1. Transcriptional Regulation of the Human Polymeric Ig Receptor Gene: Analysis of Basal Promoter Elements
- Author
-
Paula M. Hempen, Hsin Jung Wu, Pamela S. Conway, Tracey A. Schneeman, Kimberly M. Phillips, Charlotte S. Kaetzel, and Katrina H. Sandoval
- Subjects
Transcription, Genetic ,Molecular Sequence Data ,Immunology ,E-box ,Biology ,Upstream Stimulatory Factor ,Mice ,Species Specificity ,Sequence Homology, Nucleic Acid ,Transcriptional regulation ,Animals ,Humans ,Point Mutation ,Immunology and Allergy ,Tissue Distribution ,Promoter Regions, Genetic ,Transcription factor ,Regulation of gene expression ,Base Sequence ,Genes, Immunoglobulin ,General transcription factor ,Liver cell ,Receptors, Polymeric Immunoglobulin ,Nuclear Proteins ,Promoter ,DNA ,Molecular biology ,Rats ,Intestines ,Gene Expression Regulation ,Liver ,Caco-2 Cells ,Protein Binding - Abstract
Secretory Igs provide the first line of adaptive immune defense against ingested, inhaled, and sexually transmitted pathogens at mucosal surfaces. The polymeric Ig receptor regulates transport of dimeric IgA and pentameric IgM into external secretions. The level of expression of polymeric Ig receptor is controlled to a large extent by transcription of the PIGR gene in mucosal epithelial cells. Here we present a detailed analysis of the promoter of the PIGR gene by transient transfection of luciferase reporter plasmids into cultured cell lines. Comparisons of the human and mouse PIGR promoters in human and mouse intestinal and liver cell lines demonstrated that the human PIGR promoter was 4- to 5-fold more active than the mouse PIGR promoter in all cell types, and that both the human and mouse PIGR promoters were more active in intestinal than in liver cell lines. Targeted deletions of 22-bp segments of the human PIGR promoter revealed that the region from nt −63 to −84 is crucial for basal transcription, and that two upstream regions can act as positive or negative regulators. Point mutations within the region from nt −63 to −84 demonstrated that an E box motif, which binds the basic helix-loop-helix protein upstream stimulatory factor, is required for PIGR promoter activity. Two additional regulatory motifs were identified in the proximal promoter region: a binding site for AP2, and an inverted repeat motif that binds an unidentified protein. These findings suggest that cooperative binding of multiple transcription factors regulates basal activity of the human PIGR promoter.
- Published
- 2002