Document Delivery No.: 257JQ Times Cited: 0 Cited Reference Count: 51 Cited References: Alory G, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007802 Barton IJ, 2007, J ATMOS OCEAN TECH, V24, P1773, DOI 10.1175/JTECH2084.1 Benhamou S., 2011, PLOS ONE, V6 Bingham FM, 2002, J GEOPHYS RES-OCEANS, V107, DOI [10.1029/2000JC000767, 10.1029/2000jc000767] Boyer TP, 2002, J GEOPHYS RES-OCEANS, V107, DOI 10.1029/2001JC000829 Chen J, 2012, J OCEANOGR, V68, P687, DOI 10.1007/s10872-012-0126-8 Choukroun S, 2010, J GEOPHYS RES-OCEANS, V115, DOI 10.1029/2009JC005761 Delcroix T, 2005, DEEP-SEA RES PT I, V52, P787, DOI 10.1016/j.dsr.2004.11.012 Delcroix T, 2011, DEEP-SEA RES PT I, V58, P38, DOI 10.1016/j.dsr.2010.11.002 Dewitte B, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2010JC006495 DONGUY JR, 1994, PROG OCEANOGR, V34, P45, DOI 10.1016/0079-6611(94)90026-4 Fisher M., 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL020112 Freeman LA, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007099 Gasparin F, 2011, DEEP-SEA RES PT I, V58, P956, DOI 10.1016/j.dsr.2011.05.007 Gorman MK, 2012, PALEOCEANOGRAPHY, V27, DOI 10.1029/2012PA002302 Hendon H, 2005, S-P B ENVIRON SCI, P223, DOI 10.1007/3-540-27250-X_7 Henin C, 1996, DEEP-SEA RES PT I, V43, P1833, DOI 10.1016/S0967-0637(96)00084-2 Henocq C, 2010, J ATMOS OCEAN TECH, V27, P192, DOI 10.1175/2009JTECHO670.1 Hernandez-Carrasco I., 2012, J GEOPHYS RES, V117, DOI 10.1029/2012JC008222 Hernandez-Carrasco I, 2011, OCEAN MODEL, V36, P208, DOI 10.1016/j.ocemod.2010.12.006 Huffman GJ, 2007, J HYDROMETEOROL, V8, P38, DOI 10.1175/JHM560.1 Ioualalen M, 2003, J OCEANOGR, V59, P105, DOI 10.1023/A:1022876708829 Kawamura R, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2001JD001070 Klemas V, 2011, J COASTAL RES, V27, P830, DOI 10.2112/JCOASTRES-D-11-00060.1 Leuliette EW, 1999, J PHYS OCEANOGR, V29, P599, DOI 10.1175/1520-0485(1999)0292.0.CO;2 Lin JWB, 2000, J ATMOS SCI, V57, P2793, DOI 10.1175/1520-0469(2000)0572.0.CO;2 MADDEN RA, 1972, J ATMOS SCI, V29, P1109, DOI 10.1175/1520-0469(1972)0292.0.CO;2 Maes C, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2004GL019867 Maes C, 2010, SOLA, V6, P129, DOI 10.2151/sola.2010-033 Maes C, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2002GL016029 Maes C, 2005, J CLIMATE, V18, P104, DOI 10.1175/JCLI-3214.1 Picaut J, 1996, SCIENCE, V274, P1486, DOI 10.1126/science.274.5292.1486 Pierce DW, 2012, GEOPHYS RES LETT, V39, DOI 10.1029/2012GL053389 Qiu B, 2009, J PHYS OCEANOGR, V39, P404, DOI 10.1175/2008JPO3988.1 Reul N., 2012, SMOS LEVEL 3 SSS RES, P21 Reul N., 2013, SURV GEOPHYS, P1, DOI 10.1007/GEOP-D-13-00003 Reverdin G, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007549 Reynolds RW, 2007, J CLIMATE, V20, P5473, DOI 10.1175/2007JCLI1824.1 Ridgway KR, 2003, PROG OCEANOGR, V56, P189, DOI 10.1016/S0079-6611(03)00004-1 Roemmich D, 1998, J GEOPHYS RES-OCEANS, V103, P13041, DOI 10.1029/98JC00583 Roemmich D, 2009, OCEANOGRAPHY, V22, P46 Rossi V, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL033610 SCHMITT RW, 1995, REV GEOPHYS, V33, P1395, DOI 10.1029/95RG00184 Sudre J., 2013, LIMNOL OCEANOGR FLUI, V3, P1, DOI 10.1215/21573689-2071927 Takahashi K, 2011, GEOPHYS RES LETT, V38, DOI 10.1029/2011GL047364 Toole J. M., 2001, INT GEOPHYS SERIES, V77, P337 Torrence C, 1998, B AM METEOROL SOC, V79, P61, DOI 10.1175/1520-0477(1998)0792.0.CO;2 Wachenfeld D., 2007, CLIMATE CHANGE GREAT Waugh DW, 2006, J PHYS OCEANOGR, V36, P526, DOI 10.1175/JPO2865.1 Wheeler MC, 2004, MON WEATHER REV, V132, P1917, DOI 10.1175/1520-0493(2004)1322.0.CO;2 Yueh S., 2012, IEEE INT GEOSC REM S Maes, Christophe Dewitte, Boris Sudre, Joel Garcon, Veronique Varillon, David Institut de Recherche pour le Developpement (IRD); Centre National de la Recherche Scientifique (CNRS) Sea surface salinity data derived from thermosalinograph instruments installed onboard voluntary observing ships are freely distributed by the French Sea Surface Salinity Observation Service (http://www.legos.obs-mip.fr/observations/sss/). The TRMM data were acquired as part of the activities of NASA's Science Mission Directorate, and are archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Special thanks go to Cristobal Lopez and Emilio Hernandez-Garcia for providing their code for the FSLE computation, and to Serena Illig for her help on the wavelet analysis. Comments on the original version from Dave Behringer were greatly appreciated, and we would like also to gratefully thank Tangdong Qu and the other anonymous reviewer for their fruitful comments. This work is supported by the Institut de Recherche pour le Developpement (IRD) and by the Centre National de la Recherche Scientifique (CNRS). 0 AMER GEOPHYSICAL UNION WASHINGTON J GEOPHYS RES-OCEANS; The small-scale features in sea surface temperature and salinity fields (SST and SSS) of the Coral Sea are examined using high horizontal spatial and short-term temporal in situ measurements. These features are extracted from thermosalinographs (TSGs) gathered onboard commercial and research vessels and at one long-term fixed station. The analyses are performed along the vessel tracks and the structures of small-scale features are extracted by high-pass spatial filtering the original TSG data. For SSS, it is shown that the features at the scale of mesoscale eddies (approximate to 100 km) vary from about -1.1 to +0.6 psu in the Coral Sea region. Processes sustaining such range include rainfall events, stirring by mesoscale eddies, and the latitudinal displacement of the sharp front associated with the edge of the Western Pacific Warm Pool at the seasonal time scales. The TSG data have revealed the presence of a sharp front (0.4-0.6 psu) between the subtropical and equatorial waters instead of a smooth gradient in the standard SSS climatologies. Within the context of recent remotely sensed observations of salinity, this could represent an important limitation for the validation and calibration of satellite products. In addition to these spatial considerations, temporal variations at one long-term station near Vanuatu show that the coupled air-sea responses to intraseasonal tropical variability, such as the Madden-Julian Oscillation, may have a signature in both SST and SSS fields. However, this response is found to be complex and not necessarily in phase. In the Coral Sea region, our results suggest that MJO-induced variability on SST and SSS exhibit little coherency at the seasonal time scales.
- Published
- 2013
- Full Text
- View/download PDF
14. A one-dimensional modeling study of the diurnal cycle in the equatorial Atlantic at the PIRATA buoys during the EGEE-3 campaign
- Author
-
Rebecca Hummels, Malick Wade, Marcus Dengler, Yves duPenhoat, Guy Caniaux, Hervé Giordani, Echanges Côte-Large (ECOLA), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Convection ,ATLANTIC ,Buoyancy ,010504 meteorology & atmospheric sciences ,LAYER HEAT-BUDGET ,Mixed layer ,TROPICAL ,Wind stress ,cold tongue ,engineering.material ,Oceanography ,01 natural sciences ,PACIFIC WARM POOL ,TURBULENCE MARINE ,Diurnal cycle ,PIRATA buoys ,14. Life underwater ,WIND STRESS ,0105 earth and related environmental sciences ,TEMPERATURE DE SURFACE ,Equatorial Atlantic ,Buoy ,010505 oceanography ,Oceanic mixed-layer processes ,COURANT DE CONVECTION ,UPPER OCEAN ,Western Hemisphere Warm Pool ,One-dimensional model ,Turbulence ,Sea surface temperature ,CIRCULATION OCEANIQUE ,13. Climate action ,Climatology ,FACTEUR CLIMATIQUE ,SEA-SURFACE TEMPERATURE ,engineering ,CYCLE DIURNE ,Environmental science ,SHEAR-FLOW ,INTRASEASONAL VARIABILITY ,ENERGIE CINETIQUE ,VARIATION JOURNALIERE ,MIXED-LAYER ,KINETIC-ENERGY - Abstract
ISI Document Delivery No.: 708HP Times Cited: 8 Cited Reference Count: 77 Cited References: ADAMEC D, 1978, J PHYS OCEANOGR, V8, P1050, DOI 10.1175/1520-0485(1978)0082.0.CO;2 ANDERSON RJ, 1993, J PHYS OCEANOGR, V23, P2153, DOI 10.1175/1520-0485(1993)0232.0.CO;2 Bellanger H., 2007, THESIS ECOLE POLYTEC Bernie DJ, 2005, J CLIMATE, V18, P1190, DOI 10.1175/JCLI3319.1 Bernie DJ, 2007, CLIM DYNAM, V29, P575, DOI 10.1007/s00382-007-0249-6 Bernie DJ, 2008, CLIM DYNAM, V31, P909, DOI 10.1007/s00382-008-0429-z BOUGEAULT P, 1989, MON WEATHER REV, V117, P1872, DOI 10.1175/1520-0493(1989)1172.0.CO;2 Bourles B, 2008, B AM METEOROL SOC, V89, P1111, DOI 10.1175/2008BAMS2462.1 Bourles B, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2002GL015098 Bourles B, 1999, J GEOPHYS RES-OCEANS, V104, P21151, DOI 10.1029/1999JC900058 Bourles B., 2007, CLIVAR NEWSLETTER EX, V41, P7 Bourras D, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC004951 Bunge L, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003704 Caniaux G, 1998, J GEOPHYS RES-OCEANS, V103, P25081, DOI 10.1029/98JC00452 CANIAUX G, 2010, JGR UNPUB Carton JA, 1997, J GEOPHYS RES-OCEANS, V102, P27813, DOI 10.1029/97JC02197 Chen SS, 1997, Q J ROY METEOR SOC, V123, P357, DOI 10.1002/qj.49712353806 Clayson CA, 1999, J PHYS OCEANOGR, V29, P2146, DOI 10.1175/1520-0485(1999)0292.0.CO;2 Clayson CA, 2002, J CLIMATE, V15, P1805, DOI 10.1175/1520-0442(2002)0152.0.CO;2 CRAWFORD WR, 1979, DEEP SEA RES 2, V6, P285 Cronin MF, 1997, J GEOPHYS RES-OCEANS, V102, P8533, DOI 10.1029/97JC00020 Cronin MF, 2009, J PHYS OCEANOGR, V39, P1200, DOI 10.1175/2008JPO4064.1 Dai A, 2004, J CLIMATE, V17, P930, DOI 10.1175/1520-0442(2004)0172.0.CO;2 Danabasoglu G, 2006, J CLIMATE, V19, P2347, DOI 10.1175/JCLI3739.1 DeCosmo J, 1996, J GEOPHYS RES-OCEANS, V101, P12001, DOI 10.1029/95JC03796 DENGLER M, 2010, GEOPHYS RES IN PRESS DOURADO MS, 2004, REV BRASILIERIA METE, V19, P217 Fairall CW, 1996, J GEOPHYS RES-OCEANS, V101, P1295, DOI 10.1029/95JC03190 Fairall CW, 2003, J CLIMATE, V16, P571, DOI 10.1175/1520-0442(2003)0162.0.CO;2 Foltz GR, 2003, J GEOPHYS RES-OCEANS, V108, DOI 10.1029/2002JC001584 GASPAR P, 1990, J GEOPHYS RES-OCEANS, V95, P16179, DOI 10.1029/JC095iC09p16179 GIORDANI H, 2010, JGR UNPUB GREGG MC, 1985, NATURE, V318, P140, DOI 10.1038/318140a0 HEBERT D, 1991, J PHYS OCEANOGR, V21, P1690, DOI 10.1175/1520-0485(1991)0212.0.CO;2 Hormann V, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003931 JANICOT A, 2008, ANN GEOPHYS, V26, P2569 Jerlov NG, 1968, OPTICAL OCEANOGRAPHY Josse P., 1999, THESIS U P SABATIER KANTHA LH, 1994, J GEOPHYS RES-OCEANS, V99, P25235, DOI 10.1029/94JC02257 Kolmogorov A.N., 1942, IZV AN SSSR FIZ, V1-2, P56 Kolodziejczyk N, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC004976 LARGE WG, 1994, REV GEOPHYS, V32, P363, DOI 10.1029/94RG01872 LEDUCLEBALLEUR M, 2010, QJRMS UNPUB Lefevre N, 2008, J GEOPHYS RES-OCEANS, V113, DOI 10.1029/2007JC004146 Marin F, 2009, J PHYS OCEANOGR, V39, P1416, DOI 10.1175/2008JPO4030.1 MCCREARY J, 1984, J MAR RES, V42, P81 Merle J., 1980, DEEP SEA RES S2, V26, P77 Mignot J, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003954 MOORE DW, 1978, GEOPHYS RES LETT, V5, P311 MOUM JN, 1985, SCIENCE, V230, P315, DOI 10.1126/science.230.4723.315 MOUM JN, 1992, J PHYS OCEANOGR, V22, P1330, DOI 10.1175/1520-0485(1992)0222.0.CO;2 Pailler K, 1999, GEOPHYS RES LETT, V26, P2069, DOI 10.1029/1999GL900492 PAULSON CA, 1977, J PHYS OCEANOGR, V7, P952, DOI 10.1175/1520-0485(1977)0072.0.CO;2 Persson POG, 2005, Q J ROY METEOR SOC, V131, P877, DOI [10.1256/qj.03.181, 10.1256/jq.03.181] Peter AC, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2005JC003157 Philander S., 1990, NINO NINA SO OSCILLA PHILANDER SGH, 1986, J GEOPHYS RES-OCEANS, V91, P14192, DOI 10.1029/JC091iC12p14192 PICAUT J, 1983, J PHYS OCEANOGR, V13, P18, DOI 10.1175/1520-0485(1983)0132.0.CO;2 Prandke H, 1998, AQUAT SCI, V60, P191, DOI 10.1007/s000270050036 Provost C, 2006, ADV SPACE RES, V37, P823, DOI 10.1016/j.asr.2005.06.018 Redelsperger JL, 2006, B AM METEOROL SOC, V87, P1739, DOI 10.1175/BAMS-87-12-1739 Schmitt RW, 2005, SCIENCE, V308, P685, DOI 10.1126/science.1108678 SCHUDLICH RR, 1992, J GEOPHYS RES-OCEANS, V97, P5409, DOI 10.1029/91JC01918 Shinoda T, 2005, J CLIMATE, V18, P2628, DOI 10.1175/JCLI3432.1 Shinoda T, 1998, J CLIMATE, V11, P2668, DOI 10.1175/1520-0442(1998)0112.0.CO;2 SMITH SD, 1980, J PHYS OCEANOGR, V10, P709, DOI 10.1175/1520-0485(1980)0102.0.CO;2 SPRINTALL J, 1994, J GEOPHYS RES-OCEANS, V99, P963, DOI 10.1029/93JC02809 STRAMMA L, 1999, DEEP SEA RES 2, V4, P279 Stramma L, 2003, ELSEV OCEANOGR SERIE, V68, P1 TAKAHASHI T, 2009, DEEP SEA RES PT II, V0056 Taylor KE, 2001, J GEOPHYS RES-ATMOS, V106, P7183, DOI 10.1029/2000JD900719 VOITURIEZ B, 1977, CAH ORSTOM OCEANOGR, V15, P313 Ward B, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2004JC002689 Weill A, 2003, J CLIMATE, V16, P600, DOI 10.1175/1520-0442(2003)0162.0.CO;2 Woolnough SJ, 2007, Q J ROY METEOR SOC, V133, P117, DOI 10.1002/qj.4 Woolnough SJ, 2000, J CLIMATE, V13, P2086, DOI 10.1175/1520-0442(2000)0132.0.CO;2 Yu LS, 2006, J CLIMATE, V19, P6153, DOI 10.1175/JCLI3970.1 Wade, Malick Caniaux, Guy duPenhoat, Yves Dengler, Marcus Giordani, Herve Hummels, Rebecca Dengler, Marcus/A-7327-2014 Dengler, Marcus/0000-0001-5993-9088 AMMA; European Community This study was supported by the AMMA project. Based on a French initiative, AMMA was built by an international scientific group and is currently funded by a large number of agencies, including those in France, the UK, the US, and Africa. It has been the beneficiary of a major financial contribution from the European Community's Sixth Framework Research Program. Detailed information on scientific coordination and funding is available on the AMMA International web site http://www.amma-international.org. We thank Bernard Bourles, the chief scientist of the EGEE program, and all the persons who acquired and prepared the data used in this study as well as the Captain of the RN L'Atalante and his crew for their help during the EGEE-3 cruise. We warmly thank Dr. Gregory Foltz and an anonymous reviewer for their pertinent and useful comments and remarks. 8 SPRINGER HEIDELBERG HEIDELBERG OCEAN DYNAM; A one-dimensional model is used to analyze, at the local scale, the response of the equatorial Atlantic Ocean under different meteorological conditions. The study was performed at the location of three moored buoys of the Pilot Research Moored Array in the Tropical Atlantic located at 10 degrees W, 0 degrees N; 10 degrees W, 6 degrees S; and 10 degrees W, 10 degrees S. During the EGEE-3 (Etude de la circulation oceanique et de sa variabilite dans le Golfe de Guinee) campaign of May-June 2006, each buoy was visited for maintenance during 2 days. On board the ship, high-resolution atmospheric parameters were collected, as were profiles of temperature, salinity, and current. These data are used here to initialize, force, and validate a one-dimensional model in order to study the diurnal oceanic mixed-layer variability. It is shown that the diurnal variability of the sea surface temperatures is mainly driven by the solar heat flux. The diurnal response of the near-surface temperatures to daytime heating and nighttime cooling has an amplitude of a few tenths of degree. The computed diurnal heat budget experiences a net warming tendency of 31 and 27 Wm(-2) at 0 degrees N and 10 degrees S, respectively, and a cooling tendency of 122 Wm(-2) at 6 degrees S. Both observed and simulated mixed-layer depths experience a jump between the nighttime convection phase and the well-stabilized diurnal water column. Its amplitude changes dramatically depending on the meteorological conditions occurring at the stations and reaches its maximum amplitude (similar to 50 m) at 100 degrees S. At 6 degrees and 10 degrees S, the presence of barrier layers is observed, a feature that is clearer at 10 degrees S. Simulated turbulent kinetic energy (11(E) dissipation rates, compared to independent microstructure measurements, show that the model tracks their diurnal evolution reasonably well. It is also shown that the shear and buoyancy productions and the vertical diffusion of TKE all contribute to the supply of TKE, but the buoyancy production is the main source of TKE during the period of the simulation.
- Published
- 2011
- Full Text
- View/download PDF
15. Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool
- Author
-
Russon, T., Elliot, M., Sadekov, A., Cabioch, G., Correge, T., De Deckker, P., Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Muséum national d'Histoire naturelle (MNHN)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
- Subjects
Geophysics ,Mg/Ca paleothermometry ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Earth and Planetary Sciences(all) ,[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] ,Pacific warm pool ,Mid-Pleistocene Transition - Abstract
The position of the southern boundary of the Pacific warm pool is shown to have been stable since the early Pleistocene, based upon a planktic foraminiferal Mg/Ca-derived reconstruction of subtropical sea surface temperature in the Coral Sea. This contrasts with previous reconstructions showing warm pool contraction from the north and east and means that the early Pleistocene warm pool was more hemispherically asymmetric than its present configuration. The latter was not established until similar to 1Ma, supporting a strengthening of the northern Hadley Cell, which was not replicated in its southern counterpart, prior to the Mid-Pleistocene Transition. Citation: Russon, T., M. Elliot, A. Sadekov, G. Cabioch, T. Correge, and P. De Deckker (2010), Inter-hemispheric asymmetry in the early Pleistocene Pacific warm pool, Geophys. Res. Lett., 37, L11601, doi: 10.1029/2010GL043191.
- Published
- 2010
- Full Text
- View/download PDF
16. Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale
- Author
-
André W. Droxler, Gianni Mallarino, Larry C. Peterson, Samuel J. Bentley, Luc Beaufort, Gerald R. Dickens, Stephan J. Jorry, Bradley N. Opdyke, Laboratoire Environnements Sédimentaires - Géosciences Marines (GM/LES), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Rice University [Houston], Memorial University of Newfoundland [St. John's], Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), University of Miami [Coral Gables], Australian National University (ANU), Laboratoire Environnements Sédimentaires (LES), Géosciences Marines (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Memorial University of Newfoundland = Université Memorial de Terre-Neuve [St. John's, Canada] (MUN), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA)
- Subjects
Atmospheric Science ,younger dryas event ,010504 meteorology & atmospheric sciences ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Soil Science ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Meltwater pulse 1A ,Aquatic Science ,010502 geochemistry & geophysics ,Oceanography ,01 natural sciences ,nicaragua rise ,Meltwater pulse 1B ,Allerød oscillation ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Deglaciation ,14. Life underwater ,Glacial period ,Younger Dryas ,oxygen isotope records ,meltwater pulse 1a ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology ,Ecology ,Paleontology ,surface salinity ,Forestry ,Last Glacial Maximum ,carbonate platforms ,pacific warm pool ,Geophysics ,great barrier reef ,caribbean sea ,13. Climate action ,Space and Planetary Science ,Siliciclastic ,Geology ,tropical atlantic - Abstract
International audience; Since Last Glacial Maximum (23-19 ka), Earth climate warming and deglaciation occurred in two major steps (Bolling-Allerod and Preboreal), interrupted by a short cooling interval referred to as the Younger Dryas (12.5-11.5 ka B. P.). In this study, three cores (MV-33, MV-66, and MD-40) collected in the central part of Pandora Trough (Gulf of Papua) have been analyzed, and they reveal a detailed sedimentary pattern at millennial timescale. Siliciclastic turbidites disappeared during the Bolling-Allerod and Preboreal intervals to systematically reoccur during the Younger Dryas interval. Subsequent to the final disappearance of the siliciclastic turbidites a calciturbidite occurred during meltwater pulse 1B. The Holocene interval was characterized by a lack of siliciclastic turbidites, relatively high carbonate content, and fine bank-derived aragonitic sediment. The observed millennial timescale sedimentary variability can be explained by sea level fluctuations. During the Last Glacial Maximum, siliciclastic turbidites were numerous when the lowstand coastal system was located along the modern shelf edge. Although they did not occur during the intervals of maximum flooding of the shelf (during meltwater pulses 1A and 1B), siliciclastic turbidites reappear briefly during the Younger Dryas, an interval when sea level rise slowed, stopped, or perhaps even fell. The timing of the calciturbidite coincides with the first reflooding of Eastern Fields Reef, an atoll that remained exposed for most of the glacial stages.
- Published
- 2008
- Full Text
- View/download PDF
17. Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale
- Author
-
Jorry, Stephan J., Droxler, Andre W., Mallarino, Gianni, Dickens, Gerald R., Bentley, Sam J., Beaufort, Luc, Peterson, Larry C., Opdyke, Bradley N., Jorry, Stephan J., Droxler, Andre W., Mallarino, Gianni, Dickens, Gerald R., Bentley, Sam J., Beaufort, Luc, Peterson, Larry C., and Opdyke, Bradley N.
- Abstract
Since Last Glacial Maximum (23-19 ka), Earth climate warming and deglaciation occurred in two major steps (Bolling-Allerod and Preboreal), interrupted by a short cooling interval referred to as the Younger Dryas (12.5-11.5 ka B. P.). In this study, three cores (MV-33, MV-66, and MD-40) collected in the central part of Pandora Trough (Gulf of Papua) have been analyzed, and they reveal a detailed sedimentary pattern at millennial timescale. Siliciclastic turbidites disappeared during the Bolling-Allerod and Preboreal intervals to systematically reoccur during the Younger Dryas interval. Subsequent to the final disappearance of the siliciclastic turbidites a calciturbidite occurred during meltwater pulse 1B. The Holocene interval was characterized by a lack of siliciclastic turbidites, relatively high carbonate content, and fine bank-derived aragonitic sediment. The observed millennial timescale sedimentary variability can be explained by sea level fluctuations. During the Last Glacial Maximum, siliciclastic turbidites were numerous when the lowstand coastal system was located along the modern shelf edge. Although they did not occur during the intervals of maximum flooding of the shelf (during meltwater pulses 1A and 1B), siliciclastic turbidites reappear briefly during the Younger Dryas, an interval when sea level rise slowed, stopped, or perhaps even fell. The timing of the calciturbidite coincides with the first reflooding of Eastern Fields Reef, an atoll that remained exposed for most of the glacial stages.
- Published
- 2008
- Full Text
- View/download PDF
18. How Much Water Passes through the Indonesian Passages?
- Author
-
FLORIDA STATE UNIV TALLAHASSEE DEPT OF OCEANOGRAPHY, Nof, Doron, FLORIDA STATE UNIV TALLAHASSEE DEPT OF OCEANOGRAPHY, and Nof, Doron
- Abstract
The goal of this project is to obtain a more thorough understanding of the dynamics of the Indonesian Throughflow. We plan to establish new flow rate laws for currents forced through an arrangement of islands. I am conducting analytical and numerical investigations of the Indonesian Throughflow and plan to make comparisons of the results with data presently being collected as part of Arlindo II. Arlindo II is a cooperative project of the United States and Indonesia. The abbreviation Arlindo originates in Malay and stands for avarus (sea), lintas (flow), and Indonesian. We are completing an examination of the amount of water that can be forced through a single gap, and the distribution of such flows through a porous wall containing a number of gaps. We plan to apply our calculations to warm (and fresh) Pacific waters exiting from the Indonesian Seas through the Lombok Strait, the Alor Strait, and the Timor Passage. Research has resulted in the preparation and publication of several papers, listed at the end of this report in the order in which they were completed. Most have not been supported solely by ONR but also by NSF and NASA. The papers that are most closely related to the Throughflow study are #3, #4 and #7. The most important aspect of these articles is the finding that all of the Indonesian Throughflow must be upwelled into the thermocline somewhere along the equatorial Pacific., See also ADM002252.
- Published
- 1998
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.