1. Metabolic engineering of Escherichia coli for enhanced production of D-pantothenic acid.
- Author
-
Zou S, Liu J, Zhao K, Zhu X, Zhang B, Liu Z, and Zheng Y
- Subjects
- Fermentation, Promoter Regions, Genetic, Escherichia coli metabolism, Escherichia coli genetics, Metabolic Engineering methods, Pantothenic Acid metabolism
- Abstract
D-pantothenic acid (D-PA) is an essential vitamin that has been widely used in various industries. However, the low productivity caused by slow D-PA production in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating methyl recycle were employed in E. coli to enhance D-PA production. First, a self-induced promoter-mediated dynamic regulation of D-PA degradation pathway was carried out to improve D-PA accumulation. Then, to drive more carbon flux into D-PA synthesis, the key nodes of the R-pantoate pathway which encoded the essential enzyme were integrated into the genome. Subsequently, the further increase in D-PA production was achieved by promoting the regeneration of methyl donor. The strain L11T produced 86.03 g/L D-PA with a productivity of 0.797 g/L/h, which presented the highest D-PA titer and productivity to date. The strategies could be applied to constructing cell factories for producing other bio-based products., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF