71 results on '"Papanicolaou, GJ"'
Search Results
2. Publisher Correction:Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
- Author
-
Surendran, P, Feofanova, EV, Lahrouchi, N, Ntalla, I, Karthikeyan, S, Cook, J, Chen, L, Mifsud, B, Yao, C, Kraja, AT, Cartwright, JH, Hellwege, JN, Giri, A, Tragante, V, Thorleifsson, G, Liu, DJ, Prins, BP, Stewart, ID, Cabrera, CP, Eales, JM, Akbarov, A, Auer, PL, Bielak, LF, Bis, JC, Braithwaite, VS, Brody, JA, Daw, EW, Warren, HR, Drenos, F, Nielsen, SF, Faul, JD, Fauman, EB, Fava, C, Ferreira, T, Foley, CN, Franceschini, N, Gao, H, Giannakopoulou, O, Giulianini, F, Gudbjartsson, DF, Guo, X, Harris, SE, Havulinna, AS, Helgadottir, A, Huffman, JE, Hwang, S-J, Kanoni, S, Kontto, J, Larson, MG, Li-Gao, R, Lindstrom, J, Lotta, LA, Lu, Y, Luan, J, Mahajan, A, Malerba, G, Masca, NGD, Mei, H, Menni, C, Mook-Kanamori, DO, Mosen-Ansorena, D, Muller-Nurasyid, M, Pare, G, Paul, DS, Perola, M, Poveda, A, Rauramaa, R, Richard, M, Richardson, TG, Sepulveda, N, Sim, X, Smith, AV, Smith, JA, Staley, JR, Stanakova, A, Sulem, P, Theriault, S, Thorsteinsdottir, U, Trompet, S, Varga, TV, Velez Edwards, DR, Veronesi, G, Weiss, S, Willems, SM, Yao, J, Young, R, Yu, B, Zhang, W, Zhao, J-H, Zhao, W, Evangelou, E, Aeschbacher, S, Asllanaj, E, Blankenberg, S, Bonnycastle, LL, Bork-Jensen, J, Brandslund, I, Braund, PS, Burgess, S, Cho, K, Christensen, C, Connell, J, De Mutsert, R, Dominiczak, AF, Dorr, M, Eiriksdottir, G, Farmaki, A-E, Gaziano, JM, Grarup, N, Grove, ML, Hallmans, G, Hansen, T, Have, CT, Heiss, G, Jorgensen, ME, Jousilahti, P, Kajantie, E, Kamat, M, Karajamaki, A, Karpe, F, Koistinen, HA, Kovesdy, CP, Kuulasmaa, K, Laatikainen, I, Lannfelt, L, Lee, I-T, Lee, W-J, Linneberg, A, Martin, LW, Moitry, M, Nadkarni, G, Neville, MJ, Palmer, CNA, Papanicolaou, GJ, Pedersen, O, Peters, J, Poulter, N, Rasheed, A, Rasmussen, KL, Rayner, NW, Magi, R, Renstrom, F, Rettig, R, Rossouw, J, Schreiner, PJ, Sever, PS, Sigurdsson, EL, Skaaby, T, Sun, YV, Sundstrom, J, Thorgeirsson, G, Esko, T, Trabetti, E, Tsao, PS, Tuomi, T, Turner, ST, Tzoulaki, I, Vaartjes, I, Vergnaud, A-C, Willer, CJ, Wilson, PWF, Witte, DR, Yonova-Doing, E, Zhang, H, Aliya, N, Almgren, P, Amouyel, P, Asselbergs, FW, Barnes, MR, Blakemore, AI, Boehnke, M, Bots, ML, Bottinger, EP, Buring, JE, Chambers, JC, Chen, Y-DI, Chowdhury, R, Conen, D, Correa, A, Davey Smith, G, Boer, RAD, Deary, IJ, Dedoussis, G, Deloukas, P, Di Angelantonio, E, Elliott, P, Felix, SB, Ferrieres, J, Ford, I, Fornage, M, Franks, PW, Franks, S, Frossard, P, Gambaro, G, Gaunt, TR, Groop, L, Gudnason, V, Harris, TB, Hayward, C, Hennig, BJ, Herzig, K-H, Ingelsson, E, Tuomilehto, J, Jarvelin, M-R, Jukema, JW, Kardia, SLR, Kee, F, Kooner, JS, Kooperberg, C, Launer, LJ, Lind, L, Loos, RJF, Majumder, AAS, Laakso, M, McCarthy, MI, Melander, O, Mohlke, KL, Murray, AD, Nordestgaard, BG, Orho-Melander, M, Packard, CJ, Padmanabhan, S, Palmas, W, Polasek, O, Porteous, DJ, Prentice, AM, Province, MA, Relton, CL, Rice, K, Ridker, PM, Rolandsson, O, Rosendaal, FR, Rotter, JI, Rudan, I, Salomaa, V, Samani, NJ, Sattar, N, Sheu, WH-H, Smith, BH, Soranzo, N, Spector, TD, Starr, JM, Sebert, S, Taylor, KD, Lakka, TA, Timpson, NJ, Tobin, MD, Van der Harst, P, Van der Meer, P, Ramachandran, VS, Verweij, N, Virtamo, J, Volker, U, Weir, DR, Zeggini, E, Charchar, FJ, Wareham, NJ, Langenberg, C, Tomaszewski, M, Butterworth, AS, Caulfield, MJ, Danesh, J, Edwards, TL, Holm, H, Hung, AM, Lindgren, CM, Liu, C, Manning, AK, Morris, AP, Morrison, AC, O'Donnell, CJ, Psaty, BM, Saleheen, D, Stefansson, K, Boerwinkle, E, Chasman, DI, Levy, D, Newton-Cheh, C, Munroe, PB, Howson, JMM, and United Kingdom Research and Innovation
- Subjects
Genetics & Heredity ,Understanding Society Scientific Group ,Science & Technology ,business.industry ,Published Erratum ,Million Veteran Program ,MEDLINE ,Computational biology ,06 Biological Sciences ,Biology ,Blood pressure ,Text mining ,Meta-analysis ,EPIC-InterAct ,Genetics ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,business ,Life Sciences & Biomedicine ,EPIC-CVD ,11 Medical and Health Sciences ,LifeLines Cohort Study ,Developmental Biology - Abstract
In the version of this article originally published, the e-mail address of corresponding author Patricia B. Munroe was incorrect. The error has been corrected in the HTML and PDF versions of the article.
- Published
- 2021
- Full Text
- View/download PDF
3. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
- Author
-
Surendran, P, Feofanova, E, Lahrouchi, N, Ntalla, I, Karthikeyan, S, Cook, J, Chen, L, Mifsud, B, Yao, C, Kraja, AT, Cartwright, JH, Hellwege, JN, Giri, A, Tragante, V, Thorleifsson, G, Liu, DJ, Prins, BP, Stewart, ID, Cabrera, CP, Eales, JM, Akbarov, A, Auer, PL, Bielak, LF, Bis, JC, Braithwaite, VS, Brody, JA, Daw, EW, Warren, HR, Drenos, F, Nielsen, SF, Faul, JD, Fauman, EB, Fava, C, Ferreira, T, Foley, CN, Franceschini, N, Gao, H, Giannakopoulou, O, Giulianini, F, Gudbjartsson, DF, Guo, X, Harris, SE, Havulinna, AS, Helgadottir, A, Huffman, JE, Hwang, S-J, Kanoni, S, Kontto, J, Larson, MG, Li-Gao, R, Lindstrom, J, Lotta, LA, Lu, Y, Luan, J, Mahajan, A, Malerba, G, Masca, NGD, Mei, H, Menni, C, Mook-Kanamori, DO, Mosen-Ansorena, D, Muller-Nurasyid, M, Pare, G, Paul, DS, Perola, M, Poveda, A, Rauramaa, R, Richard, M, Richardson, TG, Sepulveda, N, Sim, X, Smith, A, Smith, JA, Staley, JR, Stanakova, A, Sulem, P, Theriault, S, Thorsteinsdottir, U, Trompet, S, Varga, TV, Edwards, DRV, Veronesi, G, Weiss, S, Willems, SM, Yao, J, Young, R, Yu, B, Zhang, W, Zhao, J-H, Zhao, W, Evangelou, E, Aeschbacher, S, Asllanaj, E, Blankenberg, S, Bonnycastle, LL, Bork-Jensen, J, Brandslund, I, Braund, PS, Burgess, S, Cho, K, Christensen, C, Connell, J, de Mutsert, R, Dominiczak, AF, Dorr, M, Eiriksdottir, G, Farmaki, A-E, Gaziano, JM, Grarup, N, Grove, ML, Hallmans, G, Hansen, T, Have, CT, Heiss, G, Jorgensen, ME, Jousilahti, P, Kajantie, E, Kamat, M, Karajamaki, A, Karpe, F, Koistinen, HA, Kovesdy, CP, Kuulasmaa, K, Laatikainen, T, Lannfelt, L, Lee, I-T, Lee, W-J, Linneberg, A, Martin, LW, Moitry, M, Nadkarni, G, Neville, MJ, Palmer, CNA, Papanicolaou, GJ, Pedersen, O, Peters, J, Poulter, N, Rasheed, A, Rasmussen, KL, Rayner, NW, Magi, R, Renstrom, F, Rettig, R, Rossouw, J, Schreiner, PJ, Sever, PS, Sigurdsson, EL, Skaaby, T, Sun, Y, Sundstrom, J, Thorgeirsson, G, Esko, T, Trabetti, E, Tsao, PS, Tuomi, T, Turner, ST, Tzoulaki, I, Vaartjes, I, Vergnaud, A-C, Willer, CJ, Wilson, PWF, Witte, DR, Yonova-Doing, E, Zhang, H, Aliya, N, Almgren, P, Amouyel, P, Asselbergs, FW, Barnes, MR, Blakemore, A, Boehnke, M, Bots, ML, Bottinger, EP, Buring, JE, Chambers, JC, Chen, Y-DI, Chowdhury, R, Conen, D, Correa, A, Smith, GD, de Boer, RA, Deary, IJ, Dedoussis, G, Deloukas, P, Di Angelantonio, E, Elliott, P, Felix, SB, Ferrieres, J, Ford, I, Fornage, M, Franks, PW, Franks, S, Frossard, P, Gambaro, G, Gaunt, TR, Groop, L, Gudnason, V, Harris, TB, Hayward, C, Hennig, BJ, Herzig, K-H, Ingelsson, E, Tuomilehto, J, Jarvelin, M-R, Jukema, JW, Kardia, SLR, Kee, F, Kooner, JS, Kooperberg, C, Launer, LJ, Lind, L, Loos, RJF, Majumder, AAS, Laakso, M, McCarthy, M, Melander, O, Mohlke, KL, Murray, AD, Nordestgaard, BG, Orho-Melander, M, Packard, CJ, Padmanabhan, S, Palmas, W, Polasek, O, Porteous, DJ, Prentice, AM, Province, MA, Relton, CL, Rice, K, Ridker, PM, Rolandsson, O, Rosendaal, FR, Rotter, J, Rudan, I, Salomaa, V, Samani, NJ, Sattar, N, Sheu, WH-H, Smith, BH, Soranzo, N, Spector, TD, Starr, JM, Sebert, S, Taylor, KD, Lakka, TA, Timpson, NJ, Tobin, MD, van der Harst, P, van der Meer, P, Ramachandran, VS, Verweij, N, Virtamo, J, Volker, U, Weir, DR, Zeggini, E, Charchar, FJ, Wareham, NJ, Langenberg, C, Tomaszewski, M, Butterworth, AS, Caulfield, MJ, Danesh, J, Edwards, TL, Holm, H, Hung, AM, Lindgren, CM, Liu, C, Manning, AK, Morris, AP, Morrison, AC, O'Donnell, CJ, Psaty, BM, Saleheen, D, Stefansson, K, Boerwinkle, E, Chasman, D, Levy, D, Newton-Cheh, C, Munroe, PB, Howson, JMM, Surendran, P, Feofanova, E, Lahrouchi, N, Ntalla, I, Karthikeyan, S, Cook, J, Chen, L, Mifsud, B, Yao, C, Kraja, AT, Cartwright, JH, Hellwege, JN, Giri, A, Tragante, V, Thorleifsson, G, Liu, DJ, Prins, BP, Stewart, ID, Cabrera, CP, Eales, JM, Akbarov, A, Auer, PL, Bielak, LF, Bis, JC, Braithwaite, VS, Brody, JA, Daw, EW, Warren, HR, Drenos, F, Nielsen, SF, Faul, JD, Fauman, EB, Fava, C, Ferreira, T, Foley, CN, Franceschini, N, Gao, H, Giannakopoulou, O, Giulianini, F, Gudbjartsson, DF, Guo, X, Harris, SE, Havulinna, AS, Helgadottir, A, Huffman, JE, Hwang, S-J, Kanoni, S, Kontto, J, Larson, MG, Li-Gao, R, Lindstrom, J, Lotta, LA, Lu, Y, Luan, J, Mahajan, A, Malerba, G, Masca, NGD, Mei, H, Menni, C, Mook-Kanamori, DO, Mosen-Ansorena, D, Muller-Nurasyid, M, Pare, G, Paul, DS, Perola, M, Poveda, A, Rauramaa, R, Richard, M, Richardson, TG, Sepulveda, N, Sim, X, Smith, A, Smith, JA, Staley, JR, Stanakova, A, Sulem, P, Theriault, S, Thorsteinsdottir, U, Trompet, S, Varga, TV, Edwards, DRV, Veronesi, G, Weiss, S, Willems, SM, Yao, J, Young, R, Yu, B, Zhang, W, Zhao, J-H, Zhao, W, Evangelou, E, Aeschbacher, S, Asllanaj, E, Blankenberg, S, Bonnycastle, LL, Bork-Jensen, J, Brandslund, I, Braund, PS, Burgess, S, Cho, K, Christensen, C, Connell, J, de Mutsert, R, Dominiczak, AF, Dorr, M, Eiriksdottir, G, Farmaki, A-E, Gaziano, JM, Grarup, N, Grove, ML, Hallmans, G, Hansen, T, Have, CT, Heiss, G, Jorgensen, ME, Jousilahti, P, Kajantie, E, Kamat, M, Karajamaki, A, Karpe, F, Koistinen, HA, Kovesdy, CP, Kuulasmaa, K, Laatikainen, T, Lannfelt, L, Lee, I-T, Lee, W-J, Linneberg, A, Martin, LW, Moitry, M, Nadkarni, G, Neville, MJ, Palmer, CNA, Papanicolaou, GJ, Pedersen, O, Peters, J, Poulter, N, Rasheed, A, Rasmussen, KL, Rayner, NW, Magi, R, Renstrom, F, Rettig, R, Rossouw, J, Schreiner, PJ, Sever, PS, Sigurdsson, EL, Skaaby, T, Sun, Y, Sundstrom, J, Thorgeirsson, G, Esko, T, Trabetti, E, Tsao, PS, Tuomi, T, Turner, ST, Tzoulaki, I, Vaartjes, I, Vergnaud, A-C, Willer, CJ, Wilson, PWF, Witte, DR, Yonova-Doing, E, Zhang, H, Aliya, N, Almgren, P, Amouyel, P, Asselbergs, FW, Barnes, MR, Blakemore, A, Boehnke, M, Bots, ML, Bottinger, EP, Buring, JE, Chambers, JC, Chen, Y-DI, Chowdhury, R, Conen, D, Correa, A, Smith, GD, de Boer, RA, Deary, IJ, Dedoussis, G, Deloukas, P, Di Angelantonio, E, Elliott, P, Felix, SB, Ferrieres, J, Ford, I, Fornage, M, Franks, PW, Franks, S, Frossard, P, Gambaro, G, Gaunt, TR, Groop, L, Gudnason, V, Harris, TB, Hayward, C, Hennig, BJ, Herzig, K-H, Ingelsson, E, Tuomilehto, J, Jarvelin, M-R, Jukema, JW, Kardia, SLR, Kee, F, Kooner, JS, Kooperberg, C, Launer, LJ, Lind, L, Loos, RJF, Majumder, AAS, Laakso, M, McCarthy, M, Melander, O, Mohlke, KL, Murray, AD, Nordestgaard, BG, Orho-Melander, M, Packard, CJ, Padmanabhan, S, Palmas, W, Polasek, O, Porteous, DJ, Prentice, AM, Province, MA, Relton, CL, Rice, K, Ridker, PM, Rolandsson, O, Rosendaal, FR, Rotter, J, Rudan, I, Salomaa, V, Samani, NJ, Sattar, N, Sheu, WH-H, Smith, BH, Soranzo, N, Spector, TD, Starr, JM, Sebert, S, Taylor, KD, Lakka, TA, Timpson, NJ, Tobin, MD, van der Harst, P, van der Meer, P, Ramachandran, VS, Verweij, N, Virtamo, J, Volker, U, Weir, DR, Zeggini, E, Charchar, FJ, Wareham, NJ, Langenberg, C, Tomaszewski, M, Butterworth, AS, Caulfield, MJ, Danesh, J, Edwards, TL, Holm, H, Hung, AM, Lindgren, CM, Liu, C, Manning, AK, Morris, AP, Morrison, AC, O'Donnell, CJ, Psaty, BM, Saleheen, D, Stefansson, K, Boerwinkle, E, Chasman, D, Levy, D, Newton-Cheh, C, Munroe, PB, and Howson, JMM
- Abstract
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
- Published
- 2020
4. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies
- Author
-
Morris, AP, Le, TH, Wu, H, Akbarov, A, van der Most, PJ, Hemani, G, Smith, GD, Mahajan, A, Gaulton, KJ, Nadkarni, GN, Valladares-Salgado, A, Wacher-Rodarte, N, Mychaleckyj, JC, Dueker, ND, Guo, X, Hai, Y, Haessler, J, Kamatani, Y, Stilp, AM, Zhu, G, Cook, JP, Arnlov, J, Blanton, SH, de Borst, MH, Bottinger, EP, Buchanan, TA, Cechova, S, Charchar, FJ, Chu, P-L, Damman, J, Eales, J, Gharavi, AG, Giedraitis, V, Heath, AC, Ipp, E, Kiryluk, K, Kramer, HJ, Kubo, M, Larsson, A, Lindgren, CM, Lu, Y, Madden, PAF, Montgomery, GW, Papanicolaou, GJ, Raffel, LJ, Sacco, RL, Sanchez, E, Stark, H, Sundstrom, J, Taylor, KD, Xiang, AH, Zivkovic, A, Lind, L, Ingelsson, E, Martin, NG, Whitfield, JB, Cai, J, Laurie, CC, Okada, Y, Matsuda, K, Kooperberg, C, Chen, Y-DI, Rundek, T, Rich, SS, Loos, RJF, Parra, EJ, Cruz, M, Rotter, J, Snieder, H, Tomaszewski, M, Humphreys, BD, Franceschini, N, Morris, AP, Le, TH, Wu, H, Akbarov, A, van der Most, PJ, Hemani, G, Smith, GD, Mahajan, A, Gaulton, KJ, Nadkarni, GN, Valladares-Salgado, A, Wacher-Rodarte, N, Mychaleckyj, JC, Dueker, ND, Guo, X, Hai, Y, Haessler, J, Kamatani, Y, Stilp, AM, Zhu, G, Cook, JP, Arnlov, J, Blanton, SH, de Borst, MH, Bottinger, EP, Buchanan, TA, Cechova, S, Charchar, FJ, Chu, P-L, Damman, J, Eales, J, Gharavi, AG, Giedraitis, V, Heath, AC, Ipp, E, Kiryluk, K, Kramer, HJ, Kubo, M, Larsson, A, Lindgren, CM, Lu, Y, Madden, PAF, Montgomery, GW, Papanicolaou, GJ, Raffel, LJ, Sacco, RL, Sanchez, E, Stark, H, Sundstrom, J, Taylor, KD, Xiang, AH, Zivkovic, A, Lind, L, Ingelsson, E, Martin, NG, Whitfield, JB, Cai, J, Laurie, CC, Okada, Y, Matsuda, K, Kooperberg, C, Chen, Y-DI, Rundek, T, Rich, SS, Loos, RJF, Parra, EJ, Cruz, M, Rotter, J, Snieder, H, Tomaszewski, M, Humphreys, BD, and Franceschini, N
- Abstract
Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development.
- Published
- 2019
5. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases
- Author
-
McAllister, K, Mechanic, LE, Amos, C, Aschard, H, Blair, IA, Chatterjee, N, Conti, D, Gauderman, WJ, Hsu, L, Hutter, CM, Jankowska, MM, Kerr, J, Kraft, P, Montgomery, SB, Mukherjee, B, Papanicolaou, GJ, Patel, CJ, Ritchie, MD, Ritz, BR, Thomas, DC, Wei, P, Witte, JS, and Participants, W
- Subjects
genome-wide association study ,environmental exposure ,gene-environment interaction - Published
- 2017
- Full Text
- View/download PDF
6. Trans-ethnic meta-analysis of white blood cell phenotypes
- Author
-
Keller, Margaux F, Reiner, Alexander P, Okada, Yukinori, van Rooij, Frank J. A, Johnson, Andrew D, Chen, Ming Huei, Smith, Albert V, Morris, Andrew P, Tanaka, Toshiko, Ferrucci, Luigi, Zonderman, Alan B, Lettre, Guillaume, Harris, Tamara, Garcia, Melissa, Bandinelli, Stefania, Qayyum, Rehan, Yanek, Lisa R, Becker, Diane M, Becker, Lewis C, Kooperberg, Charles, Keating, Brendan, Reis, Jared, Tang, Hua, Boerwinkle, Eric, Kamatani, Yoichiro, Matsuda, Koichi, Kamatani, Naoyuki, Nakamura, Yusuke, Kubo, Michiaki, Liu, Simin, Dehghan, Abbas, Felix, Janine F, Hofman, Albert, Uitterlinden, André G, van Duijn, Cornelia M, Franco, Oscar H, Longo, Dan L, Singleton, Andrew B, Psaty, Bruce M, Evans, Michelle K, Cupples, L. Adrienne, Rotter, Jerome I, O'Donnell, Christopher J, Takahashi, Atsushi, Wilson, James G, Ganesh, Santhi K, Nalls, Mike A, Arepalli, S, Bandinelli, S, Biffi, A, Bis, Jc, Boerwinkle, E, Chakravarti, A, Chen, Mh, Chong, S, Coresh, J, Couper, Dj, Cupples, L, Dehghan, A, Do'Ring, A, Eiriksdottir, G, Felix, Jf, Ferrucci, L, Folsom, Ar, Fox, Cs, Frayling, Tm, Ganesh, Sk, Garcia, M, Garner, Sf, Gasparini, Paolo, Gieger, C, Glazer, Nl, Gouskova, Na, Greinacher, A, Gudnason, V, Harris, Tb, Hernandez, Dg, Hofman, A, Illig, T, Kamatani, Y, Kamatani, N, Kubo, M, Kuhnel, B, Lagou, V, Lettre, G, Levi, D, Lin, J, Liu, Y, Longo, Dl, Lumley, T, Mangino, M, Matsuda, K, Meisinger, C, Melzer, D, Menzel, S, Moore, M, Nakamura, Y, Nalls, Ma, Nauck, M, O'Donnell, Cj, Okada, Y, Oostra, Ba, Ouwehand, Wh, Patel, Kv, Pirastu, Nicola, Pistis, Giorgio, Prokisch, H, Prokopenko, I, Psaty, Bm, Reiner, Ap, Rendon, A, Sambrook, J, Singleton, Ab, Smith, Av, Soranzo, N, Spector, Td, Stephens, J, Stumvoll, M, Takahashi, A, Tanaka, T, Taylor, K, Teumer, A, Thein, Sl, To'Njes, A, Toniolo, D, Tsunoda, T, Uitterlinden, Ag, van Duijn CM, van Rooij FJ, Vo'Lker, U, Vo'Lzke, H, Wichmann, H., Wiggins, Kl, Wilson, Jg, Witteman, Jc, Wood, Ar, Yamamoto, K, Yang, Q, Zakai, Na, Austin, Ma, Becker, Dm, Britton, A, Chen, Z, Couper, D, Curb, J, Dean, E, Eaton, Cb, Evans, Mk, Fornage, M, Grant, Sf, Hernandez, D, Kamatini, N, Keating, Bj, Lacroix, A, Lange, La, Liu, S, Lohman, K, Mathias, R, Meng, Y, Mohler ER 3rd, Musani, S, Palmer, Cd, Papanicolaou, Gj, Snively, Bm, Tang, H, Taylor HA Jr, Thomson, C, Yanek, Lr, Yang, L, Ziv, E, Zonderman, Ab, Higasa, K, Hirota, T, Hosono, N, Kumasaka, N, Ohmiya, H, Tamari, M, Yamaguchi Kabata, Y, Yamamoto, K., Epidemiology, Medical Informatics, Urology, Erasmus MC other, Internal Medicine, Keller, Margaux F, Reiner, Alexander P, Okada, Yukinori, van Rooij, Frank J. A, Johnson, Andrew D, Chen, Ming Huei, Smith, Albert V, Morris, Andrew P, Tanaka, Toshiko, Ferrucci, Luigi, Zonderman, Alan B, Lettre, Guillaume, Harris, Tamara, Garcia, Melissa, Bandinelli, Stefania, Qayyum, Rehan, Yanek, Lisa R, Becker, Diane M, Becker, Lewis C, Kooperberg, Charle, Keating, Brendan, Reis, Jared, Tang, Hua, Boerwinkle, Eric, Kamatani, Yoichiro, Matsuda, Koichi, Kamatani, Naoyuki, Nakamura, Yusuke, Kubo, Michiaki, Liu, Simin, Dehghan, Abba, Felix, Janine F, Hofman, Albert, Uitterlinden, André G, van Duijn, Cornelia M, Franco, Oscar H, Longo, Dan L, Singleton, Andrew B, Psaty, Bruce M, Evans, Michelle K, Cupples, L. Adrienne, Rotter, Jerome I, O'Donnell, Christopher J, Takahashi, Atsushi, Wilson, James G, Ganesh, Santhi K, Nalls, Mike A, Arepalli, S, Bandinelli, S, Biffi, A, Bis, Jc, Boerwinkle, E, Chakravarti, A, Chen, Mh, Chong, S, Coresh, J, Couper, Dj, Cupples, L, Dehghan, A, Do'Ring, A, Eiriksdottir, G, Felix, Jf, Ferrucci, L, Folsom, Ar, Fox, C, Frayling, Tm, Ganesh, Sk, Garcia, M, Garner, Sf, Gasparini, Paolo, Gieger, C, Glazer, Nl, Gouskova, Na, Greinacher, A, Gudnason, V, Harris, Tb, Hernandez, Dg, Hofman, A, Illig, T, Kamatani, Y, Kamatani, N, Kubo, M, Kuhnel, B, Lagou, V, Lettre, G, Levi, D, Lin, J, Liu, Y, Longo, Dl, Lumley, T, Mangino, M, Matsuda, K, Meisinger, C, Melzer, D, Menzel, S, Moore, M, Nakamura, Y, Nalls, Ma, Nauck, M, O'Donnell, Cj, Okada, Y, Oostra, Ba, Ouwehand, Wh, Patel, Kv, Pirastu, Nicola, Pistis, Giorgio, Prokisch, H, Prokopenko, I, Psaty, Bm, Reiner, Ap, Rendon, A, Sambrook, J, Singleton, Ab, Smith, Av, Soranzo, N, Spector, Td, Stephens, J, Stumvoll, M, Takahashi, A, Tanaka, T, Taylor, K, Teumer, A, Thein, Sl, To'Njes, A, Toniolo, D, Tsunoda, T, Uitterlinden, Ag, van Duijn, Cm, van Rooij, Fj, Vo'Lker, U, Vo'Lzke, H, Wichmann, H., Wiggins, Kl, Wilson, Jg, Witteman, Jc, Wood, Ar, Yamamoto, K, Yang, Q, Zakai, Na, Austin, Ma, Becker, Dm, Britton, A, Chen, Z, Couper, D, Curb, J, Dean, E, Eaton, Cb, Evans, Mk, Fornage, M, Grant, Sf, Hernandez, D, Kamatini, N, Keating, Bj, Lacroix, A, Lange, La, Liu, S, Lohman, K, Mathias, R, Meng, Y, Mohler ER, 3rd, Musani, S, Palmer, Cd, Papanicolaou, Gj, Snively, Bm, Tang, H, Taylor HA, Jr, Thomson, C, Yanek, Lr, Yang, L, Ziv, E, Zonderman, Ab, Higasa, K, Hirota, T, Hosono, N, Kumasaka, N, Ohmiya, H, Tamari, M, Yamaguchi Kabata, Y, and Yamamoto, K.
- Subjects
Linkage disequilibrium ,Genotype ,Quantitative Trait Loci ,White blood cell count ,Single-nucleotide polymorphism ,Genome-wide association study ,Quantitative trait locus ,Biology ,Polymorphism, Single Nucleotide ,Linkage Disequilibrium ,White People ,white blood cell phenotypes ,Leukocyte Count ,SDG 3 - Good Health and Well-being ,Asian People ,Polymorphism (computer science) ,Genetics ,Leukocytes ,Humans ,Allele ,Molecular Biology ,Genetics (clinical) ,White blood cell count, Trans-ethnic meta-analysis, white blood cell phenotypes ,Genome, Human ,Association Studies Articles ,Bayes Theorem ,General Medicine ,Heritability ,Black or African American ,Phenotype ,Trans-ethnic meta-analysis ,Genome-Wide Association Study - Abstract
White blood cell (WBC) count is a common clinical measure used as a predictor of certain aspects of human health, including immunity and infection status. WBC count is also a complex trait that varies among individuals and ancestry groups. Differences in linkage disequilibrium structure and heterogeneity in allelic effects are expected to play a role in the associations observed between populations. Prior genome-wide association study (GWAS) meta-analyses have identified genomic loci associated with WBC and its subtypes, but much of the heritability of these phenotypes remains unexplained. Using GWAS summary statistics for over 50 000 individuals from three diverse populations (Japanese, African-American and European ancestry), a Bayesian model methodology was employed to account for heterogeneity between ancestry groups. This approach was used to perform a trans-ethnic meta-analysis of total WBC, neutrophil and monocyte counts. Ten previously known associations were replicated and six new loci were identified, including several regions harboring genes related to inflammation and immune cell function. Ninety-five percent credible interval regions were calculated to narrow the association signals and fine-map the putatively causal variants within loci. Finally, a conditional analysis was performed on the most significant SNPs identified by the trans-ethnic meta-analysis (MA), and nine secondary signals within loci previously associated with WBC or its subtypes were identified. This work illustrates the potential of trans-ethnic analysis and ascribes a critical role to multi-ethnic cohorts and consortia in exploring complex phenotypes with respect to variants that lie outside the European-biased GWAS pool.
- Published
- 2014
7. Erratum: Meta-analysis of dense genecentric association studies reveals common and uncommon variants associated with height ((The American Journal of Human Genetics (2010) 88 (6-18))
- Author
-
Lanktree, MB, Guo, Y, Murtaza, M, Glessner, JT, Bailey, SD, Onland-Moret, NC, Lettre, G, Ongen, H, Rajagopalan, R, Johnson, T, Shen, H, Nelson, CP, Klopp, N, Baumert, J, Padmanabhan, S, Pankratz, N, Pankow, JS, Shah, S, Taylor, K, Barnard, J, Peters, BJ, Maloney, CM, Lobmeyer, MT, Stanton, A, Zafarmand, MH, Romaine, SPR, Mehta, A, Van Iperen, EPA, Gong, Y, Price, TS, Smith, EN, Kim, CE, Li, YR, Asselbergs, FW, Atwood, LD, Bailey, KM, Bhatt, D, Bauer, F, Behr, ER, Bhangale, T, Boer, JMA, Boehm, BO, Bradfield, JP, Brown, M, Braund, PS, Burton, PR, Carty, C, Chandrupatla, HR, Chen, W, Connell, J, Dalgeorgou, C, De Boer, A, Drenos, F, Elbers, CC, Fang, JC, Fox, CS, Frackelton, EC, Fuchs, B, Furlong, CE, Gibson, Q, Gieger, C, Goel, A, Grobbee, DE, Hastie, C, Howard, PJ, Huang, G-H, Johnson, WC, Li, Q, Kleber, ME, Klein, BEK, Klein, R, Kooperberg, C, Ky, B, Lacroix, A, Lanken, P, Lathrop, M, Li, M, Marshall, V, Melander, O, Mentch, FD, Meyer, NJ, Monda, KL, Montpetit, A, Murugesan, G, Nakayama, K, Nondahl, D, Onipinla, A, Rafelt, S, Newhouse, SJ, Otieno, FG, Patel, SR, Putt, ME, Rodriguez, S, Safa, RN, Sawyer, DB, Schreiner, PJ, Simpson, C, Sivapalaratnam, S, Srinivasan, SR, Suver, C, Swergold, G, Sweitzer, NK, Thomas, KA, Thorand, B, Timpson, NJ, Tischfield, S, Tobin, M, Tomaszewski, M, Verschuren, WMM, Wallace, C, Winkelmann, B, Zhang, H, Zheng, D, Zhang, L, Zmuda, JM, Clarke, R, Balmforth, AJ, Danesh, J, Day, IN, Schork, NJ, De Bakker, PIW, Delles, C, Duggan, D, Hingorani, AD, Hirschhorn, JN, Hofker, MH, Humphries, SE, Kivimaki, M, Lawlor, DA, Kottke-Marchant, K, Mega, JL, Mitchell, BD, Morrow, DA, Palmen, J, Redline, S, Shields, DC, Shuldiner, AR, Sleiman, PM, Smith, GD, Farrall, M, Jamshidi, Y, Christiani, DC, Casas, JP, Hall, AS, Doevendans, PA, Christie, JD, Berenson, GS, Murray, SS, Illig, T, Dorn, GW, Cappola, TP, Boerwinkle, E, Sever, P, Rader, DJ, Reilly, MP, Caulfield, M, Talmud, PJ, Topol, E, Engert, JC, Wang, K, Dominiczak, A, Hamsten, A, Curtis, SP, Silverstein, RL, Lange, LA, Sabatine, MS, Trip, M, Saleheen, D, Peden, JF, Cruickshanks, KJ, März, W, O'Connell, JR, Klungel, OH, Wijmenga, C, Maitland-Van Der Zee, AH, Schadt, EE, Johnson, JA, Jarvik, GP, Papanicolaou, GJ, Grant, SFA, Munroe, PB, North, KE, Samani, NJ, Koenig, W, Gaunt, TR, Anand, SS, Van Der Schouw, YT, Soranzo, N, Fitzgerald, GA, Reiner, A, Hegele, RA, Hakonarson, H, and Keating, BJ
- Published
- 2012
8. The landscape of recombination in African Americans
- Author
-
Hinch, AG, Tandon, A, Patterson, N, Song, Y, Rohland, N, Palmer, CD, Chen, GK, Wang, K, Buxbaum, SG, Akylbekova, EL, Aldrich, MC, Ambrosone, CB, Amos, C, Bandera, EV, Berndt, SI, Bernstein, L, Blot, WJ, Bock, CH, Boerwinkle, E, Cai, Q, Caporaso, N, Casey, G, Adrienne Cupples, L, Deming, SL, Ryan Diver, W, Divers, J, Fornage, M, Gillanders, EM, Glessner, J, Harris, CC, Hu, JJ, Ingles, SA, Isaacs, W, John, EM, Linda Kao, WH, Keating, B, Kittles, RA, Kolonel, LN, Larkin, E, Le Marchand, L, McNeill, LH, Millikan, RC, Musani, S, Neslund-Dudas, C, Nyante, S, Papanicolaou, GJ, Press, MF, Psaty, BM, Reiner, AP, Rich, SS, Rodriguez-Gil, JL, Rotter, JI, Rybicki, BA, Schwartz, AG, Signorello, LB, Spitz, M, Strom, SS, Thun, MJ, Tucker, MA, Wang, Z, Wiencke, JK, Witte, JS, Wrensch, M, Wu, X, Yamamura, Y, Zanetti, KA, Zheng, W, Ziegler, RG, Zhu, X, Redline, S, Hirschhorn, JN, Henderson, BE, Taylor Jr, HA, Price, AL, Hakonarson, H, Chanock, SJ, Haiman, CA, Wilson, JG, Reich, D, and Myers, SR
- Published
- 2011
9. Genome-Wide Association of Body Fat Distribution in African Ancestry Populations Suggests New Loci
- Author
-
Liu, CT, Monda, KL, Taylor, KC, Lange, L, Demerath, EW, Palmas, W, Wojczynski, MK, Ellis, JC, Vitolins, MZ, Liu, S, Papanicolaou, GJ, Irvin, MR, Xue, L, Griffin, PJ, Nalls, MA, Adeyemo, A, Liu, J, Li, G, Ruiz-Narvaez, EA, Chen, WM, Chen, F, Henderson, BE, Millikan, RC, Ambrosone, CB, Strom, SS, Guo, X, Andrews, JS, Sun, YV, Mosley, TH, Yanek, LR, Shriner, D, Haritunians, T, Rotter, JI, Speliotes, EK, Smith, M, Rosenberg, L, Mychaleckyj, J, Nayak, U, Spruill, I, Garvey, WT, Pettaway, C, Nyante, S, Bandera, EV, Britton, AF, Zonderman, AB, Rasmussen-Torvik, LJ, Chen, YDI, Ding, J, Lohman, K, Kritchevsky, SB, Zhao, W, Peyser, PA, Kardia, SLR, Kabagambe, E, Broeckel, U, Chen, G, Zhou, J, Wassertheil-Smoller, S, Neuhouser, ML, Rampersaud, E, Psaty, B, Kooperberg, C, Manson, JAE, Kuller, LH, Ochs-Balcom, HM, Johnson, KC, Sucheston, L, Ordovas, JM, Palmer, JR, Haiman, CA, McKnight, B, Howard, BV, Becker, DM, Bielak, LF, Liu, Y, Allison, MA, Grant, SFA, Burke, GL, Patel, SR, Schreiner, PJ, Borecki, IB, Evans, MK, Taylor, H, Sale, MM, Howard, V, Carlson, CS, Rotimi, CN, Cushman, M, Harris, TB, Reiner, AP, Cupples, LA, North, KE, Fox, CS, Liu, CT, Monda, KL, Taylor, KC, Lange, L, Demerath, EW, Palmas, W, Wojczynski, MK, Ellis, JC, Vitolins, MZ, Liu, S, Papanicolaou, GJ, Irvin, MR, Xue, L, Griffin, PJ, Nalls, MA, Adeyemo, A, Liu, J, Li, G, Ruiz-Narvaez, EA, Chen, WM, Chen, F, Henderson, BE, Millikan, RC, Ambrosone, CB, Strom, SS, Guo, X, Andrews, JS, Sun, YV, Mosley, TH, Yanek, LR, Shriner, D, Haritunians, T, Rotter, JI, Speliotes, EK, Smith, M, Rosenberg, L, Mychaleckyj, J, Nayak, U, Spruill, I, Garvey, WT, Pettaway, C, Nyante, S, Bandera, EV, Britton, AF, Zonderman, AB, Rasmussen-Torvik, LJ, Chen, YDI, Ding, J, Lohman, K, Kritchevsky, SB, Zhao, W, Peyser, PA, Kardia, SLR, Kabagambe, E, Broeckel, U, Chen, G, Zhou, J, Wassertheil-Smoller, S, Neuhouser, ML, Rampersaud, E, Psaty, B, Kooperberg, C, Manson, JAE, Kuller, LH, Ochs-Balcom, HM, Johnson, KC, Sucheston, L, Ordovas, JM, Palmer, JR, Haiman, CA, McKnight, B, Howard, BV, Becker, DM, Bielak, LF, Liu, Y, Allison, MA, Grant, SFA, Burke, GL, Patel, SR, Schreiner, PJ, Borecki, IB, Evans, MK, Taylor, H, Sale, MM, Howard, V, Carlson, CS, Rotimi, CN, Cushman, M, Harris, TB, Reiner, AP, Cupples, LA, North, KE, and Fox, CS
- Abstract
Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10-6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10-8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10-8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10-8; RREB1: p = 5.7×10-8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distr
- Published
- 2013
10. Genome-Wide association study of coronary heart disease and its risk factors in 8,090 african americans: The nhlbi CARe project
- Author
-
Lettre, G, Palmer, CD, Young, T, Ejebe, KG, Allayee, H, Benjamin, EJ, Bennett, F, Bowden, DW, Chakravarti, A, Dreisbach, A, Farlow, DN, Folsom, AR, Fornage, M, Forrester, T, Fox, E, Haiman, CA, Hartiala, J, Harris, TB, Hazen, SL, Heckbert, SR, Henderson, BE, Hirschhorn, JN, Keating, BJ, Kritchevsky, SB, Larkin, E, Li, M, Rudock, ME, McKenzie, CA, Meigs, JB, Meng, YA, Mosley, TH, Newman, AB, Newton-Cheh, CH, Paltoo, DN, Papanicolaou, GJ, Patterson, N, Post, WS, Psaty, BM, Qasim, AN, Qu, L, Rader, DJ, Redline, S, Reilly, MP, Reiner, AP, Rich, SS, Rotter, JI, Liu, Y, Shrader, P, Siscovick, DS, Tang, WHW, Taylor, HA, Tracy, RP, Vasan, RS, Waters, KM, Wilks, R, Wilson, JG, Fabsitz, RR, Gabriel, SB, Kathiresan, S, Boerwinkle, E, Lettre, G, Palmer, CD, Young, T, Ejebe, KG, Allayee, H, Benjamin, EJ, Bennett, F, Bowden, DW, Chakravarti, A, Dreisbach, A, Farlow, DN, Folsom, AR, Fornage, M, Forrester, T, Fox, E, Haiman, CA, Hartiala, J, Harris, TB, Hazen, SL, Heckbert, SR, Henderson, BE, Hirschhorn, JN, Keating, BJ, Kritchevsky, SB, Larkin, E, Li, M, Rudock, ME, McKenzie, CA, Meigs, JB, Meng, YA, Mosley, TH, Newman, AB, Newton-Cheh, CH, Paltoo, DN, Papanicolaou, GJ, Patterson, N, Post, WS, Psaty, BM, Qasim, AN, Qu, L, Rader, DJ, Redline, S, Reilly, MP, Reiner, AP, Rich, SS, Rotter, JI, Liu, Y, Shrader, P, Siscovick, DS, Tang, WHW, Taylor, HA, Tracy, RP, Vasan, RS, Waters, KM, Wilks, R, Wilson, JG, Fabsitz, RR, Gabriel, SB, Kathiresan, S, and Boerwinkle, E
- Abstract
Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia.
- Published
- 2011
11. Ein Genom Scan zu Adipositas relevanten Phänotypen bei den Old Order Amish
- Author
-
Platte, P, primary, Papanicolaou, GJ, additional, Klein, CM, additional, Doheny, KF, additional, Pugh, EW, additional, Roy-Gagnon, MH, additional, Francomano, CA, additional, Wilson, AF, additional, and Stunkard, AJ, additional
- Published
- 2004
- Full Text
- View/download PDF
12. Soluble Immune Checkpoint Protein and Lipid Network Associations with All-Cause Mortality Risk: Trans-Omics for Precision Medicine (TOPMed) Program.
- Author
-
Rodriguez A, Yang C, Gan W, Karlinsey K, Zhou B, Rich SS, Taylor KD, Guo X, Rotter JI, Johnson WC, Cornell E, Tracy RP, Durda JP, Gerszten RE, Clish CB, Blackwell T, Papanicolaou GJ, Lin H, Raffield LM, Vargas JD, Vasan R, and Manichaikul A
- Abstract
Adverse cardiovascular events are emerging with the use of immune checkpoint therapies in oncology. Using datasets in the Trans-Omics for Precision Medicine program (Multi-Ethnic Study of Atherosclerosis, Jackson Heart Study [JHS], and Framingham Heart Study), we examined the association of immune checkpoint plasma proteins with each other, their associated protein network with high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C), and the association of HDL-C- and LDL-C-associated protein networks with all-cause mortality risk. Plasma levels of LAG3 and HAVCR2 showed statistically significant associations with mortality risk. Colocalization analysis using genome wide-association studies of HDL-C or LDL-C and protein quantitative trait loci from JHS and the Atherosclerosis Risk in Communities identified TFF3 rs60467699 and CD36 rs3211938 variants as significantly colocalized with HDL-C; in contrast, none colocalized with LDL-C. The measurement of plasma LAG3, HAVCR2, and associated proteins plus targeted genotyping may identify patients at increased mortality risk.
- Published
- 2025
- Full Text
- View/download PDF
13. Systemic Markers of Lung Function and Forced Expiratory Volume in 1 Second Decline across Diverse Cohorts.
- Author
-
Ngo D, Pratte KA, Flexeder C, Petersen H, Dang H, Ma Y, Keyes MJ, Gao Y, Deng S, Peterson BD, Farrell LA, Bhambhani VM, Palacios C, Quadir J, Gillenwater L, Xu H, Emson C, Gieger C, Suhre K, Graumann J, Jain D, Conomos MP, Tracy RP, Guo X, Liu Y, Johnson WC, Cornell E, Durda P, Taylor KD, Papanicolaou GJ, Rich SS, Rotter JI, Rennard SI, Curtis JL, Woodruff PG, Comellas AP, Silverman EK, Crapo JD, Larson MG, Vasan RS, Wang TJ, Correa A, Sims M, Wilson JG, Gerszten RE, O'Connor GT, Barr RG, Couper D, Dupuis J, Manichaikul A, O'Neal WK, Tesfaigzi Y, Schulz H, and Bowler RP
- Subjects
- Humans, Forced Expiratory Volume physiology, Proteomics, Vital Capacity physiology, Spirometry, Biomarkers, Lung, Pulmonary Disease, Chronic Obstructive
- Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV
1 ) and FEV1 /forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery β = 0.0561, Q = 4.05 × 10-10 ; β = 0.0421, Q = 1.12 × 10-3 ; and β = 0.0358, Q = 1.67 × 10-3 , respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline ( Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; β = -4.3 ml/yr, Q = 0.049; β = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.- Published
- 2023
- Full Text
- View/download PDF
14. Scientific opportunities in resilience research for cardiovascular health and wellness. Report from a National Heart, Lung, and Blood Institute workshop.
- Author
-
Taylor HA, Finkel T, Gao Y, Ballinger SW, Campo R, Chen R, Chen SH, Davidson K, Iruela-Arispe ML, Jaquish C, LeBrasseur NK, Odden MC, Papanicolaou GJ, Picard M, Srinivas P, Tjurmina O, Wolz M, and Galis ZS
- Subjects
- United States, Humans, National Heart, Lung, and Blood Institute (U.S.), Research Personnel
- Abstract
Exposure of biological systems to acute or chronic insults triggers a host of molecular and physiological responses to either tolerate, adapt, or fully restore homeostasis; these responses constitute the hallmarks of resilience. Given the many facets, dimensions, and discipline-specific focus, gaining a shared understanding of "resilience" has been identified as a priority for supporting advances in cardiovascular health. This report is based on the working definition: "Resilience is the ability of living systems to successfully maintain or return to homeostasis in response to physical, molecular, individual, social, societal, or environmental stressors or challenges," developed after considering many factors contributing to cardiovascular resilience through deliberations of multidisciplinary experts convened by the National Heart, Lung, and Blood Institute during a workshop entitled: "Enhancing Resilience for Cardiovascular Health and Wellness." Some of the main emerging themes that support the possibility of enhancing resilience for cardiovascular health include optimal energy management and substrate diversity, a robust immune system that safeguards tissue homeostasis, and social and community support. The report also highlights existing research challenges, along with immediate and long-term opportunities for resilience research. Certain immediate opportunities identified are based on leveraging existing high-dimensional data from longitudinal clinical studies to identify vascular resilience measures, create a 'resilience index,' and adopt a life-course approach. Long-term opportunities include developing quantitative cell/organ/system/community models to identify resilience factors and mechanisms at these various levels, designing experimental and clinical interventions that specifically assess resilience, adopting global sharing of resilience-related data, and cross-domain training of next-generation researchers in this field., (© 2022 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.)
- Published
- 2022
- Full Text
- View/download PDF
15. Lymphocyte activation gene-3-associated protein networks are associated with HDL-cholesterol and mortality in the Trans-omics for Precision Medicine program.
- Author
-
Manichaikul A, Lin H, Kang C, Yang C, Rich SS, Taylor KD, Guo X, Rotter JI, Craig Johnson W, Cornell E, Tracy RP, Peter Durda J, Liu Y, Vasan RS, Adrienne Cupples L, Gerszten RE, Clish CB, Jain D, Conomos MP, Blackwell T, Papanicolaou GJ, and Rodriguez A
- Subjects
- Cholesterol, HDL, Chromatin, Humans, Lymphocyte Activation, Membrane Proteins, Atherosclerosis, Precision Medicine
- Abstract
Deficiency of the immune checkpoint lymphocyte activation gene-3 (LAG3) protein is significantly associated with both elevated HDL-cholesterol (HDL-C) and myocardial infarction risk. We determined the association of genetic variants within ±500 kb of LAG3 with plasma LAG3 and defined LAG3-associated plasma proteins with HDL-C and clinical outcomes. Whole genome sequencing and plasma proteomics were obtained from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Framingham Heart Study (FHS) cohorts as part of the Trans-Omics for Precision Medicine program. In situ Hi-C chromatin capture was performed in EBV-transformed cell lines isolated from four MESA participants. Genetic association analyses were performed in MESA using multivariate regression models, with validation in FHS. A LAG3-associated protein network was tested for association with HDL-C, coronary heart disease, and all-cause mortality. We identify an association between the LAG3 rs3782735 variant and plasma LAG3 protein. Proteomics analysis reveals 183 proteins significantly associated with LAG3 with four proteins associated with HDL-C. Four proteins discovered for association with all-cause mortality in FHS shows nominal associations in MESA. Chromatin capture analysis reveals significant cis interactions between LAG3 and C1S, LRIG3, TNFRSF1A, and trans interactions between LAG3 and B2M. A LAG3-associated protein network has significant associations with HDL-C and mortality., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
16. Clonal hematopoiesis associated with epigenetic aging and clinical outcomes.
- Author
-
Nachun D, Lu AT, Bick AG, Natarajan P, Weinstock J, Szeto MD, Kathiresan S, Abecasis G, Taylor KD, Guo X, Tracy R, Durda P, Liu Y, Johnson C, Rich SS, Van Den Berg D, Laurie C, Blackwell T, Papanicolaou GJ, Correa A, Raffield LM, Johnson AD, Murabito J, Manson JE, Desai P, Kooperberg C, Assimes TL, Levy D, Rotter JI, Reiner AP, Whitsel EA, Wilson JG, Horvath S, and Jaiswal S
- Subjects
- Aging, Humans, Risk Factors, Treatment Outcome, Clonal Hematopoiesis genetics, Epigenomics methods
- Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA-methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array and whole-genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6 × 10
-7 ) to 3.08 years (EEAA, p < 3.7 × 10-18 ). Mutations in most CHIP genes except DNA-damage response genes were associated with increases in several measures of age acceleration. CHIP carriers with mutations in multiple genes had the largest increases in age acceleration and decrease in estimated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration >0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at high risk of all-cause mortality (hazard ratio 2.90, p < 4.1 × 10-8 ) and coronary heart disease (CHD) (hazard ratio 3.24, p < 9.3 × 10-6 ) compared to those who were CHIP-/AgeAccelHG-. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG- were not at increased risk of these outcomes. In summary, CHIP is strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may be used to identify a population at high risk for adverse outcomes and who may be a target for clinical interventions., (© 2021 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.)- Published
- 2021
- Full Text
- View/download PDF
17. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
- Author
-
Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, Taliun SAG, Corvelo A, Gogarten SM, Kang HM, Pitsillides AN, LeFaive J, Lee SB, Tian X, Browning BL, Das S, Emde AK, Clarke WE, Loesch DP, Shetty AC, Blackwell TW, Smith AV, Wong Q, Liu X, Conomos MP, Bobo DM, Aguet F, Albert C, Alonso A, Ardlie KG, Arking DE, Aslibekyan S, Auer PL, Barnard J, Barr RG, Barwick L, Becker LC, Beer RL, Benjamin EJ, Bielak LF, Blangero J, Boehnke M, Bowden DW, Brody JA, Burchard EG, Cade BE, Casella JF, Chalazan B, Chasman DI, Chen YI, Cho MH, Choi SH, Chung MK, Clish CB, Correa A, Curran JE, Custer B, Darbar D, Daya M, de Andrade M, DeMeo DL, Dutcher SK, Ellinor PT, Emery LS, Eng C, Fatkin D, Fingerlin T, Forer L, Fornage M, Franceschini N, Fuchsberger C, Fullerton SM, Germer S, Gladwin MT, Gottlieb DJ, Guo X, Hall ME, He J, Heard-Costa NL, Heckbert SR, Irvin MR, Johnsen JM, Johnson AD, Kaplan R, Kardia SLR, Kelly T, Kelly S, Kenny EE, Kiel DP, Klemmer R, Konkle BA, Kooperberg C, Köttgen A, Lange LA, Lasky-Su J, Levy D, Lin X, Lin KH, Liu C, Loos RJF, Garman L, Gerszten R, Lubitz SA, Lunetta KL, Mak ACY, Manichaikul A, Manning AK, Mathias RA, McManus DD, McGarvey ST, Meigs JB, Meyers DA, Mikulla JL, Minear MA, Mitchell BD, Mohanty S, Montasser ME, Montgomery C, Morrison AC, Murabito JM, Natale A, Natarajan P, Nelson SC, North KE, O'Connell JR, Palmer ND, Pankratz N, Peloso GM, Peyser PA, Pleiness J, Post WS, Psaty BM, Rao DC, Redline S, Reiner AP, Roden D, Rotter JI, Ruczinski I, Sarnowski C, Schoenherr S, Schwartz DA, Seo JS, Seshadri S, Sheehan VA, Sheu WH, Shoemaker MB, Smith NL, Smith JA, Sotoodehnia N, Stilp AM, Tang W, Taylor KD, Telen M, Thornton TA, Tracy RP, Van Den Berg DJ, Vasan RS, Viaud-Martinez KA, Vrieze S, Weeks DE, Weir BS, Weiss ST, Weng LC, Willer CJ, Zhang Y, Zhao X, Arnett DK, Ashley-Koch AE, Barnes KC, Boerwinkle E, Gabriel S, Gibbs R, Rice KM, Rich SS, Silverman EK, Qasba P, Gan W, Papanicolaou GJ, Nickerson DA, Browning SR, Zody MC, Zöllner S, Wilson JG, Cupples LA, Laurie CC, Jaquish CE, Hernandez RD, O'Connor TD, and Abecasis GR
- Subjects
- Cytochrome P-450 CYP2D6 genetics, Haplotypes genetics, Heterozygote, Humans, INDEL Mutation, Loss of Function Mutation, Mutagenesis, Phenotype, Polymorphism, Single Nucleotide, Population Density, Quality Control, Sample Size, United States, Whole Genome Sequencing standards, Genetic Variation genetics, Genome, Human genetics, Genomics, National Heart, Lung, and Blood Institute (U.S.), Precision Medicine standards
- Abstract
The Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)
1 . In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.- Published
- 2021
- Full Text
- View/download PDF
18. Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium.
- Author
-
Lin BM, Grinde KE, Brody JA, Breeze CE, Raffield LM, Mychaleckyj JC, Thornton TA, Perry JA, Baier LJ, de las Fuentes L, Guo X, Heavner BD, Hanson RL, Hung YJ, Qian H, Hsiung CA, Hwang SJ, Irvin MR, Jain D, Kelly TN, Kobes S, Lange L, Lash JP, Li Y, Liu X, Mi X, Musani SK, Papanicolaou GJ, Parsa A, Reiner AP, Salimi S, Sheu WH, Shuldiner AR, Taylor KD, Smith AV, Smith JA, Tin A, Vaidya D, Wallace RB, Yamamoto K, Sakaue S, Matsuda K, Kamatani Y, Momozawa Y, Yanek LR, Young BA, Zhao W, Okada Y, Abecasis G, Psaty BM, Arnett DK, Boerwinkle E, Cai J, Yii-Der Chen I, Correa A, Cupples LA, He J, Kardia SL, Kooperberg C, Mathias RA, Mitchell BD, Nickerson DA, Turner ST, Vasan RS, Rotter JI, Levy D, Kramer HJ, Köttgen A, Nhlbi Trans-Omics For Precision Medicine TOPMed Consortium, TOPMed Kidney Working Group, Rich SS, Lin DY, Browning SR, and Franceschini N
- Subjects
- Alleles, Gene Frequency, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Male, National Heart, Lung, and Blood Institute (U.S.), Polymorphism, Single Nucleotide, Public Health Surveillance, Quantitative Trait, Heritable, United States epidemiology, Genomics methods, Glomerular Filtration Rate, Precision Medicine methods, Whole Genome Sequencing
- Abstract
Background: Genetic factors that influence kidney traits have been understudied for low frequency and ancestry-specific variants., Methods: We combined whole genome sequencing (WGS) data from 23,732 participants from 10 NHLBI Trans-Omics for Precision Medicine (TOPMed) Program multi-ethnic studies to identify novel loci for estimated glomerular filtration rate (eGFR). Participants included European, African, East Asian, and Hispanic ancestries. We applied linear mixed models using a genetic relationship matrix estimated from the WGS data and adjusted for age, sex, study, and ethnicity., Findings: When testing single variants, we identified three novel loci driven by low frequency variants more commonly observed in non-European ancestry (PRKAA2, rs180996919, minor allele frequency [MAF] 0.04%, P = 6.1 × 10
-11 ; METTL8, rs116951054, MAF 0.09%, P = 4.5 × 10-9 ; and MATK, rs539182790, MAF 0.05%, P = 3.4 × 10-9 ). We also replicated two known loci for common variants (rs2461702, MAF=0.49, P = 1.2 × 10-9 , nearest gene GATM, and rs71147340, MAF=0.34, P = 3.3 × 10-9 , CDK12). Testing aggregated variants within a gene identified the MAF gene. A statistical approach based on local ancestry helped to identify replication samples for ancestry-specific variants., Interpretation: This study highlights challenges in studying variants influencing kidney traits that are low frequency in populations and more common in non-European ancestry., Competing Interests: Declaration of Competing Interest GRA is employed by Regeneron Pharmaceuticals and he owns stock and stock options for Regeneron Pharmaceuticals. BMP serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. BMP reports serving on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Y-DIC, LRY, JCM, BDM, JIR, KDT, JPL, EB, JAS, GRA report grants from NIH during the conduct of the study. Remaining authors have nothing to disclose., (Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
19. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals.
- Author
-
Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, Cho K, Christensen C, Connell J, Mutsert R, Dominiczak AF, Dörr M, Eiriksdottir G, Farmaki AE, Gaziano JM, Grarup N, Grove ML, Hallmans G, Hansen T, Have CT, Heiss G, Jørgensen ME, Jousilahti P, Kajantie E, Kamat M, Käräjämäki A, Karpe F, Koistinen HA, Kovesdy CP, Kuulasmaa K, Laatikainen T, Lannfelt L, Lee IT, Lee WJ, Linneberg A, Martin LW, Moitry M, Nadkarni G, Neville MJ, Palmer CNA, Papanicolaou GJ, Pedersen O, Peters J, Poulter N, Rasheed A, Rasmussen KL, Rayner NW, Mägi R, Renström F, Rettig R, Rossouw J, Schreiner PJ, Sever PS, Sigurdsson EL, Skaaby T, Sun YV, Sundstrom J, Thorgeirsson G, Esko T, Trabetti E, Tsao PS, Tuomi T, Turner ST, Tzoulaki I, Vaartjes I, Vergnaud AC, Willer CJ, Wilson PWF, Witte DR, Yonova-Doing E, Zhang H, Aliya N, Almgren P, Amouyel P, Asselbergs FW, Barnes MR, Blakemore AI, Boehnke M, Bots ML, Bottinger EP, Buring JE, Chambers JC, Chen YI, Chowdhury R, Conen D, Correa A, Davey Smith G, Boer RA, Deary IJ, Dedoussis G, Deloukas P, Di Angelantonio E, Elliott P, Felix SB, Ferrières J, Ford I, Fornage M, Franks PW, Franks S, Frossard P, Gambaro G, Gaunt TR, Groop L, Gudnason V, Harris TB, Hayward C, Hennig BJ, Herzig KH, Ingelsson E, Tuomilehto J, Järvelin MR, Jukema JW, Kardia SLR, Kee F, Kooner JS, Kooperberg C, Launer LJ, Lind L, Loos RJF, Majumder AAS, Laakso M, McCarthy MI, Melander O, Mohlke KL, Murray AD, Nordestgaard BG, Orho-Melander M, Packard CJ, Padmanabhan S, Palmas W, Polasek O, Porteous DJ, Prentice AM, Province MA, Relton CL, Rice K, Ridker PM, Rolandsson O, Rosendaal FR, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sattar N, Sheu WH, Smith BH, Soranzo N, Spector TD, Starr JM, Sebert S, Taylor KD, Lakka TA, Timpson NJ, Tobin MD, van der Harst P, van der Meer P, Ramachandran VS, Verweij N, Virtamo J, Völker U, Weir DR, Zeggini E, Charchar FJ, Wareham NJ, Langenberg C, Tomaszewski M, Butterworth AS, Caulfield MJ, Danesh J, Edwards TL, Holm H, Hung AM, Lindgren CM, Liu C, Manning AK, Morris AP, Morrison AC, O'Donnell CJ, Psaty BM, Saleheen D, Stefansson K, Boerwinkle E, Chasman DI, Levy D, Newton-Cheh C, Munroe PB, and Howson JMM
- Subjects
- GATA5 Transcription Factor genetics, Genome-Wide Association Study, Genotype, Humans, Mutation genetics, Phospholipase C beta genetics, Polymorphism, Single Nucleotide genetics, Blood Pressure genetics, Gene Frequency genetics, Genetic Predisposition to Disease genetics, Hypertension genetics
- Abstract
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10
-8 ), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.- Published
- 2020
- Full Text
- View/download PDF
20. Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants.
- Author
-
Zhao X, Qiao D, Yang C, Kasela S, Kim W, Ma Y, Shrine N, Batini C, Sofer T, Taliun SAG, Sakornsakolpat P, Balte PP, Prokopenko D, Yu B, Lange LA, Dupuis J, Cade BE, Lee J, Gharib SA, Daya M, Laurie CA, Ruczinski I, Cupples LA, Loehr LR, Bartz TM, Morrison AC, Psaty BM, Vasan RS, Wilson JG, Taylor KD, Durda P, Johnson WC, Cornell E, Guo X, Liu Y, Tracy RP, Ardlie KG, Aguet F, VanDenBerg DJ, Papanicolaou GJ, Rotter JI, Barnes KC, Jain D, Nickerson DA, Muzny DM, Metcalf GA, Doddapaneni H, Dugan-Perez S, Gupta N, Gabriel S, Rich SS, O'Connor GT, Redline S, Reed RM, Laurie CC, Daviglus ML, Preudhomme LK, Burkart KM, Kaplan RC, Wain LV, Tobin MD, London SJ, Lappalainen T, Oelsner EC, Abecasis GR, Silverman EK, Barr RG, Cho MH, and Manichaikul A
- Subjects
- Adult, Aged, Aged, 80 and over, Alpha-Ketoglutarate-Dependent Dioxygenase FTO genetics, Calcium-Binding Proteins genetics, Feasibility Studies, Female, Follow-Up Studies, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Intracellular Signaling Peptides and Proteins genetics, Lung physiopathology, Male, Middle Aged, Polymorphism, Single Nucleotide, Protein Inhibitors of Activated STAT genetics, Pulmonary Disease, Chronic Obstructive ethnology, Pulmonary Disease, Chronic Obstructive physiopathology, Small Ubiquitin-Related Modifier Proteins genetics, Black or African American genetics, Genetic Loci, Pulmonary Disease, Chronic Obstructive genetics, Respiratory Physiological Phenomena genetics, Whole Genome Sequencing
- Abstract
Chronic obstructive pulmonary disease (COPD), diagnosed by reduced lung function, is a leading cause of morbidity and mortality. We performed whole genome sequence (WGS) analysis of lung function and COPD in a multi-ethnic sample of 11,497 participants from population- and family-based studies, and 8499 individuals from COPD-enriched studies in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. We identify at genome-wide significance 10 known GWAS loci and 22 distinct, previously unreported loci, including two common variant signals from stratified analysis of African Americans. Four novel common variants within the regions of PIAS1, RGN (two variants) and FTO show evidence of replication in the UK Biobank (European ancestry n ~ 320,000), while colocalization analyses leveraging multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Our study demonstrates the value of performing WGS analyses and multi-omic follow-up in cohorts of diverse ancestry.
- Published
- 2020
- Full Text
- View/download PDF
21. Precision Health Analytics With Predictive Analytics and Implementation Research: JACC State-of-the-Art Review.
- Author
-
Pearson TA, Califf RM, Roper R, Engelgau MM, Khoury MJ, Alcantara C, Blakely C, Boyce CA, Brown M, Croxton TL, Fenton K, Green Parker MC, Hamilton A, Helmchen L, Hsu LL, Kent DM, Kind A, Kravitz J, Papanicolaou GJ, Prosperi M, Quinn M, Price LN, Shireman PK, Smith SM, Szczesniak R, Goff DC Jr, and Mensah GA
- Subjects
- Humans, Prognosis, Cardiology, Delivery of Health Care methods, Periodicals as Topic, Precision Medicine methods, Public Health
- Abstract
Emerging data science techniques of predictive analytics expand the quality and quantity of complex data relevant to human health and provide opportunities for understanding and control of conditions such as heart, lung, blood, and sleep disorders. To realize these opportunities, the information sources, the data science tools that use the information, and the application of resulting analytics to health and health care issues will require implementation research methods to define benefits, harms, reach, and sustainability; and to understand related resource utilization implications to inform policymakers. This JACC State-of-the-Art Review is based on a workshop convened by the National Heart, Lung, and Blood Institute to explore predictive analytics in the context of implementation science. It highlights precision medicine and precision public health as complementary and compelling applications of predictive analytics, and addresses future research and training endeavors that might further foster the application of predictive analytics in clinical medicine and public health., (Copyright © 2020 American College of Cardiology Foundation. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
22. Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations.
- Author
-
Kowalski MH, Qian H, Hou Z, Rosen JD, Tapia AL, Shan Y, Jain D, Argos M, Arnett DK, Avery C, Barnes KC, Becker LC, Bien SA, Bis JC, Blangero J, Boerwinkle E, Bowden DW, Buyske S, Cai J, Cho MH, Choi SH, Choquet H, Cupples LA, Cushman M, Daya M, de Vries PS, Ellinor PT, Faraday N, Fornage M, Gabriel S, Ganesh SK, Graff M, Gupta N, He J, Heckbert SR, Hidalgo B, Hodonsky CJ, Irvin MR, Johnson AD, Jorgenson E, Kaplan R, Kardia SLR, Kelly TN, Kooperberg C, Lasky-Su JA, Loos RJF, Lubitz SA, Mathias RA, McHugh CP, Montgomery C, Moon JY, Morrison AC, Palmer ND, Pankratz N, Papanicolaou GJ, Peralta JM, Peyser PA, Rich SS, Rotter JI, Silverman EK, Smith JA, Smith NL, Taylor KD, Thornton TA, Tiwari HK, Tracy RP, Wang T, Weiss ST, Weng LC, Wiggins KL, Wilson JG, Yanek LR, Zöllner S, North KE, Auer PL, Raffield LM, Reiner AP, and Li Y
- Subjects
- Adult, Aged, Aged, 80 and over, Computational Biology methods, Databases, Genetic, Female, Gene Frequency, Genetic Predisposition to Disease, Genetics, Population, Genome-Wide Association Study, Genotyping Techniques, Humans, Linkage Disequilibrium, Male, Middle Aged, United States, Black or African American genetics, Hispanic or Latino genetics, Precision Medicine methods, Whole Genome Sequencing methods, beta-Globins genetics
- Abstract
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations., Competing Interests: Edwin K Silverman and Michael H Cho have received grant support from GSK, MHC has received consulting fees from Genentech. Scott T. Weiss and Kathleen C. Barnes received royalties from UpToDate. Patrick T. Ellinor is supported by a grant from Bayer AG to the Broad Institute focused on the genetics and therapeutics of cardiovascular diseases, and has also served on advisory boards or consulted for Bayer AG, Quest Diagnostics and Novartis. Steven A Lubitz receives sponsored research support from Bristol Myers Squibb / Pfizer, Bayer HealthCare, and Boehringer Ingelheim, and has consulted for Abbott, Quest Diagnostics, Bristol Myers Squibb / Pfizer. Other authors declared no conflicts of interest.
- Published
- 2019
- Full Text
- View/download PDF
23. Emerging Concepts in Precision Medicine and Cardiovascular Diseases in Racial and Ethnic Minority Populations.
- Author
-
Mensah GA, Jaquish C, Srinivas P, Papanicolaou GJ, Wei GS, Redmond N, Roberts MC, Nelson C, Aviles-Santa L, Puggal M, Green Parker MC, Minear MA, Barfield W, Fenton KN, Boyce CA, Engelgau MM, and Khoury MJ
- Subjects
- Cardiovascular Diseases therapy, Healthcare Disparities ethnology, Healthcare Disparities trends, Humans, Precision Medicine methods, Cardiovascular Diseases ethnology, Ethnicity, Health Services Accessibility trends, Minority Groups, Precision Medicine trends
- Abstract
Cardiovascular diseases remain the leading cause of mortality and a major contributor to preventable deaths worldwide. The dominant modifiable risk factors and the social and environmental determinants that increase cardiovascular risk are known, and collectively, are as important in racial and ethnic minority populations as they are in majority populations. Their prevention and treatment remain the foundation for cardiovascular health promotion and disease prevention. Genetic and epigenetic factors are increasingly recognized as important contributors to cardiovascular risk and provide an opportunity for advancing precision cardiovascular medicine. In this review, we explore emerging concepts at the interface of precision medicine and cardiovascular disease in racial and ethnic minority populations. Important among these are the lack of racial and ethnic diversity in genomics studies and biorepositories; the resulting misclassification of benign variants as pathogenic in minorities; and the importance of ensuring ancestry-matched controls in variant interpretation. We address the relevance of epigenetics, pharmacogenomics, genetic testing and counseling, and their social and cultural implications. We also examine the potential impact of precision medicine on racial and ethnic disparities. The National Institutes of Health's All of Us Research Program and the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine Initiative are presented as examples of research programs at the forefront of precision medicine and diversity to explore research implications in minorities. We conclude with an overview of implementation research challenges in precision medicine and the ethical implications in minority populations. Successful implementation of precision medicine in cardiovascular disease in minority populations will benefit from strategies that directly address diversity and inclusion in genomics research and go beyond race and ethnicity to explore ancestry-matched controls, as well as geographic, cultural, social, and environmental determinants of health.
- Published
- 2019
- Full Text
- View/download PDF
24. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies.
- Author
-
Morris AP, Le TH, Wu H, Akbarov A, van der Most PJ, Hemani G, Smith GD, Mahajan A, Gaulton KJ, Nadkarni GN, Valladares-Salgado A, Wacher-Rodarte N, Mychaleckyj JC, Dueker ND, Guo X, Hai Y, Haessler J, Kamatani Y, Stilp AM, Zhu G, Cook JP, Ärnlöv J, Blanton SH, de Borst MH, Bottinger EP, Buchanan TA, Cechova S, Charchar FJ, Chu PL, Damman J, Eales J, Gharavi AG, Giedraitis V, Heath AC, Ipp E, Kiryluk K, Kramer HJ, Kubo M, Larsson A, Lindgren CM, Lu Y, Madden PAF, Montgomery GW, Papanicolaou GJ, Raffel LJ, Sacco RL, Sanchez E, Stark H, Sundstrom J, Taylor KD, Xiang AH, Zivkovic A, Lind L, Ingelsson E, Martin NG, Whitfield JB, Cai J, Laurie CC, Okada Y, Matsuda K, Kooperberg C, Chen YI, Rundek T, Rich SS, Loos RJF, Parra EJ, Cruz M, Rotter JI, Snieder H, Tomaszewski M, Humphreys BD, and Franceschini N
- Subjects
- Adult, Aged, Blood Pressure genetics, Ethnicity genetics, Female, Genetic Loci genetics, Genome-Wide Association Study, Histone Code genetics, Histones metabolism, Humans, Hypertension ethnology, Hypertension physiopathology, Kidney Calculi ethnology, Kidney Calculi physiopathology, Male, Middle Aged, Polymorphism, Single Nucleotide, Renal Insufficiency, Chronic ethnology, Renal Insufficiency, Chronic physiopathology, Glomerular Filtration Rate genetics, Hypertension genetics, Kidney physiopathology, Kidney Calculi genetics, Renal Insufficiency, Chronic genetics
- Abstract
Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development.
- Published
- 2019
- Full Text
- View/download PDF
25. Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation.
- Author
-
Choi SH, Weng LC, Roselli C, Lin H, Haggerty CM, Shoemaker MB, Barnard J, Arking DE, Chasman DI, Albert CM, Chaffin M, Tucker NR, Smith JD, Gupta N, Gabriel S, Margolin L, Shea MA, Shaffer CM, Yoneda ZT, Boerwinkle E, Smith NL, Silverman EK, Redline S, Vasan RS, Burchard EG, Gogarten SM, Laurie C, Blackwell TW, Abecasis G, Carey DJ, Fornwalt BK, Smelser DT, Baras A, Dewey FE, Jaquish CE, Papanicolaou GJ, Sotoodehnia N, Van Wagoner DR, Psaty BM, Kathiresan S, Darbar D, Alonso A, Heckbert SR, Chung MK, Roden DM, Benjamin EJ, Murray MF, Lunetta KL, Lubitz SA, and Ellinor PT
- Subjects
- Adult, Age of Onset, Case-Control Studies, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Heterozygote, Humans, Male, Middle Aged, Quality Control, Atrial Fibrillation genetics, Connectin genetics, Loss of Function Mutation
- Abstract
Importance: Atrial fibrillation (AF) is the most common arrhythmia affecting 1% of the population. Young individuals with AF have a strong genetic association with the disease, but the mechanisms remain incompletely understood., Objective: To perform large-scale whole-genome sequencing to identify genetic variants related to AF., Design, Setting, and Participants: The National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine Program includes longitudinal and cohort studies that underwent high-depth whole-genome sequencing between 2014 and 2017 in 18 526 individuals from the United States, Mexico, Puerto Rico, Costa Rica, Barbados, and Samoa. This case-control study included 2781 patients with early-onset AF from 9 studies and identified 4959 controls of European ancestry from the remaining participants. Results were replicated in the UK Biobank (346 546 participants) and the MyCode Study (42 782 participants)., Exposures: Loss-of-function (LOF) variants in genes at AF loci and common genetic variation across the whole genome., Main Outcomes and Measures: Early-onset AF (defined as AF onset in persons <66 years of age). Due to multiple testing, the significance threshold for the rare variant analysis was P = 4.55 × 10-3., Results: Among 2781 participants with early-onset AF (the case group), 72.1% were men, and the mean (SD) age of AF onset was 48.7 (10.2) years. Participants underwent whole-genome sequencing at a mean depth of 37.8 fold and mean genome coverage of 99.1%. At least 1 LOF variant in TTN, the gene encoding the sarcomeric protein titin, was present in 2.1% of case participants compared with 1.1% in control participants (odds ratio [OR], 1.76 [95% CI, 1.04-2.97]). The proportion of individuals with early-onset AF who carried a LOF variant in TTN increased with an earlier age of AF onset (P value for trend, 4.92 × 10-4), and 6.5% of individuals with AF onset prior to age 30 carried a TTN LOF variant (OR, 5.94 [95% CI, 2.64-13.35]; P = 1.65 × 10-5). The association between TTN LOF variants and AF was replicated in an independent study of 1582 patients with early-onset AF (cases) and 41 200 control participants (OR, 2.16 [95% CI, 1.19-3.92]; P = .01)., Conclusions and Relevance: In a case-control study, there was a statistically significant association between an LOF variant in the TTN gene and early-onset AF, with the variant present in a small percentage of participants with early-onset AF (the case group). Further research is necessary to understand whether this is a causal relationship.
- Published
- 2018
- Full Text
- View/download PDF
26. PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity.
- Author
-
van Setten J, Brody JA, Jamshidi Y, Swenson BR, Butler AM, Campbell H, Del Greco FM, Evans DS, Gibson Q, Gudbjartsson DF, Kerr KF, Krijthe BP, Lyytikäinen LP, Müller C, Müller-Nurasyid M, Nolte IM, Padmanabhan S, Ritchie MD, Robino A, Smith AV, Steri M, Tanaka T, Teumer A, Trompet S, Ulivi S, Verweij N, Yin X, Arnar DO, Asselbergs FW, Bader JS, Barnard J, Bis J, Blankenberg S, Boerwinkle E, Bradford Y, Buckley BM, Chung MK, Crawford D, den Hoed M, Denny JC, Dominiczak AF, Ehret GB, Eijgelsheim M, Ellinor PT, Felix SB, Franco OH, Franke L, Harris TB, Holm H, Ilaria G, Iorio A, Kähönen M, Kolcic I, Kors JA, Lakatta EG, Launer LJ, Lin H, Lin HJ, Loos RJF, Lubitz SA, Macfarlane PW, Magnani JW, Leach IM, Meitinger T, Mitchell BD, Munzel T, Papanicolaou GJ, Peters A, Pfeufer A, Pramstaller PP, Raitakari OT, Rotter JI, Rudan I, Samani NJ, Schlessinger D, Silva Aldana CT, Sinner MF, Smith JD, Snieder H, Soliman EZ, Spector TD, Stott DJ, Strauch K, Tarasov KV, Thorsteinsdottir U, Uitterlinden AG, Van Wagoner DR, Völker U, Völzke H, Waldenberger M, Jan Westra H, Wild PS, Zeller T, Alonso A, Avery CL, Bandinelli S, Benjamin EJ, Cucca F, Dörr M, Ferrucci L, Gasparini P, Gudnason V, Hayward C, Heckbert SR, Hicks AA, Jukema JW, Kääb S, Lehtimäki T, Liu Y, Munroe PB, Parsa A, Polasek O, Psaty BM, Roden DM, Schnabel RB, Sinagra G, Stefansson K, Stricker BH, van der Harst P, van Duijn CM, Wilson JF, Gharib SA, de Bakker PIW, Isaacs A, Arking DE, and Sotoodehnia N
- Subjects
- Electrocardiography, Female, Humans, Linkage Disequilibrium genetics, Male, Mutation, Missense genetics, Risk Factors, Atrial Function physiology, Atrioventricular Node physiology, Electrophysiological Phenomena genetics, Genome-Wide Association Study
- Abstract
Electrocardiographic PR interval measures atrio-ventricular depolarization and conduction, and abnormal PR interval is a risk factor for atrial fibrillation and heart block. Our genome-wide association study of over 92,000 European-descent individuals identifies 44 PR interval loci (34 novel). Examination of these loci reveals known and previously not-yet-reported biological processes involved in cardiac atrial electrical activity. Genes in these loci are over-represented in cardiac disease processes including heart block and atrial fibrillation. Variants in over half of the 44 loci were associated with atrial or blood transcript expression levels, or were in high linkage disequilibrium with missense variants. Six additional loci were identified either by meta-analysis of ~105,000 African and European-descent individuals and/or by pleiotropic analyses combining PR interval with heart rate, QRS interval, and atrial fibrillation. These findings implicate developmental pathways, and identify transcription factors, ion-channel genes, and cell-junction/cell-signaling proteins in atrio-ventricular conduction, identifying potential targets for drug development.
- Published
- 2018
- Full Text
- View/download PDF
27. Multiethnic Meta-Analysis Identifies RAI1 as a Possible Obstructive Sleep Apnea-related Quantitative Trait Locus in Men.
- Author
-
Chen H, Cade BE, Gleason KJ, Bjonnes AC, Stilp AM, Sofer T, Conomos MP, Ancoli-Israel S, Arens R, Azarbarzin A, Bell GI, Below JE, Chun S, Evans DS, Ewert R, Frazier-Wood AC, Gharib SA, Haba-Rubio J, Hagen EW, Heinzer R, Hillman DR, Johnson WC, Kutalik Z, Lane JM, Larkin EK, Lee SK, Liang J, Loredo JS, Mukherjee S, Palmer LJ, Papanicolaou GJ, Penzel T, Peppard PE, Post WS, Ramos AR, Rice K, Rotter JI, Sands SA, Shah NA, Shin C, Stone KL, Stubbe B, Sul JH, Tafti M, Taylor KD, Teumer A, Thornton TA, Tranah GJ, Wang C, Wang H, Warby SC, Wellman DA, Zee PC, Hanis CL, Laurie CC, Gottlieb DJ, Patel SR, Zhu X, Sunyaev SR, Saxena R, Lin X, and Redline S
- Subjects
- Adult, Aged, Female, Humans, Male, Middle Aged, Phosphatidylethanolamine N-Methyltransferase genetics, Sex Characteristics, Sterol Regulatory Element Binding Protein 1 genetics, Trans-Activators, ras Proteins genetics, Genome-Wide Association Study, Quantitative Trait Loci genetics, Sleep Apnea, Obstructive genetics, Sleep, REM physiology, Transcription Factors genetics
- Abstract
Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single ethnic groups, and a large proportion of the heritability remains unexplained. The apnea-hypopnea index (AHI) is a commonly used quantitative measure characterizing OSA severity. Because OSA differs by sex, and the pathophysiology of obstructive events differ in rapid eye movement (REM) and non-REM (NREM) sleep, we hypothesized that additional genetic association signals would be identified by analyzing the NREM/REM-specific AHI and by conducting sex-specific analyses in multiethnic samples. We performed genome-wide association tests for up to 19,733 participants of African, Asian, European, and Hispanic/Latino American ancestry in 7 studies. We identified rs12936587 on chromosome 17 as a possible quantitative trait locus for NREM AHI in men (N = 6,737; P = 1.7 × 10
-8 ) but not in women (P = 0.77). The association with NREM AHI was replicated in a physiological research study (N = 67; P = 0.047). This locus overlapping the RAI1 gene and encompassing genes PEMT1, SREBF1, and RASD1 was previously reported to be associated with coronary artery disease, lipid metabolism, and implicated in Potocki-Lupski syndrome and Smith-Magenis syndrome, which are characterized by abnormal sleep phenotypes. We also identified gene-by-sex interactions in suggestive association regions, suggesting that genetic variants for AHI appear to vary by sex, consistent with the clinical observations of strong sexual dimorphism.- Published
- 2018
- Full Text
- View/download PDF
28. Analysis commons, a team approach to discovery in a big-data environment for genetic epidemiology.
- Author
-
Brody JA, Morrison AC, Bis JC, O'Connell JR, Brown MR, Huffman JE, Ames DC, Carroll A, Conomos MP, Gabriel S, Gibbs RA, Gogarten SM, Gupta N, Jaquish CE, Johnson AD, Lewis JP, Liu X, Manning AK, Papanicolaou GJ, Pitsillides AN, Rice KM, Salerno W, Sitlani CM, Smith NL, Heckbert SR, Laurie CC, Mitchell BD, Vasan RS, Rich SS, Rotter JI, Wilson JG, Boerwinkle E, Psaty BM, and Cupples LA
- Subjects
- Fibrinogen metabolism, Genetics, Population, Genome, Humans, Information Dissemination methods, Mobile Applications, Regression Analysis, Software, Workflow, Big Data, Fibrinogen genetics, Molecular Epidemiology methods
- Published
- 2017
- Full Text
- View/download PDF
29. Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases.
- Author
-
McAllister K, Mechanic LE, Amos C, Aschard H, Blair IA, Chatterjee N, Conti D, Gauderman WJ, Hsu L, Hutter CM, Jankowska MM, Kerr J, Kraft P, Montgomery SB, Mukherjee B, Papanicolaou GJ, Patel CJ, Ritchie MD, Ritz BR, Thomas DC, Wei P, and Witte JS
- Subjects
- Disease genetics, Genetic Predisposition to Disease, High-Throughput Nucleotide Sequencing, Humans, Software, Disease etiology, Gene-Environment Interaction, Genome-Wide Association Study methods
- Abstract
Recently, many new approaches, study designs, and statistical and analytical methods have emerged for studying gene-environment interactions (G×Es) in large-scale studies of human populations. There are opportunities in this field, particularly with respect to the incorporation of -omics and next-generation sequencing data and continual improvement in measures of environmental exposures implicated in complex disease outcomes. In a workshop called "Current Challenges and New Opportunities for Gene-Environment Interaction Studies of Complex Diseases," held October 17-18, 2014, by the National Institute of Environmental Health Sciences and the National Cancer Institute in conjunction with the annual American Society of Human Genetics meeting, participants explored new approaches and tools that have been developed in recent years for G×E discovery. This paper highlights current and critical issues and themes in G×E research that need additional consideration, including the improved data analytical methods, environmental exposure assessment, and incorporation of functional data and annotations., (Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2017.)
- Published
- 2017
- Full Text
- View/download PDF
30. Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): potential genomic intersection of iron and glucose regulation?
- Author
-
Raffield LM, Louie T, Sofer T, Jain D, Ipp E, Taylor KD, Papanicolaou GJ, Avilés-Santa L, Lange LA, Laurie CC, Conomos MP, Thornton TA, Chen YI, Qi Q, Cotler S, Thyagarajan B, Schneiderman N, Rotter JI, Reiner AP, and Lin HJ
- Subjects
- Adult, Anemia, Iron-Deficiency blood, Antigens, CD, Blood Glucose metabolism, Diabetes Mellitus genetics, Diabetes Mellitus metabolism, Fasting, Female, Ferritins analysis, Ferritins blood, Ferritins metabolism, Genetic Association Studies methods, Genetic Variation genetics, Genome-Wide Association Study, Genomics, Hemochromatosis genetics, Hispanic or Latino genetics, Hospitals, Community methods, Humans, Insulin metabolism, Iron blood, Male, Membrane Proteins genetics, Membrane Proteins metabolism, Middle Aged, Phenotype, Polymorphism, Single Nucleotide genetics, Receptors, Transferrin genetics, Risk Factors, Serine Endopeptidases genetics, Serine Endopeptidases metabolism, Transferrin analysis, Transferrin metabolism, Glucose genetics, Glucose metabolism, Iron metabolism
- Abstract
Genetic variants contribute to normal variation of iron-related traits and may also cause clinical syndromes of iron deficiency or excess. Iron overload and deficiency can adversely affect human health. For example, elevated iron storage is associated with increased diabetes risk, although mechanisms are still being investigated. We conducted the first genome-wide association study of serum iron, total iron binding capacity (TIBC), transferrin saturation, and ferritin in a Hispanic/Latino cohort, the Hispanic Community Health Study/Study of Latinos (>12 000 participants) and also assessed the generalization of previously known loci to this population. We then evaluated whether iron-associated variants were associated with diabetes and glycemic traits. We found evidence for a novel association between TIBC and a variant near the gene for protein phosphatase 1, regulatory subunit 3B (PPP1R3B; rs4841132, β = -0.116, P = 7.44 × 10-8). The effect strengthened when iron deficient individuals were excluded (β = -0.121, P = 4.78 × 10-9). Ten of sixteen variants previously associated with iron traits generalized to HCHS/SOL, including variants at the transferrin (TF), hemochromatosis (HFE), fatty acid desaturase 2 (FADS2)/myelin regulatory factor (MYRF), transmembrane protease, serine 6 (TMPRSS6), transferrin receptor (TFR2), N-acetyltransferase 2 (arylamine N-acetyltransferase) (NAT2), ABO blood group (ABO), and GRB2 associated binding protein 3 (GAB3) loci. In examining iron variant associations with glucose homeostasis, an iron-raising variant of TMPRSS6 was associated with lower HbA1c levels (P = 8.66 × 10-10). This association was attenuated upon adjustment for iron measures. In contrast, the iron-raising allele of PPP1R3B was associated with higher levels of fasting glucose (P = 7.70 × 10-7) and fasting insulin (P = 4.79 × 10-6), but these associations were not attenuated upon adjustment for TIBC-so iron is not likely a mediator. These results provide new genetic information on iron traits and their connection with glucose homeostasis., (© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
31. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations.
- Author
-
Liang J, Le TH, Edwards DRV, Tayo BO, Gaulton KJ, Smith JA, Lu Y, Jensen RA, Chen G, Yanek LR, Schwander K, Tajuddin SM, Sofer T, Kim W, Kayima J, McKenzie CA, Fox E, Nalls MA, Young JH, Sun YV, Lane JM, Cechova S, Zhou J, Tang H, Fornage M, Musani SK, Wang H, Lee J, Adeyemo A, Dreisbach AW, Forrester T, Chu PL, Cappola A, Evans MK, Morrison AC, Martin LW, Wiggins KL, Hui Q, Zhao W, Jackson RD, Ware EB, Faul JD, Reiner AP, Bray M, Denny JC, Mosley TH, Palmas W, Guo X, Papanicolaou GJ, Penman AD, Polak JF, Rice K, Taylor KD, Boerwinkle E, Bottinger EP, Liu K, Risch N, Hunt SC, Kooperberg C, Zonderman AB, Laurie CC, Becker DM, Cai J, Loos RJF, Psaty BM, Weir DR, Kardia SLR, Arnett DK, Won S, Edwards TL, Redline S, Cooper RS, Rao DC, Rotter JI, Rotimi C, Levy D, Chakravarti A, Zhu X, and Franceschini N
- Subjects
- Black or African American genetics, Animals, Basic Helix-Loop-Helix Transcription Factors genetics, Cadherins genetics, Case-Control Studies, Female, Genome-Wide Association Study, Humans, Hypertension ethnology, Male, Membrane Proteins genetics, Mice, Polymorphism, Single Nucleotide, Blood Pressure genetics, Genetic Loci, Hypertension genetics, Multifactorial Inheritance
- Abstract
Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance (P < 1.25×10-8) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in African-ancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension.
- Published
- 2017
- Full Text
- View/download PDF
32. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci.
- Author
-
Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, Rice K, Morrison AC, Lu Y, Weiss S, Guo X, Palmas W, Martin LW, Chen YD, Surendran P, Drenos F, Cook JP, Auer PL, Chu AY, Giri A, Zhao W, Jakobsdottir J, Lin LA, Stafford JM, Amin N, Mei H, Yao J, Voorman A, Larson MG, Grove ML, Smith AV, Hwang SJ, Chen H, Huan T, Kosova G, Stitziel NO, Kathiresan S, Samani N, Schunkert H, Deloukas P, Li M, Fuchsberger C, Pattaro C, Gorski M, Kooperberg C, Papanicolaou GJ, Rossouw JE, Faul JD, Kardia SL, Bouchard C, Raffel LJ, Uitterlinden AG, Franco OH, Vasan RS, O'Donnell CJ, Taylor KD, Liu K, Bottinger EP, Gottesman O, Daw EW, Giulianini F, Ganesh S, Salfati E, Harris TB, Launer LJ, Dörr M, Felix SB, Rettig R, Völzke H, Kim E, Lee WJ, Lee IT, Sheu WH, Tsosie KS, Edwards DR, Liu Y, Correa A, Weir DR, Völker U, Ridker PM, Boerwinkle E, Gudnason V, Reiner AP, van Duijn CM, Borecki IB, Edwards TL, Chakravarti A, Rotter JI, Psaty BM, Loos RJ, Fornage M, Ehret GB, Newton-Cheh C, Levy D, and Chasman DI
- Subjects
- Exome, Genome, Human, Genome-Wide Association Study, Genotype, Humans, Hypertension genetics, Oligonucleotide Array Sequence Analysis, Polymorphism, Single Nucleotide, Blood Pressure genetics, Genetic Variation
- Abstract
Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood pressure-associated loci are enriched for known variants for cardiometabolic traits. Associations were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. In addition, blood pressure associations at 39 previously reported loci were confirmed. The identified variants implicate biological pathways related to cardiometabolic traits, vascular function, and development. Several new variants are inferred to have roles in transcription or as hubs in protein-protein interaction networks. Genetic risk scores constructed from the identified variants were strongly associated with coronary disease and myocardial infarction. This large collection of blood pressure-associated loci suggests new therapeutic strategies for hypertension, emphasizing a link with cardiometabolic risk.
- Published
- 2016
- Full Text
- View/download PDF
33. Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity.
- Author
-
Mahajan A, Rodan AR, Le TH, Gaulton KJ, Haessler J, Stilp AM, Kamatani Y, Zhu G, Sofer T, Puri S, Schellinger JN, Chu PL, Cechova S, van Zuydam N, Arnlov J, Flessner MF, Giedraitis V, Heath AC, Kubo M, Larsson A, Lindgren CM, Madden PAF, Montgomery GW, Papanicolaou GJ, Reiner AP, Sundström J, Thornton TA, Lind L, Ingelsson E, Cai J, Martin NG, Kooperberg C, Matsuda K, Whitfield JB, Okada Y, Laurie CC, Morris AP, and Franceschini N
- Subjects
- Alleles, Animals, Deoxyribonuclease I metabolism, Diabetes Mellitus genetics, Disease Models, Animal, Drosophila melanogaster genetics, Female, Glomerular Filtration Rate genetics, Humans, Kidney pathology, Linkage Disequilibrium, Male, NFATC Transcription Factors genetics, Polymorphism, Single Nucleotide genetics, Quantitative Trait Loci, RGS Proteins genetics, Racial Groups genetics, Salt Tolerance genetics, Sodium-Phosphate Cotransporter Proteins, Type IIa genetics, Ethnicity genetics, Genome-Wide Association Study, Kidney physiopathology, Renal Insufficiency, Chronic genetics, Renal Insufficiency, Chronic physiopathology, Sodium Chloride pharmacology, Stress, Physiological drug effects, Stress, Physiological genetics
- Abstract
We analyzed genome-wide association studies (GWASs), including data from 71,638 individuals from four ancestries, for estimated glomerular filtration rate (eGFR), a measure of kidney function used to define chronic kidney disease (CKD). We identified 20 loci attaining genome-wide-significant evidence of association (p < 5 × 10(-8)) with kidney function and highlighted that allelic effects on eGFR at lead SNPs are homogeneous across ancestries. We leveraged differences in the pattern of linkage disequilibrium between diverse populations to fine-map the 20 loci through construction of "credible sets" of variants driving eGFR association signals. Credible variants at the 20 eGFR loci were enriched for DNase I hypersensitivity sites (DHSs) in human kidney cells. DHS credible variants were expression quantitative trait loci for NFATC1 and RGS14 (at the SLC34A1 locus) in multiple tissues. Loss-of-function mutations in ancestral orthologs of both genes in Drosophila melanogaster were associated with altered sensitivity to salt stress. Renal mRNA expression of Nfatc1 and Rgs14 in a salt-sensitive mouse model was also reduced after exposure to a high-salt diet or induced CKD. Our study (1) demonstrates the utility of trans-ethnic fine mapping through integration of GWASs involving diverse populations with genomic annotation from relevant tissues to define molecular mechanisms by which association signals exert their effect and (2) suggests that salt sensitivity might be an important marker for biological processes that affect kidney function and CKD in humans., (Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
34. Improved imputation accuracy in Hispanic/Latino populations with larger and more diverse reference panels: applications in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).
- Author
-
Nelson SC, Stilp AM, Papanicolaou GJ, Taylor KD, Rotter JI, Thornton TA, and Laurie CC
- Subjects
- Female, Humans, Male, United States, Genome-Wide Association Study, Hispanic or Latino genetics, Human Genome Project
- Abstract
Imputation is commonly used in genome-wide association studies to expand the set of genetic variants available for analysis. Larger and more diverse reference panels, such as the final Phase 3 of the 1000 Genomes Project, hold promise for improving imputation accuracy in genetically diverse populations such as Hispanics/Latinos in the USA. Here, we sought to empirically evaluate imputation accuracy when imputing to a 1000 Genomes Phase 3 versus a Phase 1 reference, using participants from the Hispanic Community Health Study/Study of Latinos. Our assessments included calculating the correlation between imputed and observed allelic dosage in a subset of samples genotyped on a supplemental array. We observed that the Phase 3 reference yielded higher accuracy at rare variants, but that the two reference panels were comparable at common variants. At a sample level, the Phase 3 reference improved imputation accuracy in Hispanic/Latino samples from the Caribbean more than for Mainland samples, which we attribute primarily to the additional reference panel samples available in Phase 3. We conclude that a 1000 Genomes Project Phase 3 reference panel can yield improved imputation accuracy compared with Phase 1, particularly for rare variants and for samples of certain genetic ancestry compositions. Our findings can inform imputation design for other genome-wide association studies of participants with diverse ancestries, especially as larger and more diverse reference panels continue to become available., (© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2016
- Full Text
- View/download PDF
35. Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models.
- Author
-
Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, Szpiro AA, Chen W, Brehm JM, Celedón JC, Redline S, Papanicolaou GJ, Thornton TA, Laurie CC, Rice K, and Lin X
- Subjects
- Asthma genetics, Case-Control Studies, Central America, Computer Simulation, Genotyping Techniques, Humans, Logistic Models, Models, Genetic, Phylogeography, Polymorphism, Single Nucleotide, South America, Genetic Association Studies methods, Genetics, Population methods, Linear Models, Phenotype
- Abstract
Linear mixed models (LMMs) are widely used in genome-wide association studies (GWASs) to account for population structure and relatedness, for both continuous and binary traits. Motivated by the failure of LMMs to control type I errors in a GWAS of asthma, a binary trait, we show that LMMs are generally inappropriate for analyzing binary traits when population stratification leads to violation of the LMM's constant-residual variance assumption. To overcome this problem, we develop a computationally efficient logistic mixed model approach for genome-wide analysis of binary traits, the generalized linear mixed model association test (GMMAT). This approach fits a logistic mixed model once per GWAS and performs score tests under the null hypothesis of no association between a binary trait and individual genetic variants. We show in simulation studies and real data analysis that GMMAT effectively controls for population structure and relatedness when analyzing binary traits in a wide variety of study designs., (Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
36. Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos.
- Author
-
Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, Sofer T, Fernández-Rhodes L, Justice AE, Graff M, Young KL, Seyerle AA, Avery CL, Taylor KD, Rotter JI, Talavera GA, Daviglus ML, Wassertheil-Smoller S, Schneiderman N, Heiss G, Kaplan RC, Franceschini N, Reiner AP, Shaffer JR, Barr RG, Kerr KF, Browning SR, Browning BL, Weir BS, Avilés-Santa ML, Papanicolaou GJ, Lumley T, Szpiro AA, North KE, Rice K, Thornton TA, and Laurie CC
- Subjects
- Genome-Wide Association Study, Humans, United States, Genetic Variation, Hispanic or Latino genetics
- Abstract
US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a "genetic-analysis group" variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness., (Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
37. Impact of National Heart, Lung, and Blood Institute-Supported Cardiovascular Epidemiology Research, 1998 to 2012.
- Author
-
Fabsitz RR, Papanicolaou GJ, Sholinsky P, Coady SA, Jaquish CE, Nelson CR, Olson JL, Puggal MA, Purkiser KL, Srinivas PR, Wei GS, Wolz M, and Sorlie PD
- Subjects
- Humans, Workforce, Biomedical Research organization & administration
- Published
- 2015
- Full Text
- View/download PDF
38. Genetic simulation tools for post-genome wide association studies of complex diseases.
- Author
-
Chen HS, Hutter CM, Mechanic LE, Amos CI, Bafna V, Hauser ER, Hernandez RD, Li C, Liberles DA, McAllister K, Moore JH, Paltoo DN, Papanicolaou GJ, Peng B, Ritchie MD, Rosenfeld G, Witte JS, Gillanders EM, and Feuer EJ
- Subjects
- Genome-Wide Association Study, Genomics, Humans, Molecular Epidemiology, Computer Simulation, Disease genetics, Models, Genetic, Software
- Abstract
Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled "Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases" at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to (1) identify opportunities, challenges, and resource needs for the development and application of genetic simulation models; (2) improve the integration of tools for modeling and analysis of simulated data; and (3) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting, the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation., (© 2014 WILEY PERIODICALS, INC.)
- Published
- 2015
- Full Text
- View/download PDF
39. Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association at CD36 in African Americans.
- Author
-
Ellis J, Lange EM, Li J, Dupuis J, Baumert J, Walston JD, Keating BJ, Durda P, Fox ER, Palmer CD, Meng YA, Young T, Farlow DN, Schnabel RB, Marzi CS, Larkin E, Martin LW, Bis JC, Auer P, Ramachandran VS, Gabriel SB, Willis MS, Pankow JS, Papanicolaou GJ, Rotter JI, Ballantyne CM, Gross MD, Lettre G, Wilson JG, Peters U, Koenig W, Tracy RP, Redline S, Reiner AP, Benjamin EJ, and Lange LA
- Subjects
- Adult, Aged, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Meta-Analysis as Topic, Middle Aged, Polymorphism, Single Nucleotide genetics, Risk Factors, Black or African American genetics, Biomarkers analysis, C-Reactive Protein metabolism, CD36 Antigens genetics, Cardiovascular Diseases etiology, Genetic Loci, Genetics, Population
- Abstract
C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women's Health Initiative (WHI) and KORA studies. We observed array-wide significance (p < 2.2 × 10(-6)) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 × 10(-6); CRP, p = 4.2 × 10(-71); APOE, p = 1.6 × 10(-6)). The fourth significant locus, CD36 (p = 1.6 × 10(-6)), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 × 10(-5)) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 × 10(-10)). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 × 10(-6); CD36, p = 1.4 × 10(-6)). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent.
- Published
- 2014
- Full Text
- View/download PDF
40. Translation of genetics research to clinical medicine: the National Heart, Lung, and Blood Institute perspective.
- Author
-
Puggal MA, Schully SD, Srinivas PR, Papanicolaou GJ, Jaquish CE, and Fabsitz RR
- Subjects
- Genetics, Medical trends, Humans, Molecular Biology trends, National Heart, Lung, and Blood Institute (U.S.), Research Support as Topic statistics & numerical data, Translational Research, Biomedical trends, United States, Genetics, Medical economics, Molecular Biology economics, Research Support as Topic economics, Translational Research, Biomedical economics
- Published
- 2013
- Full Text
- View/download PDF
41. Gene-centric association study of acute chest syndrome and painful crisis in sickle cell disease patients.
- Author
-
Galarneau G, Coady S, Garrett ME, Jeffries N, Puggal M, Paltoo D, Soldano K, Guasch A, Ashley-Koch AE, Telen MJ, Kutlar A, Lettre G, and Papanicolaou GJ
- Subjects
- Adolescent, Child, Cohort Studies, Female, Humans, Male, Pain genetics, Acute Chest Syndrome complications, Acute Chest Syndrome genetics, Anemia, Sickle Cell complications, Anemia, Sickle Cell genetics, Genetic Association Studies, Genetic Predisposition to Disease, Pain complications
- Abstract
Patients with sickle cell disease (SCD) present with a wide range of clinical complications. Understanding this clinical heterogeneity offers the prospects to tailor the right treatments to the right patients and also guide the development of novel therapies. Several environmental (eg, nutrition) and nonenvironmental (eg, fetal hemoglobin levels, α-thalassemia status) factors are known to modify SCD severity. To find new genetic modifiers of SCD severity, we performed a gene-centric association study in 1514 African American participants from the Cooperative Study of Sickle Cell Disease (CSSCD) for acute chest syndrome (ACS) and painful crisis. From the initial results, we selected 36 single nucleotide polymorphism (SNPs) and genotyped them for replication in 387 independent patients from the CSSCD, 318 SCD patients recruited at Georgia Health Sciences University, and 449 patients from the Duke SCD cohort. In the combined analysis, an association between ACS and rs6141803 reached array-wide significance (P = 4.1 × 10(-7)). This SNP is located 8.2 kilobases upstream of COMMD7, a gene highly expressed in the lung that interacts with nuclear factor-κB signaling. Our results provide new leads to gaining a better understanding of clinical variability in SCD, a "simple" monogenic disease.
- Published
- 2013
- Full Text
- View/download PDF
42. A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry.
- Author
-
Monda KL, Chen GK, Taylor KC, Palmer C, Edwards TL, Lange LA, Ng MC, Adeyemo AA, Allison MA, Bielak LF, Chen G, Graff M, Irvin MR, Rhie SK, Li G, Liu Y, Liu Y, Lu Y, Nalls MA, Sun YV, Wojczynski MK, Yanek LR, Aldrich MC, Ademola A, Amos CI, Bandera EV, Bock CH, Britton A, Broeckel U, Cai Q, Caporaso NE, Carlson CS, Carpten J, Casey G, Chen WM, Chen F, Chen YD, Chiang CW, Coetzee GA, Demerath E, Deming-Halverson SL, Driver RW, Dubbert P, Feitosa MF, Feng Y, Freedman BI, Gillanders EM, Gottesman O, Guo X, Haritunians T, Harris T, Harris CC, Hennis AJ, Hernandez DG, McNeill LH, Howard TD, Howard BV, Howard VJ, Johnson KC, Kang SJ, Keating BJ, Kolb S, Kuller LH, Kutlar A, Langefeld CD, Lettre G, Lohman K, Lotay V, Lyon H, Manson JE, Maixner W, Meng YA, Monroe KR, Morhason-Bello I, Murphy AB, Mychaleckyj JC, Nadukuru R, Nathanson KL, Nayak U, N'diaye A, Nemesure B, Wu SY, Leske MC, Neslund-Dudas C, Neuhouser M, Nyante S, Ochs-Balcom H, Ogunniyi A, Ogundiran TO, Ojengbede O, Olopade OI, Palmer JR, Ruiz-Narvaez EA, Palmer ND, Press MF, Rampersaud E, Rasmussen-Torvik LJ, Rodriguez-Gil JL, Salako B, Schadt EE, Schwartz AG, Shriner DA, Siscovick D, Smith SB, Wassertheil-Smoller S, Speliotes EK, Spitz MR, Sucheston L, Taylor H, Tayo BO, Tucker MA, Van Den Berg DJ, Edwards DR, Wang Z, Wiencke JK, Winkler TW, Witte JS, Wrensch M, Wu X, Yang JJ, Levin AM, Young TR, Zakai NA, Cushman M, Zanetti KA, Zhao JH, Zhao W, Zheng Y, Zhou J, Ziegler RG, Zmuda JM, Fernandes JK, Gilkeson GS, Kamen DL, Hunt KJ, Spruill IJ, Ambrosone CB, Ambs S, Arnett DK, Atwood L, Becker DM, Berndt SI, Bernstein L, Blot WJ, Borecki IB, Bottinger EP, Bowden DW, Burke G, Chanock SJ, Cooper RS, Ding J, Duggan D, Evans MK, Fox C, Garvey WT, Bradfield JP, Hakonarson H, Grant SF, Hsing A, Chu L, Hu JJ, Huo D, Ingles SA, John EM, Jordan JM, Kabagambe EK, Kardia SL, Kittles RA, Goodman PJ, Klein EA, Kolonel LN, Le Marchand L, Liu S, McKnight B, Millikan RC, Mosley TH, Padhukasahasram B, Williams LK, Patel SR, Peters U, Pettaway CA, Peyser PA, Psaty BM, Redline S, Rotimi CN, Rybicki BA, Sale MM, Schreiner PJ, Signorello LB, Singleton AB, Stanford JL, Strom SS, Thun MJ, Vitolins M, Zheng W, Moore JH, Williams SM, Ketkar S, Zhu X, Zonderman AB, Kooperberg C, Papanicolaou GJ, Henderson BE, Reiner AP, Hirschhorn JN, Loos RJ, North KE, and Haiman CA
- Subjects
- Case-Control Studies, Gene Frequency, Genetic Loci, Genetic Predisposition to Disease, Genome-Wide Association Study, Humans, Linkage Disequilibrium, Obesity ethnology, Polymorphism, Single Nucleotide, Black or African American genetics, Body Mass Index, Obesity genetics
- Abstract
Genome-wide association studies (GWAS) have identified 36 loci associated with body mass index (BMI), predominantly in populations of European ancestry. We conducted a meta-analysis to examine the association of >3.2 million SNPs with BMI in 39,144 men and women of African ancestry and followed up the most significant associations in an additional 32,268 individuals of African ancestry. We identified one new locus at 5q33 (GALNT10, rs7708584, P = 3.4 × 10(-11)) and another at 7p15 when we included data from the GIANT consortium (MIR148A-NFE2L3, rs10261878, P = 1.2 × 10(-10)). We also found suggestive evidence of an association at a third locus at 6q16 in the African-ancestry sample (KLHL32, rs974417, P = 6.9 × 10(-8)). Thirty-two of the 36 previously established BMI variants showed directionally consistent effect estimates in our GWAS (binomial P = 9.7 × 10(-7)), five of which reached genome-wide significance. These findings provide strong support for shared BMI loci across populations, as well as for the utility of studying ancestrally diverse populations.
- Published
- 2013
- Full Text
- View/download PDF
43. Genetic analysis of a population heavy drinking phenotype identifies risk variants in whites.
- Author
-
Hamidovic A, Goodloe RJ, Young TR, Styn MA, Mukamal KJ, Choquet H, Kasberger JL, Buxbaum SG, Papanicolaou GJ, White W, Volcik K, Spring B, Hitsman B, Levy D, and Jorgenson E
- Subjects
- Aged, Alcohol Drinking epidemiology, Alcoholism diagnosis, Case-Control Studies, Feasibility Studies, Genetic Association Studies methods, Genetic Loci, Genetic Predisposition to Disease, Genetic Variation, Humans, Incidence, Male, Middle Aged, Phenotype, Polymorphism, Single Nucleotide, Risk, Alcohol Drinking genetics, Alcoholism genetics, White People genetics
- Abstract
Genetic association studies thus far have used detailed diagnoses of alcoholism to identify loci associated with risk. This proof-of-concept analysis examined whether population data of lifetime heaviest alcohol consumption may be used to identify genetic loci that modulate risk. We conducted a genetic association study in European Americans between variants in approximately 2100 genes and alcohol consumption as part of the Candidate gene Association Resource project. We defined cases as individuals with a history of drinking 5 or more drinks per day almost every day of the week and controls as current light drinkers (1-5 drinks per week). We cross-validated identified single nucleotide polymorphisms in a meta-analysis of 2 cohorts of unrelated individuals--Atherosclerosis Risk in Communities (ARIC) and Cardiovascular Health Study (CHS)--and in a separate cohort of related individuals--Framingham Heart Study (FHS). The most significant variant in the meta-analysis of ARIC and CHS was rs6933598 in methylenetetrahydrofolate dehydrogenase (P = 7.46 × 10(-05)) with a P value in FHS of 0.042. The top variants in FHS were rs12249562 in cubulin (P = 3.03 × 10(-05)) and rs9839267 near cholecystokinin (P = 3.05 × 10(-05)) with a P value of 0.019 for rs9839267 in CHS. We have here shown feasibility in evaluating lifetime incidence of heavy alcohol drinking from population-based studies for the purpose of conducting genetic association analyses.
- Published
- 2013
- Full Text
- View/download PDF
44. Genome-wide association of body fat distribution in African ancestry populations suggests new loci.
- Author
-
Liu CT, Monda KL, Taylor KC, Lange L, Demerath EW, Palmas W, Wojczynski MK, Ellis JC, Vitolins MZ, Liu S, Papanicolaou GJ, Irvin MR, Xue L, Griffin PJ, Nalls MA, Adeyemo A, Liu J, Li G, Ruiz-Narvaez EA, Chen WM, Chen F, Henderson BE, Millikan RC, Ambrosone CB, Strom SS, Guo X, Andrews JS, Sun YV, Mosley TH, Yanek LR, Shriner D, Haritunians T, Rotter JI, Speliotes EK, Smith M, Rosenberg L, Mychaleckyj J, Nayak U, Spruill I, Garvey WT, Pettaway C, Nyante S, Bandera EV, Britton AF, Zonderman AB, Rasmussen-Torvik LJ, Chen YD, Ding J, Lohman K, Kritchevsky SB, Zhao W, Peyser PA, Kardia SL, Kabagambe E, Broeckel U, Chen G, Zhou J, Wassertheil-Smoller S, Neuhouser ML, Rampersaud E, Psaty B, Kooperberg C, Manson JE, Kuller LH, Ochs-Balcom HM, Johnson KC, Sucheston L, Ordovas JM, Palmer JR, Haiman CA, McKnight B, Howard BV, Becker DM, Bielak LF, Liu Y, Allison MA, Grant SF, Burke GL, Patel SR, Schreiner PJ, Borecki IB, Evans MK, Taylor H, Sale MM, Howard V, Carlson CS, Rotimi CN, Cushman M, Harris TB, Reiner AP, Cupples LA, North KE, and Fox CS
- Subjects
- Adiposity genetics, Female, Genetic Loci, Humans, Male, Obesity pathology, Polymorphism, Single Nucleotide, Waist-Hip Ratio, White People genetics, Black People genetics, Body Fat Distribution, Genome-Wide Association Study, Obesity genetics
- Abstract
Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0 × 10(-6) were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10(-8) for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10(-8) for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5 × 10(-8); RREB1: p = 5.7 × 10(-8)). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2013
- Full Text
- View/download PDF
45. Ultraconserved elements in the human genome: association and transmission analyses of highly constrained single-nucleotide polymorphisms.
- Author
-
Chiang CW, Liu CT, Lettre G, Lange LA, Jorgensen NW, Keating BJ, Vedantam S, Nock NL, Franceschini N, Reiner AP, Demerath EW, Boerwinkle E, Rotter JI, Wilson JG, North KE, Papanicolaou GJ, Cupples LA, Murabito JM, and Hirschhorn JN
- Subjects
- Alleles, Animals, Body Height genetics, Body Mass Index, Child, Dogs, Evolution, Molecular, Female, Genetic Fitness, Genetic Variation genetics, Genotype, Humans, Male, Mice, Pedigree, Phenotype, Rats, Reproduction genetics, Young Adult, Conserved Sequence genetics, Genome, Human genetics, Inheritance Patterns genetics, Polymorphism, Single Nucleotide genetics
- Abstract
Ultraconserved elements in the human genome likely harbor important biological functions as they are dosage sensitive and are able to direct tissue-specific expression. Because they are under purifying selection, variants in these elements may have a lower frequency in the population but a higher likelihood of association with complex traits. We tested a set of highly constrained SNPs (hcSNPs) distributed genome-wide among ultraconserved and nearly ultraconserved elements for association with seven traits related to reproductive (age at natural menopause, number of children, age at first child, and age at last child) and overall [longevity, body mass index (BMI), and height] fitness. Using up to 24,047 European-American samples from the National Heart, Lung, and Blood Institute Candidate Gene Association Resource (CARe), we observed an excess of associations with BMI and height. In an independent replication panel the most strongly associated SNPs showed an 8.4-fold enrichment of associations at the nominal level, including three variants in previously identified loci and one in a locus (DENND1A) previously shown to be associated with polycystic ovary syndrome. Finally, using 1430 family trios, we showed that the transmissions from heterozygous parents to offspring of the derived alleles of rare (frequency ≤ 0.5%) hcSNPs are not biased, particularly after adjusting for the rates of genotype missingness and error in the data. The lack of transmission bias ruled out an immediately and strongly deleterious effect due to the rare derived alleles, consistent with the observation that mice homozygous for the deletion of ultraconserved elements showed no overt phenotype. Our study also illustrated the importance of carefully modeling potential technical confounders when analyzing genotype data of rare variants.
- Published
- 2012
- Full Text
- View/download PDF
46. Technical desiderata for the integration of genomic data into Electronic Health Records.
- Author
-
Masys DR, Jarvik GP, Abernethy NF, Anderson NR, Papanicolaou GJ, Paltoo DN, Hoffman MA, Kohane IS, and Levy HP
- Subjects
- Databases, Factual, Delivery of Health Care, Humans, Electronic Health Records, Genomics, Precision Medicine methods
- Abstract
The era of "Personalized Medicine," guided by individual molecular variation in DNA, RNA, expressed proteins and other forms of high volume molecular data brings new requirements and challenges to the design and implementation of Electronic Health Records (EHRs). In this article we describe the characteristics of biomolecular data that differentiate it from other classes of data commonly found in EHRs, enumerate a set of technical desiderata for its management in healthcare settings, and offer a candidate technical approach to its compact and efficient representation in operational systems., (Copyright © 2011 Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
47. Genetic determinants of the ankle-brachial index: a meta-analysis of a cardiovascular candidate gene 50K SNP panel in the candidate gene association resource (CARe) consortium.
- Author
-
Wassel CL, Lamina C, Nambi V, Coassin S, Mukamal KJ, Ganesh SK, Jacobs DR Jr, Franceschini N, Papanicolaou GJ, Gibson Q, Yanek LR, van der Harst P, Ferguson JF, Crawford DC, Waite LL, Allison MA, Criqui MH, McDermott MM, Mehra R, Cupples LA, Hwang SJ, Redline S, Kaplan RC, Heiss G, Rotter JI, Boerwinkle E, Taylor HA, Eraso LH, Haun M, Li M, Meisinger C, O'Connell JR, Shuldiner AR, Tybjærg-Hansen A, Frikke-Schmidt R, Kollerits B, Rantner B, Dieplinger B, Stadler M, Mueller T, Haltmayer M, Klein-Weigel P, Summerer M, Wichmann HE, Asselbergs FW, Navis G, Mateo Leach I, Brown-Gentry K, Goodloe R, Assimes TL, Becker DM, Cooke JP, Absher DM, Olin JW, Mitchell BD, Reilly MP, Mohler ER 3rd, North KE, Reiner AP, Kronenberg F, and Murabito JM
- Subjects
- Adult, Black or African American, Aged, Aryl Hydrocarbon Hydroxylases genetics, Cytochrome P-450 CYP2B6, Female, Humans, Male, Middle Aged, Oxidoreductases, N-Demethylating genetics, Peripheral Arterial Disease epidemiology, Peripheral Arterial Disease ethnology, Polymorphism, Single Nucleotide, Risk Factors, White People, Ankle Brachial Index, Peripheral Arterial Disease genetics, Transcription Factor 7-Like 2 Protein genetics
- Abstract
Background: Candidate gene association studies for peripheral artery disease (PAD), including subclinical disease assessed with the ankle-brachial index (ABI), have been limited by the modest number of genes examined. We conducted a two stage meta-analysis of ∼50,000 SNPs across ∼2100 candidate genes to identify genetic variants for ABI., Methods and Results: We studied subjects of European ancestry from 8 studies (n=21,547, 55% women, mean age 44-73 years) and African American ancestry from 5 studies (n=7267, 60% women, mean age 41-73 years) involved in the candidate gene association resource (CARe) consortium. In each ethnic group, additive genetic models were used (with each additional copy of the minor allele corresponding to the given beta) to test each SNP for association with continuous ABI (excluding ABI>1.40) and PAD (defined as ABI<0.90) using linear or logistic regression with adjustment for known PAD risk factors and population stratification. We then conducted a fixed-effects inverse-variance weighted meta-analyses considering a p<2×10(-6) to denote statistical significance., Results: In the European ancestry discovery meta-analyses, rs2171209 in SYTL3 (β=-0.007, p=6.02×10(-7)) and rs290481 in TCF7L2 (β=-0.008, p=7.01×10(-7)) were significantly associated with ABI. None of the SNP associations for PAD were significant, though a SNP in CYP2B6 (p=4.99×10(-5)) was among the strongest associations. These 3 genes are linked to key PAD risk factors (lipoprotein(a), type 2 diabetes, and smoking behavior, respectively). We sought replication in 6 population-based and 3 clinical samples (n=15,440) for rs290481 and rs2171209. However, in the replication stage (rs2171209, p=0.75; rs290481, p=0.19) and in the combined discovery and replication analysis the SNP-ABI associations were no longer significant (rs2171209, p=1.14×10(-3); rs290481, p=8.88×10(-5)). In African Americans, none of the SNP associations for ABI or PAD achieved an experiment-wide level of significance., Conclusions: Genetic determinants of ABI and PAD remain elusive. Follow-up of these preliminary findings may uncover important biology given the known gene-risk factor associations. New and more powerful approaches to PAD gene discovery are warranted., (Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
48. Fasting glucose GWAS candidate region analysis across ethnic groups in the Multiethnic Study of Atherosclerosis (MESA).
- Author
-
Rasmussen-Torvik LJ, Guo X, Bowden DW, Bertoni AG, Sale MM, Yao J, Bluemke DA, Goodarzi MO, Chen YI, Vaidya D, Raffel LJ, Papanicolaou GJ, Meigs JB, and Pankow JS
- Subjects
- Aged, Aged, 80 and over, Alleles, Blood Glucose analysis, Ethnicity, Female, Genetic Variation, Genotype, Humans, Male, Middle Aged, Oligonucleotide Array Sequence Analysis, Regression Analysis, Atherosclerosis ethnology, Atherosclerosis genetics, Fasting, Genome-Wide Association Study
- Abstract
Genetic variants associated with fasting glucose in European ancestry populations are increasingly well understood. However, the nature of the associations between these single nucleotide polymorphisms (SNPs) and fasting glucose in other racial and ethnic groups is unclear. We sought to examine regions previously identified to be associated with fasting glucose in Caucasian genome-wide association studies (GWAS) across multiple ethnicities in the Multiethnic Study of Atherosclerosis (MESA). Nondiabetic MESA participants with fasting glucose measured at the baseline exam and with GWAS genotyping were included; 2,349 Caucasians, 664 individuals of Chinese descent, 1,366 African Americans, and 1,171 Hispanics. Genotype data were generated from the Affymetrix 6.0 array and imputation in IMPUTE. Fasting glucose was regressed on SNP dosage data in each ethnic group adjusting for age, gender, MESA study center, and ethnic-specific principal components. SNPs from the three gene regions with the strongest associations to fasting glucose in previous Caucasian GWAS (MTNR1B / GCK / G6PC2) were examined in depth. There was limited power to replicate associations in other ethnic groups due to smaller allele frequencies and limited sample size; SNP associations may also have differed across ethnic groups due to differing linkage disequilibrium patterns with causal variants. rs10830963 in MTNR1B and rs4607517 in GCK demonstrated consistent magnitude and direction of association with fasting glucose across ethnic groups, although the associations were often not nominally significant. In conclusion, certain SNPs in MTNR1B and GCK demonstrate consistent effects across four racial and ethnic groups, narrowing the putative region for these causal variants., (© 2012 Wiley Periodicals, Inc.)
- Published
- 2012
- Full Text
- View/download PDF
49. Multi-ethnic analysis of lipid-associated loci: the NHLBI CARe project.
- Author
-
Musunuru K, Romaine SP, Lettre G, Wilson JG, Volcik KA, Tsai MY, Taylor HA Jr, Schreiner PJ, Rotter JI, Rich SS, Redline S, Psaty BM, Papanicolaou GJ, Ordovas JM, Liu K, Krauss RM, Glazer NL, Gabriel SB, Fornage M, Cupples LA, Buxbaum SG, Boerwinkle E, Ballantyne CM, Kathiresan S, and Rader DJ
- Subjects
- Genetic Association Studies, Genetic Loci, Humans, Black or African American genetics, Cholesterol, HDL genetics, Cholesterol, LDL genetics, Polymorphism, Single Nucleotide, Triglycerides genetics, White People genetics
- Abstract
Background: Whereas it is well established that plasma lipid levels have substantial heritability within populations, it remains unclear how many of the genetic determinants reported in previous studies (largely performed in European American cohorts) are relevant in different ethnicities., Methodology/principal Findings: We tested a set of ∼50,000 polymorphisms from ∼2,000 candidate genes and genetic loci from genome-wide association studies (GWAS) for association with low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) in 25,000 European Americans and 9,000 African Americans in the National Heart, Lung, and Blood Institute (NHLBI) Candidate Gene Association Resource (CARe). We replicated associations for a number of genes in one or both ethnicities and identified a novel lipid-associated variant in a locus harboring ICAM1. We compared the architecture of genetic loci associated with lipids in both African Americans and European Americans and found that the same genes were relevant across ethnic groups but the specific associated variants at each gene often differed., Conclusions/significance: We identify or provide further evidence for a number of genetic determinants of plasma lipid levels through population association studies. In many loci the determinants appear to differ substantially between African Americans and European Americans.
- Published
- 2012
- Full Text
- View/download PDF
50. Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT).
- Author
-
Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, Austin MA, Dean E, Arepalli S, Britton A, Chen Z, Couper D, Curb JD, Eaton CB, Fornage M, Grant SF, Harris TB, Hernandez D, Kamatini N, Keating BJ, Kubo M, LaCroix A, Lange LA, Liu S, Lohman K, Meng Y, Mohler ER 3rd, Musani S, Nakamura Y, O'Donnell CJ, Okada Y, Palmer CD, Papanicolaou GJ, Patel KV, Singleton AB, Takahashi A, Tang H, Taylor HA Jr, Taylor K, Thomson C, Yanek LR, Yang L, Ziv E, Zonderman AB, Folsom AR, Evans MK, Liu Y, Becker DM, Snively BM, and Wilson JG
- Subjects
- Artifacts, Asian People genetics, Chemokine CXCL2 genetics, Chromosomes, Human, Pair 1 genetics, Chromosomes, Human, Pair 16 genetics, Chromosomes, Human, Pair 4 genetics, DNA Replication genetics, Duffy Blood-Group System genetics, Genetic Loci genetics, Humans, Microfilament Proteins genetics, Phenotype, Polymorphism, Single Nucleotide, Receptors, Cell Surface genetics, Reproducibility of Results, White People genetics, Black or African American genetics, Genome-Wide Association Study, Leukocyte Count, Molecular Epidemiology
- Abstract
Total white blood cell (WBC) and neutrophil counts are lower among individuals of African descent due to the common African-derived "null" variant of the Duffy Antigen Receptor for Chemokines (DARC) gene. Additional common genetic polymorphisms were recently associated with total WBC and WBC sub-type levels in European and Japanese populations. No additional loci that account for WBC variability have been identified in African Americans. In order to address this, we performed a large genome-wide association study (GWAS) of total WBC and cell subtype counts in 16,388 African-American participants from 7 population-based cohorts available in the Continental Origins and Genetic Epidemiology Network. In addition to the DARC locus on chromosome 1q23, we identified two other regions (chromosomes 4q13 and 16q22) associated with WBC in African Americans (P<2.5×10(-8)). The lead SNP (rs9131) on chromosome 4q13 is located in the CXCL2 gene, which encodes a chemotactic cytokine for polymorphonuclear leukocytes. Independent evidence of the novel CXCL2 association with WBC was present in 3,551 Hispanic Americans, 14,767 Japanese, and 19,509 European Americans. The index SNP (rs12149261) on chromosome 16q22 associated with WBC count is located in a large inter-chromosomal segmental duplication encompassing part of the hydrocephalus inducing homolog (HYDIN) gene. We demonstrate that the chromosome 16q22 association finding is most likely due to a genotyping artifact as a consequence of sequence similarity between duplicated regions on chromosomes 16q22 and 1q21. Among the WBC loci recently identified in European or Japanese populations, replication was observed in our African-American meta-analysis for rs445 of CDK6 on chromosome 7q21 and rs4065321 of PSMD3-CSF3 region on chromosome 17q21. In summary, the CXCL2, CDK6, and PSMD3-CSF3 regions are associated with WBC count in African American and other populations. We also demonstrate that large inter-chromosomal duplications can result in false positive associations in GWAS., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.