17 results on '"Parapineal"'
Search Results
2. Conserved and diverged asymmetric gene expression in the brain of teleosts
- Author
-
Carolina Agostini, Anja Bühler, Alessandra Antico Calderone, Narendar Aadepu, Cathrin Herder, Felix Loosli, and Matthias Carl
- Subjects
brain asymmetry ,medaka ,zebrafish ,habenula ,pineal ,parapineal ,Biology (General) ,QH301-705.5 - Abstract
Morphological left-right brain asymmetries are universal phenomena in animals. These features have been studied for decades, but the functional relevance is often unclear. Studies from the zebrafish dorsal diencephalon on the genetics underlying the establishment and function of brain asymmetries have uncovered genes associated with the development of functional brain asymmetries. To gain further insights, comparative studies help to investigate the emergence of asymmetries and underlying genetics in connection to functional adaptation. Evolutionarily distant isogenic medaka inbred lines, that show divergence of complex traits such as morphology, physiology and behavior, are a valuable resource to investigate intra-species variations in a given trait of interest. For a detailed study of asymmetry in the medaka diencephalon we generated molecular probes of ten medaka genes that are expressed asymmetrically in the zebrafish habenulae and pineal complex. We find expression of eight genes in the corresponding brain areas of medaka with differences in the extent of left-right asymmetry compared to zebrafish. Our marker gene analysis of the diverged medaka inbred strains revealed marked inter-strain size differences of the respective expression domains in the parapineal and the habenulae, which we hypothesize may result from strain-specific gene loss. Thus, our analysis reveals both inter-species differences but also intra-species plasticity of gene expression in the teleost dorsal diencephalon. These findings are a starting point showing the potential to identify the genetics underlying the emergence and modulations of asymmetries. They are also the prerequisite to examine whether variance in habenular gene expression may cause variation of behavioral traits.
- Published
- 2022
- Full Text
- View/download PDF
3. Histopathological assessment of laterality defects in zebrafish development
- Author
-
Md. Ashraf Uddin Chowdhury, Ahmed A. Raslan, Eunhye Lee, Juneyong Eum, Byung Joon Hwang, Seung-Hae Kwon, and Yun Kee
- Subjects
zebrafish ,laterality defect ,heterotaxy ,cardiovascular histopathology ,parapineal ,Medicine (General) ,R5-920 ,Biology (General) ,QH301-705.5 - Abstract
Laterality defects during embryonic development underlie the aetiology of various clinical symptoms of neuropathological and cardiovascular disorders; however, experimental approaches to understand the underlying mechanisms are limited due to the complex organ systems of vertebrate models. Zebrafish have the ability to survive even when the heart stops beating for a while during early embryonic development and those adults with cardiac abnormalities. Therefore, we induced laterality defects and investigated the occurrence of situs solitus, situs inversus, and situs ambiguus in zebrafish development. Histopathological analysis revealed heterotaxy in both embryos and juvenile fish. Additionally, randomization of left-right asymmetry of the brain and heart in individual zebrafish embryos under artificial experimental pressure further demonstrated the advantage of transparent zebrafish embryos as an experimental tool to select or reduce the embryos with laterality defects during early embryonic development for long-term studies, including behavioural and cognitive neuroscience investigations.
- Published
- 2021
- Full Text
- View/download PDF
4. Histopathological assessment of laterality defects in zebrafish development.
- Author
-
Chowdhury, Md. Ashraf Uddin, Raslan, Ahmed A., Lee, Eunhye, Eum, Juneyong, Hwang, Byung Joon, Kwon, Seung-Hae, and Kee, Yun
- Subjects
HISTOPATHOLOGY ,LATERAL dominance ,ZEBRA danio embryos ,BRACHYDANIO ,EMBRYOLOGY ,ZEBRA danio ,BEHAVIORAL neuroscience ,HEART - Abstract
Laterality defects during embryonic development underlie the aetiology of various clinical symptoms of neuropathological and cardiovascular disorders; however, experimental approaches to understand the underlying mechanisms are limited due to the complex organ systems of vertebrate models. Zebrafish have the ability to survive even when the heart stops beating for a while during early embryonic development and those adults with cardiac abnormalities. Therefore, we induced laterality defects and investigated the occurrence of situs solitus, situs inversus, and situs ambiguus in zebrafish development. Histopathological analysis revealed heterotaxy in both embryos and juvenile fish. Additionally, randomization of left-right asymmetry of the brain and heart in individual zebrafish embryos under artificial experimental pressure further demonstrated the advantage of transparent zebrafish embryos as an experimental tool to select or reduce the embryos with laterality defects during early embryonic development for long-term studies, including behavioural and cognitive neuroscience investigations. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
5. Histopathological assessment of laterality defects in zebrafish development
- Author
-
Byung Joon Hwang, Juneyong Eum, Seung-Hae Kwon, Eunhye Lee, Yun Kee, Ahmed A. Raslan, and Md. Ashraf Uddin Chowdhury
- Subjects
0301 basic medicine ,Medicine (General) ,animal structures ,QH301-705.5 ,Bioinformatics ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,0302 clinical medicine ,Development & Genetics ,R5-920 ,Medicine ,laterality defect ,Biology (General) ,Zebrafish ,biology ,parapineal ,business.industry ,heterotaxy ,biology.organism_classification ,zebrafish ,030104 developmental biology ,030220 oncology & carcinogenesis ,Laterality ,embryonic structures ,Animal Science and Zoology ,business ,Heterotaxy ,Research Article ,cardiovascular histopathology - Abstract
Laterality defects during embryonic development underlie the aetiology of various clinical symptoms of neuropathological and cardiovascular disorders; however, experimental approaches to understand the underlying mechanisms are limited due to the complex organ systems of vertebrate models. Zebrafish have the ability to survive even when the heart stops beating for a while during early embryonic development and those adults with cardiac abnormalities. Therefore, we induced laterality defects and investigated the occurrence of situs solitus, situs inversus, and situs ambiguus in zebrafish development. Histopathological analysis revealed heterotaxy in both embryos and juvenile fish. Additionally, randomization of left-right asymmetry of the brain and heart in individual zebrafish embryos under artificial experimental pressure further demonstrated the advantage of transparent zebrafish embryos as an experimental tool to select or reduce the embryos with laterality defects during early embryonic development for long-term studies, including behavioural and cognitive neuroscience investigations.
- Published
- 2021
6. Conserved and diverged asymmetric gene expression in the brain of teleosts
- Author
-
Agostini, Carolina, Bühler, Anja, Antico Calderone, Alessandra, Aadepu, Narendar, Herder, Cathrin, Loosli, Felix, and Carl, Matthias
- Subjects
Life sciences ,biology ,medaka ,parapineal ,habenula ,ddc:570 ,brain asymmetry ,pineal ,kctd12.1 ,brain asymmetry, medaka, zebrafish, habenula, pineal, parapineal, population genetics, kctd12.1 ,population genetics ,Cell Biology ,zebrafish ,Developmental Biology - Published
- 2022
- Full Text
- View/download PDF
7. Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing.
- Author
-
Khuansuwan, Sataree and Gamse, Joshua T.
- Subjects
- *
PINEAL gland , *RNA sequencing , *GENE expression , *FISH embryos , *FLUORESCENT probes , *CELL survival , *BIOINFORMATICS - Abstract
We describe a method for isolating RNA suitable for high-throughput RNA sequencing (RNA-seq) from small numbers of fluorescently labeled cells isolated from live zebrafish ( Danio rerio ) embryos without using costly, commercially available columns. This method ensures high cell viability after dissociation and suspension of cells and gives a very high yield of intact RNA. We demonstrate the utility of our new protocol by isolating RNA from fluorescence activated cell sorted (FAC sorted) pineal complex neurons in wild-type and tbx2b knockdown embryos at 24 hours post-fertilization. Tbx2b is a transcription factor required for pineal complex formation. We describe a bioinformatics pipeline used to analyze differential expression following high-throughput sequencing and demonstrate the validity of our results using in situ hybridization of differentially expressed transcripts. This protocol brings modern transcriptome analysis to the study of small cell populations in zebrafish. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
8. Pitx2c ensures habenular asymmetry by restricting parapineal cell number.
- Author
-
Garric, Laurence, Ronsin, Brice, Roussigné, Myriam, Booton, Sabrina, Gamse, Joshua T., Dufourcq, Pascale, and Blader, Patrick
- Subjects
- *
SYMMETRY (Biology) , *BRAIN function localization , *COGNITIVE development , *BRAIN physiology , *COGNITIVE ability , *ZEBRA danio , *ISOMERISM - Abstract
Left-right (L/R) asymmetries in the brain are thought to underlie lateralised cognitive functions. Understanding how neuroanatomical asymmetries are established has been achieved through the study of the zebrafish epithalamus. Morphological symmetry in the epithalamus is broken by leftward migration of the parapineal, which is required for the subsequent elaboration of left habenular identity; the habenular nuclei flank the midline and show L/R asymmetries in marker expression and connectivity. The Nodal target pitx2c is expressed in the left epithalamus, but nothing is known about its role during the establishment of asymmetry in the brain. We show that abrogating Pitx2c function leads to the right habenula adopting aspects of left character, and to an increase in parapineal cell numbers. Parapineal ablation in Pitx2c loss of function results in right habenular isomerism, indicating that the parapineal is required for the left character detected in the right habenula in this context. Partial parapineal ablation in the absence of Pitx2c, however, reduces the number of parapineal cells to wild-type levels and restores habenular asymmetry. We provide evidence suggesting that antagonism between Nodal and Pitx2c activities sets an upper limit on parapineal cell numbers. We conclude that restricting parapineal cell number is crucial for the correct elaboration of epithalamic asymmetry. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
9. Building an asymmetric brain: Development of the zebrafish epithalamus
- Author
-
Snelson, Corey D. and Gamse, Joshua T.
- Subjects
- *
SYMMETRY (Biology) , *DEVELOPMENTAL neurobiology , *ZEBRA danio , *CEREBRAL dominance , *PINEAL gland , *CELL migration - Abstract
Abstract: The human brain exhibits notable asymmetries. Little is known about these symmetry deviations; however scientists are beginning to understand them by employing the lateralized zebrafish epithalamus as a model. The zebrafish epithalamus consists of the pineal and parapineal organs and paired habenular nuclei located bilateral to the pineal complex. While zebrafish pineal and parapineal organs arise from a common population of cells, parapineal cells undergo a separate program that allows them to migrate left of the pineal anlage. Studying the processes that lead to brain laterality in zebrafish will allow a better understanding of how human brain laterality is established. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
10. Parapineal specific expression of gfi1 in the zebrafish epithalamus
- Author
-
Dufourcq, Pascale, Rastegar, Sepand, Strähle, Uwe, and Blader, Patrick
- Subjects
- *
GENE expression , *GROWTH factors , *GENETIC transcription , *EMBRYOLOGY , *ANIMAL morphology - Abstract
We describe the isolation of zebrafish growth factor independent 1 (gfi1) and present an analysis of its pattern of expression during early development. As with its murine homologue, gfi1 expression is detected in the ganglion cells of the neural retina and in developing hair cells of the ear. In keeping with a role in the development of sensory hair cells, gfi1 is also expressed in neuromasts of the anterior and posterior lateral line system. Finally, gfi1 is expressed in the developing epithalamus in the dorsal diencephalon where its transcription is restricted to the parapineal. [Copyright &y& Elsevier]
- Published
- 2004
- Full Text
- View/download PDF
11. An immunocytochemical study of encephalic photoreceptors in three species of lamprey.
- Author
-
García-Fernández, J. M., Jiménez, A. J., González, B., Pombal, M. A., and Foster, R. G.
- Abstract
The extraretinal and extrapineal photoreceptors of three species of adult lamprey, sea lamprey ( Petromyzon marinus), river lamprey ( Lampetra fluviatilis) and silver lamprey ( Ichthyomyzon unicuspis) were studied using antibodies raised against photoreceptor rod and cone opsins, α-transducin and arrestin. In all three species cells in the pineal organ (P), parapineal organ (PP), nucleus preopticus (T5), nucleus commissurae postopticae (D8), nucleus ventralis hypothalami (D10) and nucleus dorsalis hypothalami (D11) were labelled by one or more of the anti-opsin antibodies. In addition, anti-arrestin antibodies labelled cells within the D8 and anti-α-transducin antibodies labelled cells within the pineal complex and hypothalamus (primarily D8 and/or D10). A more variable and species dependent pattern of opsin, arrestin and α-transducin labelling was observed within the nucleus commissurae postinfundibularis (D12) in an area comprising the nucleus dorsalis thalami pars subhabenularis (D4sh) and nucleus dorsalis thalami pars caudalis/nucleus commissurae posterioris (D4c/M1), and in the proximity of the second Müller cells in the ventrocaudal diencephalon (2.MZ/M6). The majority of the neurons labelled within the pineal and parapineal organs and hypothalamus were periventricular with clear cerebrospinal fluid contacts (CSF-contacting neurons). Labelled neurons in the epithalamic (D4sh and D4c/M1) and caudal diencephalon (2.MZ/M6) had no obvious ventricular contacts. We speculate that the ”primitive” vertebrate brain of lampreys represents an ancestral condition in which different populations of encephalic photoreceptors are associated with different behavioural and physiological responses. Image-forming vision needs an eye, but irradiance detection does not require a specialised organ. Rather the photoreceptors could be closely associated with their effector systems within the brain. [ABSTRACT FROM AUTHOR]
- Published
- 1997
- Full Text
- View/download PDF
12. Crosstalk between FGF and Notch signaling pathways during the collective migration of parapineal cells in the left right asymmetric zebrafish brain
- Author
-
Wei, Lu, Centre de biologie du développement (CBD), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier - Toulouse III, Patrick Blader, and Myriam Roussigné
- Subjects
FGF signaling ,Signalisation Notch ,Asymétrie ,Collective migration ,Migration collective ,Signalisation FGF ,Asymmetry ,Poisson zèbre ,Parapineal ,La parapineale ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,Notch signaling ,Zebrafish - Abstract
During the establishment of left-right asymmetry in the zebrafish brain, a small group of cells, the parapineal, collectively migrates from the dorsal midline of the epithalamus to the left in most wild-type embryos. Parapineal migration requires Fibroblastic Growth Factor 8 (Fgf8), a secreted signal expressed bilaterally in epithalamic tissues surrounding the parapineal. The left bias in the orientation of parapineal migration depends on the activity of Cyclops, a secreted factor of the Nodal/TGFß family that is transiently expressed in the left epithalamus prior to parapineal migration. Therefore, the parapineal provides a powerful new model to understand FGF dependent collective cell migration and to study how other signaling pathways modulate this process. Live imaging of an FGF reporter transgene revealed that the FGF pathway is activated in only few parapineal cells that are usually located at the leading edge of migration. Global expression of a constitutively activated Fgf receptor (CA-FGFR) delays migration in wild-type, while it partially restores both parapineal migration and focal activation of the FGF reporter transgene in fgf8-/- mutant embryos. Importantly, focal activation of FGF signaling in few parapineal cells is sufficient to restore collective migration in fgf8-/- mutants. Finally, Nodal asymmetry contributes to restrict and left-bias the activation of the FGF pathway (Manuscript n°1). Following this work, my thesis project aimed at understanding how the activation of the FGF pathway is restricted to few cells, despite all parapineal cells apparently being competent to activate the pathway. We showed that Notch signaling is able to restrict FGF activity. Loss or gain of function of the Notch pathway respectively triggers an increase or decrease in FGF activity, which correlate with PP migration defects. Moreover, decreasing or increasing FGF activity levels respectively rescues or aggravates parapineal migration defects in Notch loss-of-function context. Our data indicate that Notch signaling restricts the activation of the FGF pathway within parapineal cells to promote their collective migration (Manuscript n°2). We also found that Notch pathway is required for the specification of a correct number of parapineal cells, independently of FGF pathway. In parallel, we analysed the function of MMP2 (Matrix Metalloprotease 2), a protein mosaïcally expressed in the parapineal and a candidate to modulate FGF signaling. However, we found no significant defects in the specification or migration of parapineal cells in mmp2-/- mutant embryos (Manuscript n°3). My PhD work reveals a role for Notch signaling in restricting the activation of FGF signaling within few parapineal cells, a process that is biased by Nodal pathway to the left and required for the migration of the entire parapineal. These data provide insights into the interaction of FGF, Notch and Nodal/TGFb signaling pathways that may be applicable to other models of collective cell migration, such as cancer cells migration for instance.; Lors du développement de l'asymétrie gauche droite dans le cerveau du poisson zèbre, un petit groupe de cellules, le parapinéale, migre collectivement depuis la ligne médiane vers la partie gauche de l'épithalamus. Cette migration est défectueuse dans des mutants pour le gène fgf8, indiquant que le facteur Fgf8 (Fibroblast Growth Factor 8), sécrété de part et d'autre de la ligne médiane, est requis pour la migration. Cependant, l'orientation gauche de la migration dépend de l'activation, plus précocement dans l'épithalamus gauche, de la voie de signalisation Nodal/TGFb (Transforming Growth Factor). Par conséquent, la parapinéale est un modèle de choix pour comprendre comment les cellules migrent collectivement en réponse aux Fgf et pour étudier comment d'autres voies de signalisation modulent ce processus. L'imagerie en temps réel d'un transgène rapporteur de la signalisation FGF a révélé que la voie FGF est activée préférentiellement dans quelques cellules de tête, c'est à dire localisées au front de migration. L'expression globale d'un récepteur aux Fgf activé de façon constitutive (CA-FgfR1) interfère avec la migration de la parapinéale en contexte sauvage mais est capable de restaurer à la fois la migration de la parapinéale et l'activation focale de la voie FGF au front de migration dans les mutants fgf8-/-. De plus, l'activation focale de la voie FGF dans seulement quelques cellules de parapinéale est suffisante pour restaurer la migration de tout le collectif dans les mutants fgf8-/-. Finalement, nos données montrent que la signalisation Nodal contribue à restreindre et à biaiser l'activation de la voie FGF afin d'orienter la migration de la parapinéale vers le côté gauche (Manuscript n°1). Par la suite, mes travaux de thèse ont visé à comprendre comment l'activation de la voie FGF est restreinte à quelques cellules, bien que toutes les cellules de parapinéale semblent compétentes pour activer la voie. Nos résultats montrent que la signalisation Notch est capable de restreindre l'activation de la voie FGF. La perte ou le gain de fonction de la voie Notch entrainent respectivement une augmentation ou une diminution de l'activité FGF, associés à des défauts de migration de la parapinéale dans les deux contextes. De plus, la diminution ou l'augmentation artificielle du niveau d'activation de la voie FGF peut respectivement restaurer la migration de la parapinéale ou aggraver les défauts de migration en absence d'activité Notch. Nos données indiquent que la signalisation Notch restreint l'activation de la voie FGF au sein des cellules de parapinéale pour permettre la migration du collectif (Manuscript n°2). La voie Notch est également requise pour la spécification d'un nombre correct de cellules de parapinéale, indépendamment de la voie FGF. En parallèle, nous avons analysé la fonction de MMP2 (Matrix Metalloprotease 2), une protéine exprimée mosaïquement dans la parapinéale et candidate pour moduler la signalisation FGF. Cependant, nous n'avons observé aucun défaut de spécification ou de migration de la parapinéale dans les embryons mutants pour le gène mmp2 -/- (Manuscript n°3). Mon travail de thèse révèle un rôle de la voie Notch pour restreindre l'activation de la signalisation FGF dans quelques cellules de parapinéale, un processus qui est biaisé par la voie Nodal afin d'orienter la migration du collectif vers la gauche. Ces données pourraient permettre de mieux comprendre les interactions entre les voies de signalisation FGF, Notch et Nodal dans d'autres modèles de migration cellulaire collective comme, par exemple, la migration des cellules cancéreuses.
- Published
- 2018
13. Interaction entre les voies de signalisation FGF et Notch lors de la migration de la parapineale dans le cerveau asymétrique du poisson zèbre
- Author
-
Wei, Lu, Centre de biologie du développement (CBD), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier - Toulouse III, Patrick Blader, and Myriam Roussigné
- Subjects
FGF signaling ,Signalisation Notch ,Asymétrie ,Collective migration ,Migration collective ,Signalisation FGF ,Asymmetry ,Poisson zèbre ,Parapineal ,La parapineale ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,Notch signaling ,Zebrafish - Abstract
During the establishment of left-right asymmetry in the zebrafish brain, a small group of cells, the parapineal, collectively migrates from the dorsal midline of the epithalamus to the left in most wild-type embryos. Parapineal migration requires Fibroblastic Growth Factor 8 (Fgf8), a secreted signal expressed bilaterally in epithalamic tissues surrounding the parapineal. The left bias in the orientation of parapineal migration depends on the activity of Cyclops, a secreted factor of the Nodal/TGFß family that is transiently expressed in the left epithalamus prior to parapineal migration. Therefore, the parapineal provides a powerful new model to understand FGF dependent collective cell migration and to study how other signaling pathways modulate this process. Live imaging of an FGF reporter transgene revealed that the FGF pathway is activated in only few parapineal cells that are usually located at the leading edge of migration. Global expression of a constitutively activated Fgf receptor (CA-FGFR) delays migration in wild-type, while it partially restores both parapineal migration and focal activation of the FGF reporter transgene in fgf8-/- mutant embryos. Importantly, focal activation of FGF signaling in few parapineal cells is sufficient to restore collective migration in fgf8-/- mutants. Finally, Nodal asymmetry contributes to restrict and left-bias the activation of the FGF pathway (Manuscript n°1). Following this work, my thesis project aimed at understanding how the activation of the FGF pathway is restricted to few cells, despite all parapineal cells apparently being competent to activate the pathway. We showed that Notch signaling is able to restrict FGF activity. Loss or gain of function of the Notch pathway respectively triggers an increase or decrease in FGF activity, which correlate with PP migration defects. Moreover, decreasing or increasing FGF activity levels respectively rescues or aggravates parapineal migration defects in Notch loss-of-function context. Our data indicate that Notch signaling restricts the activation of the FGF pathway within parapineal cells to promote their collective migration (Manuscript n°2). We also found that Notch pathway is required for the specification of a correct number of parapineal cells, independently of FGF pathway. In parallel, we analysed the function of MMP2 (Matrix Metalloprotease 2), a protein mosaïcally expressed in the parapineal and a candidate to modulate FGF signaling. However, we found no significant defects in the specification or migration of parapineal cells in mmp2-/- mutant embryos (Manuscript n°3). My PhD work reveals a role for Notch signaling in restricting the activation of FGF signaling within few parapineal cells, a process that is biased by Nodal pathway to the left and required for the migration of the entire parapineal. These data provide insights into the interaction of FGF, Notch and Nodal/TGFb signaling pathways that may be applicable to other models of collective cell migration, such as cancer cells migration for instance.; Lors du développement de l'asymétrie gauche droite dans le cerveau du poisson zèbre, un petit groupe de cellules, le parapinéale, migre collectivement depuis la ligne médiane vers la partie gauche de l'épithalamus. Cette migration est défectueuse dans des mutants pour le gène fgf8, indiquant que le facteur Fgf8 (Fibroblast Growth Factor 8), sécrété de part et d'autre de la ligne médiane, est requis pour la migration. Cependant, l'orientation gauche de la migration dépend de l'activation, plus précocement dans l'épithalamus gauche, de la voie de signalisation Nodal/TGFb (Transforming Growth Factor). Par conséquent, la parapinéale est un modèle de choix pour comprendre comment les cellules migrent collectivement en réponse aux Fgf et pour étudier comment d'autres voies de signalisation modulent ce processus. L'imagerie en temps réel d'un transgène rapporteur de la signalisation FGF a révélé que la voie FGF est activée préférentiellement dans quelques cellules de tête, c'est à dire localisées au front de migration. L'expression globale d'un récepteur aux Fgf activé de façon constitutive (CA-FgfR1) interfère avec la migration de la parapinéale en contexte sauvage mais est capable de restaurer à la fois la migration de la parapinéale et l'activation focale de la voie FGF au front de migration dans les mutants fgf8-/-. De plus, l'activation focale de la voie FGF dans seulement quelques cellules de parapinéale est suffisante pour restaurer la migration de tout le collectif dans les mutants fgf8-/-. Finalement, nos données montrent que la signalisation Nodal contribue à restreindre et à biaiser l'activation de la voie FGF afin d'orienter la migration de la parapinéale vers le côté gauche (Manuscript n°1). Par la suite, mes travaux de thèse ont visé à comprendre comment l'activation de la voie FGF est restreinte à quelques cellules, bien que toutes les cellules de parapinéale semblent compétentes pour activer la voie. Nos résultats montrent que la signalisation Notch est capable de restreindre l'activation de la voie FGF. La perte ou le gain de fonction de la voie Notch entrainent respectivement une augmentation ou une diminution de l'activité FGF, associés à des défauts de migration de la parapinéale dans les deux contextes. De plus, la diminution ou l'augmentation artificielle du niveau d'activation de la voie FGF peut respectivement restaurer la migration de la parapinéale ou aggraver les défauts de migration en absence d'activité Notch. Nos données indiquent que la signalisation Notch restreint l'activation de la voie FGF au sein des cellules de parapinéale pour permettre la migration du collectif (Manuscript n°2). La voie Notch est également requise pour la spécification d'un nombre correct de cellules de parapinéale, indépendamment de la voie FGF. En parallèle, nous avons analysé la fonction de MMP2 (Matrix Metalloprotease 2), une protéine exprimée mosaïquement dans la parapinéale et candidate pour moduler la signalisation FGF. Cependant, nous n'avons observé aucun défaut de spécification ou de migration de la parapinéale dans les embryons mutants pour le gène mmp2 -/- (Manuscript n°3). Mon travail de thèse révèle un rôle de la voie Notch pour restreindre l'activation de la signalisation FGF dans quelques cellules de parapinéale, un processus qui est biaisé par la voie Nodal afin d'orienter la migration du collectif vers la gauche. Ces données pourraient permettre de mieux comprendre les interactions entre les voies de signalisation FGF, Notch et Nodal dans d'autres modèles de migration cellulaire collective comme, par exemple, la migration des cellules cancéreuses.
- Published
- 2018
14. Identification of differentially expressed genes during development of the zebrafish pineal complex using RNA sequencing
- Author
-
Joshua T. Gamse and Sataree Khuansuwan
- Subjects
Embryo, Nonmammalian ,Time Factors ,Bioinformatics ,FACS ,RNA-Seq ,In situ hybridization ,Tbx2b ,Pineal Gland ,Article ,Transcriptome ,Animals, Genetically Modified ,Pineal ,Gene Knockdown Techniques ,Animals ,Cell dissociation ,Parapineal ,Molecular Biology ,Transcription factor ,Zebrafish ,In Situ Hybridization ,Gene knockdown ,biology ,Reverse Transcriptase Polymerase Chain Reaction ,Sequence Analysis, RNA ,RNA ,Gene Expression Regulation, Developmental ,Cell Biology ,Zebrafish Proteins ,biology.organism_classification ,Flow Cytometry ,Molecular biology ,Cell biology ,Pineal complex ,Transcriptome analysis ,RNA-seq ,T-Box Domain Proteins ,Epithalamus ,Developmental Biology - Abstract
We describe a method for isolating RNA suitable for high-throughput RNA sequencing (RNA-seq) from small numbers of fluorescently labeled cells isolated from live zebrafish (Danio rerio) embryos without using costly, commercially available columns. This method ensures high cell viability after dissociation and suspension of cells and gives a very high yield of intact RNA. We demonstrate the utility of our new protocol by isolating RNA from fluorescence activated cell sorted (FAC sorted) pineal complex neurons in wild-type and tbx2b knockdown embryos at 24 hours post-fertilization. Tbx2b is a transcription factor required for pineal complex formation. We describe a bioinformatics pipeline used to analyze differential expression following high-throughput sequencing and demonstrate the validity of our results using in situ hybridization of differentially expressed transcripts. This protocol brings modern transcriptome analysis to the study of small cell populations in zebrafish.
- Published
- 2014
15. Pitx2c ensures habenular asymmetry by restricting parapineal cell number
- Author
-
Myriam Roussigne, Patrick Blader, Sabrina E. Booton, Joshua T. Gamse, Laurence Garric, Brice Ronsin, Pascale Dufourcq, Centre de biologie du développement (CBD), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Habenular nuclei ,Embryo, Nonmammalian ,Nodal Protein ,media_common.quotation_subject ,[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology ,Nodal ,Context (language use) ,Cell Count ,Biology ,Pitx2 ,Asymmetry ,Pineal Gland ,Animals, Genetically Modified ,03 medical and health sciences ,Pineal gland ,0302 clinical medicine ,medicine ,Epithalamus ,Animals ,10. No inequality ,Molecular Biology ,Parapineal ,Research Articles ,Zebrafish ,030304 developmental biology ,media_common ,Body Patterning ,0303 health sciences ,Habenula ,PITX2 ,Anatomy ,Left-right ,Organ Size ,Zebrafish Proteins ,medicine.anatomical_structure ,[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and Organogenesis ,NODAL ,030217 neurology & neurosurgery ,Developmental Biology ,Signal Transduction ,Transcription Factors - Abstract
International audience; Left-right (L/R) asymmetries in the brain are thought to underlie lateralised cognitive functions. Understanding how neuroanatomicalasymmetries are established has been achieved through the study of the zebrafish epithalamus. Morphological symmetry in theepithalamus is broken by leftward migration of the parapineal, which is required for the subsequent elaboration of left habenular identity;the habenular nuclei flank the midline and show L/R asymmetries in marker expression and connectivity. The Nodal target pitx2c isexpressed in the left epithalamus, but nothing is known about its role during the establishment of asymmetry in the brain. We show thatabrogating Pitx2c function leads to the right habenula adopting aspects of left character, and to an increase in parapineal cell numbers. Parapineal ablation in Pitx2c loss of function results in right habenular isomerism, indicating that the parapineal is required for the left character detected in the right habenula in this context. Partial parapineal ablation in the absence of Pitx2c, however, reduces the number of parapineal cells to wild-type levels and restores habenular asymmetry. We provide evidence suggesting that antagonism between Nodal and Pitx2c activities sets an upper limit on parapinealcell numbers. We conclude that restricting parapineal cell number is crucial for the correct elaboration of epithalamic asymmetry.
- Published
- 2014
- Full Text
- View/download PDF
16. The Only Known Jawed Vertebrate with Four Eyes and the Bauplan of the Pineal Complex.
- Author
-
Smith KT, Bhullar BS, Köhler G, and Habersetzer J
- Subjects
- Animals, Phylogeny, Biological Evolution, Eye anatomy & histology, Lizards anatomy & histology, Lizards physiology, Pineal Gland anatomy & histology, Pineal Gland physiology
- Abstract
The pineal and parapineal organs are dorsal outpocketings of the vertebrate diencephalon that play key roles in orientation and in circadian and annual cycles. Lampreys are four eyed in that both the pineal and parapineal form eyelike photosensory structures, but the pineal is the dominant or sole median photosensory structure in most lower vertebrate clades. The pineal complex has been thought to evolve in a single direction by losing photosensory and augmenting secretory function in the transitions from three-eyed lower vertebrates to two-eyed mammals and archosaurs [1-3]. Yet the widely accepted elaboration of the parapineal instead of the pineal as the primary median photosensory organ [4] in Lepidosauria (lizards, snakes, and tuataras) hints at a more complex evolutionary history. Here we present evidence that a fourth eye re-evolved from the pineal organ at least once within vertebrates, specifically in an extinct monitor lizard, Saniwa ensidens, in which pineal and parapineal eyes were present simultaneously. The tandem midline location of these structures confirms in a striking fashion the proposed homology of the parietal eye with the parapineal organ and refutes the classical model of pineal bilaterality. It furthermore raises questions about the evolution and functional interpretation of the median photosensory organ in other tetrapod clades., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
17. Zebrafish Epithalamus as a Model System for Studying Circadian Rhythms and Left-Right Asymmetry
- Author
-
Lu, Po-Nien
- Subjects
- Developmental Biology, zebrafish, brain, epithalamus, pineal, parapineal, habenula, circadian, asymmetry, Suprachiasmatic, SCN
- Abstract
This dissertation is composed of three major contributions focusing on the circadian and asymmetric properties of zebrafish. First we demonstrated that the gene expression rhythms could be established in the pineal organ of cyc mutant larvae lacking the Suprachiasmatic nucleus (SCN) structure. We also found that such rhythmic gene expression pattern could be maintained under constant environments. However, the amplitudes of the expression rhythms were decreasing by the end of the second day under constant environments. These findings indicate that the zebrafish SCN is not required for establishing the circadian rhythms of the pineal organ, but may be needed for maintaining the rhythms. These findings also further support the theory that unlike the highly centralized mammalian circadian system, circadian rhythms in zebrafish are decentralized [Chapter 2 and (Noche et al., 2011)]. We then demonstrated that when the neural tube failed to close and resulted in divided epithalamic structures, the left-right (L/R) asymmetric characteristics of the epithalamus become left-isomerized. Normally asymmetrically expressed Nodal pathway genes became bilaterally expressed on both sides of the divided pineal organ. Also, normally left-located parapineal organ were observed on both sides, and both habenula nuclei exhibited a “left” pattern of gene expression. In contrast, other aspects of pineal development, such as expression of photoreceptor, projection neuron, and circadian related genes, remained normal. These findings indicate that a closed neural tube is required for the establishing of epithalamus left-right asymmetry. Our results also imply a previously unknown short-ranged mechanism that prevents the target tissues from acquiring left characteristics during the epithalamus L/R asymmetry establishment (Chapter 3). We also contributed in characterizing a novel zebrafish mutation sec61al1c163, which was originally identified for affecting the habenular complex L/R asymmetry. In this ongoing study we demonstrated that the sec61al1c163 mutation only has minor effects on the pineal organ structure. We also found that the neural crest derived craniofacial structures in the mutant embryos were severely defective, likely caused by failure in chondrocyte differentiation (Chapter 4).
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.