19 results on '"Pass-Lanneau, Adèle"'
Search Results
2. Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem
- Author
-
Bendotti, Pascale, Chrétienne, Philippe, Fouilhoux, Pierre, and Pass-Lanneau, Adèle
- Subjects
Mathematics - Optimization and Control ,Computer Science - Discrete Mathematics - Abstract
In project scheduling under processing times uncertainty, the Anchor-Robust Project Scheduling Problem is to find a baseline schedule of bounded makespan and a max-weight subset of jobs whose starting times are guaranteed. The problem was proven NP-hard even for budgeted uncertainty. In the present work we design mixed-integer programming (MIP) formulations that are valid for a variety of uncertainty sets encompassing budgeted uncertainty. A new dominance among solutions is proposed, resulting into an MIP formulation. We further study the combinatorial structure of the problem. Non-trivial polynomial cases under budgeted uncertainty are exhibited, where the dominance-based formulation yields a polyhedral characterization of integer solutions. In more general cases, the dominance-based formulation is shown to be tighter than all previously known formulations. In numerical experiments we investigate how the formulation performs on instances around the polynomial cases, for both budgeted uncertainty sets and more elaborate uncertainty sets involving several budgets.
- Published
- 2021
3. Exact and heuristic methods for Anchor-Robust and Adjustable-Robust RCPSP
- Author
-
Pass-Lanneau, Adèle, Bendotti, Pascale, and Brunod-Indrigo, Luca
- Subjects
Mathematics - Optimization and Control - Abstract
The concept of anchored solutions is proposed as a new robust optimization approach to the Resource-Constrained Project Scheduling Problem (RCPSP) under processing times uncertainty. The Anchor-Robust RCPSP is defined, to compute a baseline schedule with bounded makespan, sequencing decisions, and a max-size subset of jobs with guaranteed starting times, called anchored set. It is shown that the Adjustable-Robust RCPSP from the literature fits within the framework of anchored solutions. The Anchor-Robust RCPSP and the Adjustable-Robust RCPSP can benefit from each other to find both a worst-case makespan and a baseline schedule with an anchored set. A dedicated graph model for anchored solutions is proposed for budgeted uncertainty. Compact MIP reformulations are derived for both the Adjustable-Robust RCPSP and the Anchor-Robust RCPSP. Dedicated heuristics are designed based on the graph model. For both problems, the efficiency of the proposed MIP reformulations and heuristic approaches is assessed through numerical experiments on benchmark instances.
- Published
- 2020
4. The Convergence of Iterative Delegations in Liquid Democracy in a Social Network
- Author
-
Escoffier, Bruno, Gilbert, Hugo, and Pass-Lanneau, Adèle
- Subjects
Computer Science - Computer Science and Game Theory ,Computer Science - Artificial Intelligence - Abstract
Liquid democracy is a collective decision making paradigm which lies between direct and representative democracy. One of its main features is that voters can delegate their votes in a transitive manner such that: A delegates to B and B delegates to C leads to A indirectly delegates to C. These delegations can be effectively empowered by implementing liquid democracy in a social network, so that voters can delegate their votes to any of their neighbors in the network. However, it is uncertain that such a delegation process will lead to a stable state where all voters are satisfied with the people representing them. We study the stability (w.r.t. voters preferences) of the delegation process in liquid democracy and model it as a game in which the players are the voters and the strategies are their possible delegations. We answer several questions on the equilibria of this process in any social network or in social networks that correspond to restricted types of graphs. We show that a Nash-equilibrium may not exist, and that it is even NP-complete to decide whether one exists or not. This holds even if the social network is a complete graph or a bounded degree graph. We further show that this existence problem is W[1]-hard w.r.t. the treewidth of the social network. Besides these hardness results, we demonstrate that an equilibrium always exists whatever the preferences of the voters iff the social network is a tree. We design a dynamic programming procedure to determine some desirable equilibria (e.g., minimizing the dissatisfaction of the voters) in polynomial time for tree social networks. Lastly, we study the convergence of delegation dynamics. Unfortunately, when an equilibrium exists, we show that a best response dynamics may not converge, even if the social network is a path or a complete graph., Comment: arXiv admin note: text overlap with arXiv:1809.04362. Changes w.r.t. previous version: added Theorem 9 on page 14
- Published
- 2019
5. Iterative Delegations in Liquid Democracy with Restricted Preferences
- Author
-
Escoffier, Bruno, Gilbert, Hugo, and Pass-Lanneau, Adèle
- Subjects
Computer Science - Artificial Intelligence - Abstract
In this paper, we study liquid democracy, a collective decision making paradigm which lies between direct and representative democracy. One main feature of liquid democracy is that voters can delegate their votes in a transitive manner so that: A delegates to B and B delegates to C leads to A delegates to C. Unfortunately, this process may not converge as there may not even exist a stable state (also called equilibrium). In this paper, we investigate the stability of the delegation process in liquid democracy when voters have restricted types of preference on the agent representing them (e.g., single-peaked preferences). We show that various natural structures of preferences guarantee the existence of an equilibrium and we obtain both tractability and hardness results for the problem of computing several equilibria with some desirable properties.
- Published
- 2018
6. Perfect graphs with polynomially computable kernels
- Author
-
Pass-Lanneau, Adèle, Igarashi, Ayumi, and Meunier, Frédéric
- Subjects
Computer Science - Discrete Mathematics ,Mathematics - Combinatorics - Abstract
In a directed graph, a kernel is a subset of vertices that is both stable and absorbing. Not all digraphs have a kernel, but a theorem due to Boros and Gurvich guarantees the existence of a kernel in every clique-acyclic orientation of a perfect graph. However, an open question is the complexity status of the computation of a kernel in such a digraph. Our main contribution is to prove new polynomiality results for subfamilies of perfect graphs, among which are claw-free perfect graphs and chordal graphs. Our results are based on the design of kernel computation methods with respect to two graph operations: clique-cutset decomposition and augmentation of flat edges. We also prove that deciding the existence of a kernel - and computing it if it exists - is polynomial in every orientation of a chordal or a circular-arc graph, even not clique-acyclic.
- Published
- 2018
7. Anchored Rescheduling Problems Under Generalized Precedence Constraints
- Author
-
Bendotti, Pascale, Chrétienne, Philippe, Fouilhoux, Pierre, Pass-Lanneau, Adèle, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Baïou, Mourad, editor, Gendron, Bernard, editor, Günlük, Oktay, editor, and Mahjoub, A. Ridha, editor
- Published
- 2020
- Full Text
- View/download PDF
8. Perfect graphs with polynomially computable kernels
- Author
-
Pass-Lanneau, Adèle, Igarashi, Ayumi, and Meunier, Frédéric
- Published
- 2020
- Full Text
- View/download PDF
9. The Convergence of Iterative Delegations in Liquid Democracy in a Social Network
- Author
-
Escoffier, Bruno, primary, Gilbert, Hugo, additional, and Pass-Lanneau, Adèle, additional
- Published
- 2019
- Full Text
- View/download PDF
10. The Anchor-Robust Project Scheduling Problem.
- Author
-
Bendotti, Pascale, Chrétienne, Philippe, Fouilhoux, Pierre, and Pass-Lanneau, Adèle
- Subjects
SCHEDULING ,INTEGER programming ,WORKING hours ,PRODUCTION scheduling ,SURETYSHIP & guaranty ,STABILITY criterion ,PRICES - Abstract
In project scheduling, the durations of activities are often uncertain. Delays may cause a massive disorganization if a large number of activities must be rescheduled. In "The Anchor-Robust Project Scheduling Problem," Bendotti, Chrétienne, Fouilhoux, and Pass-Lanneau propose a novel criterion for solution stability in project scheduling under processing times uncertainty. They define anchored jobs as jobs whose starting times can be guaranteed in a baseline schedule. Finding a project schedule with bounded makespan and a max-weight set of anchors is shown to be an NP-hard robust two-stage problem. Taking advantage of the combinatorial structure of project scheduling and budgeted uncertainty, the authors obtain a compact MIP formulation for the problem. Numerical results show that the obtained MIP outperforms standard techniques from the literature. They also showcase the practical interest of anchored jobs in project scheduling. In project scheduling with uncertain processing times, the decision maker often needs to compute a baseline schedule in advance while guaranteeing that some jobs will not be rescheduled later. Standard robust approaches either produce a schedule with a very large makespan or offer no guarantee on starting times of the jobs. The concept of anchor-robustness is introduced as a middle ground between these approaches. A subset of jobs is said to be anchored if the starting times of its jobs in the baseline schedule can be guaranteed. The Anchor-Robust Project Scheduling Problem (AnchRobPSP) is proposed as a robust two-stage problem to find a baseline schedule of bounded makespan and a max-weight subset of anchored jobs. AnchRobPSP is considered for several uncertainty sets, such as box or budgeted uncertainty sets. Dedicated graph models are presented. In particular, the existence of a compact mixed integer programming reformulation for budgeted uncertainty is proven. AnchRobPSP is shown to be NP-hard even for budgeted uncertainty. Polynomial and pseudopolynomial algorithms are devised for box uncertainty and special cases of budgeted uncertainty. According to numerical results, the proposed approaches solve large-scale instances and outperform classical affine decisions rules for AnchRobPSP. Insights on the price of anchor-robustness are given based on computations. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
11. Découpage électoral des circonscriptions législatives en France: déséquilibres démographiques et contraintes territoriales
- Author
-
Ehrhard, Thomas, Attias, Solal, Bampis, Evripidis, Cohen-Addad, Vincent, Escoffier, Bruno, Mathieu, Claire, Pascual, Fanny, Pass-Lanneau, Adèle, Saulpic, David, Université Paris-Panthéon-Assas, Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Recherche Opérationnelle (RO), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Google Research, Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), and Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
[SHS]Humanities and Social Sciences - Abstract
National audience; This article proposes a new perspective for understanding electoral maps, using computational social science to study the criteria which shape how electoral districts are drawn up in France. Defining the boundaries of legislative constituencies is a complex task, given its technical dimension and the various demographic, geographic, and legal criteria that must be respected. Looking at demographic and geographic territorial data and the whole of the admissible redistrictings, we evaluate the criteria-based constraints on the empirical possibilities of the electoral map and, more broadly, we highlight the value of using computer for the map making of the electoral constituencies redistricting.; Cet article propose une nouvelle perspective d’étude de la carte électorale, fondée sur la computational social science, pour analyser les critères qui encadrent la réalisation du découpage électoral en France. La délimitation des circonscriptions législatives est complexe en raison de sa dimension technique et des critères juridiques, démographiques et géographiques à respecter. À partir des données démographiques et géographiques des territoires et de la mesure de l’ensemble des découpages admissibles, nous évaluons les contraintes formées par les critères sur les potentialités empiriques de la carte électorale et, plus largement, nous montrons l’intérêt d’avoir recours aux découpages assistés par ordinateur.
- Published
- 2022
- Full Text
- View/download PDF
12. The Anchor-Robust Project Scheduling Problem
- Author
-
Bendotti, Pascale, primary, Chrétienne, Philippe, additional, Fouilhoux, Pierre, additional, and Pass-Lanneau, Adèle, additional
- Published
- 2022
- Full Text
- View/download PDF
13. Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem
- Author
-
Bendotti, Pascale, primary, Chrétienne, Philippe, additional, Fouilhoux, Pierre, additional, and Pass-Lanneau, Adèle, additional
- Published
- 2021
- Full Text
- View/download PDF
14. Ancrage de solutions en optimisation combinatoire robuste
- Author
-
Pass-Lanneau, Adèle, Recherche Opérationnelle (RO), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Pierre Fouilhoux, and Pascale Bendotti
- Subjects
Réoptimisation ,Ordonnancement de projet ,Project scheduling ,Programmation linéaire en nombres entiers ,Stabilité des solutions ,Optimisation robuste à deux étapes ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,Operations research ,Robust optimization ,Complexité algorithmique - Abstract
If the instance of an optimization problem changes, an initial solution may become suboptimal or infeasible. It is then necessary to compute a new solution, but it is also desirable to keep some decisions from the initial solution unchanged. In this thesis we propose the anchoring criterion to favor unchanged decisions between solutions. In a reoptimization setting, the goal is to find a new solution while keeping a maximum number of decisions from the initial solution. In a robust 2-stage optimization setting, we propose the anchor-robust approach to compute in advance a baseline solution, along with a subset of so-called anchored decisions. For any realization in the considered uncertainty set, it is possible to repair the baseline solution into a new solution without changing anchored decisions. The anchor-robust approach allows for a trade-off between the cost of a solution and guaranteed decisions. Anchoring problems are formally defined and studied on two problem classes. The first one is the class of integer programs in binary variables, including classical polynomial problems such as spanning trees. The second one is project scheduling, where jobs must be scheduled under precedence only, or precedence and resource constraints. The complexity of anchoring problems is analyzed. Combinatorial properties of anchored solutions are exhibited, and dedicated algorithmic and polyhedral approaches are devised. Mixed-integer programming techniques are investigated, that highlight the practical implementability of anchoring problems.; Si les données d'un problème d'optimisation combinatoire changent, une solution initiale peut devenir sous-optimale ou infaisable. Il est alors nécessaire de calculer une nouvelle solution, mais aussi souhaitable de maintenir les décisions prises dans la solution initiale. Dans cette thèse nous proposons le critère d'ancrage pour favoriser les décisions inchangées entre solutions. En réoptimisation, il s'agit de trouver une solution conservant un nombre maximal de décisions d'une solution initiale. En optimisation robuste à deux étapes, nous proposons l'approche robuste-ancrée, qui consiste à calculer en avance une solution baseline et un sous-ensemble de décisions dites ancrées. Pour toute réalisation des données dans l'ensemble d'incertitude considéré, on peut réparer la solution baseline en une nouvelle solution sans changer les décisions ancrées. Cette approche permet un compromis entre le coût de la solution et les garanties sur les décisions. Les problèmes d'ancrage sont formalisés et déclinés sur deux classes de problèmes. La première est celle des programmes linéaires en variables binaires, et notamment des problèmes polynomiaux classiques comme l'arbre couvrant. La deuxième est celle des problèmes d'ordonnancement de projet, où des tâches doivent être ordonnancées sous des contraintes de précédences ou de ressources. La complexité algorithmique des problèmes d'ancrage est analysée. Les propriétés combinatoires des solutions ancrées sont étudiées, et permettent la conception d'approches algorithmiques et polyédrales dédiées. Des techniques de programmation linéaire en nombres entiers sont mises en œuvre, démontrant l'implémentabilité des problèmes d'ancrage.
- Published
- 2021
15. Iterative Delegations in Liquid Democracy with Restricted Preferences
- Author
-
Escoffier, Bruno, primary, Gilbert, Hugo, additional, and Pass-Lanneau, Adèle, additional
- Published
- 2020
- Full Text
- View/download PDF
16. Outils de résolution exacte pour l’ancrage de solutions en ordonnancement de projet
- Author
-
Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, Adèle Pass-Lanneau, Pass-Lanneau, Adèle, Recherche Opérationnelle (RO), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie (EDF R&D OSIRIS), EDF R&D (EDF R&D), and EDF (EDF)-EDF (EDF)
- Subjects
méthodes polyédrales ,ordonnancement de projet ,[INFO.INFO-RO] Computer Science [cs]/Operations Research [cs.RO] ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,PLNE ,ancrage de décisions ,ComputingMilieux_MISCELLANEOUS ,optimisation robuste 2-stage - Abstract
National audience
- Published
- 2020
17. The Anchor-Robust Project Scheduling Problem
- Author
-
Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, Adèle Pass-Lanneau, Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie (EDF R&D OSIRIS), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Recherche Opérationnelle (RO), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Pass-Lanneau, Adèle
- Subjects
[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] ,anchored decisions ,[INFO.INFO-RO] Computer Science [cs]/Operations Research [cs.RO] ,rescheduling ,robust optimization ,[INFO]Computer Science [cs] ,Project scheduling ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,[INFO] Computer Science [cs] ,Management Science and Operations Research ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,ComputingMilieux_MISCELLANEOUS ,Computer Science Applications - Abstract
A project scheduling framework is considered where processing times of jobs lie in some uncertainty set. The decision maker needs to compute a baseline schedule in advance, while guaranteeing that some jobs may not be rescheduled later. A subset of jobs is said to be anchored with respect to a baseline schedule if for any realization of processing times in the uncertainty set, the baseline schedule can be repaired in a second stage without changing the starting times of anchored jobs. Each job has an anchoring weight. The Anchor-Robust Project Scheduling Problem (AnchRobPSP) is to find in a first stage a baseline schedule satisfying a given deadline, and a subset of anchored jobs with maximum total weight. AnchRobPSP is considered for several uncertainty sets, such as box or budgeted uncertainty set, and dedicated graph models are presented. AnchRobPSP is shown to be NP-hard even for budgeted uncertainty. Polynomial or pseudo-polynomial algorithms are devised for box uncertainty and special cases of budgeted uncertainty. Numerical experiments for AnchRobPSP under budgeted uncertainty are presented. AnchRobPSP solutions are compared to those of state-of-the-art robust techniques. Finally it is shown how to achieve a trade-off between the number of anchored jobs and the makespan of the baseline schedule.
- Published
- 2019
18. Stabilisation de solutions en optimisation combinatoire par des modèles d'ancrage; application à l'arbre couvrant
- Author
-
Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, Adèle Pass-Lanneau, Pass-Lanneau, Adèle, Recherche Opérationnelle (RO), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie (EDF R&D OSIRIS), EDF R&D (EDF R&D), and EDF (EDF)-EDF (EDF)
- Subjects
arbre couvrant ,[INFO.INFO-RO] Computer Science [cs]/Operations Research [cs.RO] ,ancrage ,réoptimisation ,[INFO.INFO-RO]Computer Science [cs]/Operations Research [cs.RO] ,robustesse ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2019
19. Anchor-Robust Solutions for the Resource-Constrained Project Scheduling Problem
- Author
-
Pascale Bendotti, Luca Brunod-Indrigo, Philippe Chrétienne, Pierre Fouilhoux, Adèle Pass-Lanneau, Recherche Opérationnelle (RO), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Optimisation, Simulation, Risque et Statistiques pour les Marchés de l’Energie (EDF R&D OSIRIS), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), and Pass-Lanneau, Adèle
- Subjects
resource constraints ,solution stability ,robust optimization ,[INFO]Computer Science [cs] ,[INFO] Computer Science [cs] ,project scheduling ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.