203 results on '"Patrick Hennebelle"'
Search Results
2. Protoplanetary Disk Size under Nonideal Magnetohydrodynamics: A General Formalism with Inclined Magnetic Field
- Author
-
Yueh-Ning Lee, Barshan Ray, Pierre Marchand, and Patrick Hennebelle
- Subjects
Protoplanetary disks ,Magnetohydrodynamics ,Astrophysics ,QB460-466 - Abstract
Many mechanisms have been proposed to alleviate the magnetic catastrophe, which prevents the Keplerian disk from forming inside a collapsing magnetized core. Such propositions include inclined field and nonideal magnetohydrodynamics effects, and have been supported with numerical experiments. Models have been formulated for typical disk sizes when a field threads the rotating disk, parallel to the rotation axis, while observations at the core scales do not seem to show evident correlation between the directions of angular momentum and the magnetic field. In the present study, we propose a new model that considers both vertical and horizontal fields and discuss their effects on the protoplanetary disk size.
- Published
- 2024
- Full Text
- View/download PDF
3. Recent progress with observations and models to characterize the magnetic fields from star-forming cores to protostellar disks
- Author
-
Anaëlle Maury, Patrick Hennebelle, and Josep Miquel Girart
- Subjects
star formation ,magnetic field ,polarization ,MHD modeling ,protostars ,Astronomy ,QB1-991 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
In this review article, we aim at providing a global outlook on the progresses made in the recent years to characterize the role of magnetic fields during the embedded phases of the star formation process. Thanks to the development of observational capabilities and the parallel progress in numerical models, capturing most of the important physics at work during star formation; it has recently become possible to confront detailed predictions of magnetized models to observational properties of the youngest protostars. We provide an overview of the most important consequences when adding magnetic fields to state-of-the-art models of protostellar formation, emphasizing their role to shape the resulting star(s) and their disk(s). We discuss the importance of magnetic field coupling to set the efficiency of magnetic processes and provide a review of observational works putting constraints on the two main agents responsible for the coupling in star-forming cores: dust grains and ionized gas. We recall the physical processes and observational methods, which allow to trace the magnetic field topology and its intensity in embedded protostars and review the main steps, success, and limitations in comparing real observations to synthetic observations from the non-ideal MHD models. Finally, we discuss the main threads of observational evidence that suggest a key role of magnetic fields for star and disk formation, and propose a scenario solving the angular momentum for star formation, also highlighting the remaining tensions that exist between models and observations.
- Published
- 2022
- Full Text
- View/download PDF
4. The Role of Magnetic Field in Molecular Cloud Formation and Evolution
- Author
-
Patrick Hennebelle and Shu-ichiro Inutsuka
- Subjects
magnetic field ,molecular clouds ,star formation ,gravity ,turbulence ,multi-phase ,Astronomy ,QB1-991 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
We review the role that magnetic field may have on the formation and evolution of molecular clouds. After a brief presentation and main assumptions leading to ideal MHD equations, their most important correction, namely the ion-neutral drift is described. The nature of the multi-phase interstellar medium (ISM) and the thermal processes that allows this gas to become denser are presented. Then we discuss our current knowledge of compressible magnetized turbulence, thought to play a fundamental role in the ISM. We also describe what is known regarding the correlation between the magnetic and the density fields. Then the influence that magnetic field may have on the interstellar filaments and the molecular clouds is discussed, notably the role it may have on the pre-stellar dense cores as well as regarding the formation of stellar clusters. Finally we briefly review its possible effects on the formation of molecular clouds themselves. We argue that given the magnetic intensities that have been measured, it is likely that magnetic field is (i) responsible of reducing the star formation rate in dense molecular cloud gas by a factor of a few, (ii) strongly shaping the interstellar gas by generating a lot of filaments and reducing the numbers of clumps, cores and stars, although its exact influence remains to be better understood. Moreover at small scales, magnetic braking is likely a dominant process that strongly modifies the outcome of the star formation process. Finally, we stress that by inducing the formation of more massive stars, magnetic field could possibly enhance the impact of stellar feedback.
- Published
- 2019
- Full Text
- View/download PDF
5. Formation and Evolution of Disks Around Young Stellar Objects
- Author
-
Bo Zhao, Kengo Tomida, Patrick Hennebelle, John J. Tobin, Anaëlle Maury, Tomoya Hirota, Álvaro Sánchez-Monge, Rolf Kuiper, Anna Rosen, Asmita Bhandare, Marco Padovani, and Yueh-Ning Lee
- Published
- 2020
- Full Text
- View/download PDF
6. On the distribution of the CNM in spiral galaxies
- Author
-
Rowan J Smith, Robin Tress, Juan D Soler, Ralf S Klessen, Simon C O Glover, Patrick Hennebelle, Sergio Molinari, Mordecai-Mark Mac Low, and David Whitworth
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Abstract
The Cold Neutral Medium (CNM) is an important part of the galactic gas cycle and a precondition for the formation of molecular and star forming gas, yet its distribution is still not fully understood. In this work we present extremely high resolution simulations of spiral galaxies with time-dependent chemistry such that we can track the formation of the CNM, its distribution within the galaxy, and its correlation with star formation. We find no strong radial dependence between the CNM fraction and total H i due to the decreasing interstellar radiation field counterbalancing the decreasing gas column density at larger galactic radii. However, the CNM fraction does increase in spiral arms where the CNM distribution is clumpy, rather than continuous, overlapping more closely with H2. The CNM doesn’t extend out radially as far as H i, and the vertical scale height is smaller in the outer galaxy compared to H i with no flaring. The CNM column density scales with total midplane pressure and disappears from the gas phase below values of PT/kB = 1000 K cm−3. We find that the star formation rate density follows a similar scaling law with CNM column density to the total gas Kennicutt-Schmidt law. In the outer galaxy we produce realistic vertical velocity dispersions in the H i purely from galactic dynamics but our models do not predict CNM at the extremely large radii observed in H i absorption studies. We suggest that grand design spiral arms might produce isolated clumps of CNM at these radii.
- Published
- 2023
- Full Text
- View/download PDF
7. Chemical Diversity in Protoplanetary Disks and Its Impact on the Formation History of Giant Planets
- Author
-
Elenia Pacetti, Diego Turrini, Eugenio Schisano, Sergio Molinari, Sergio Fonte, Romolo Politi, Patrick Hennebelle, Ralf Klessen, Leonardo Testi, and Ugo Lebreuilly
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Giant planets can interact with multiple and chemically diverse environments in protoplanetary discs while they form and migrate to their final orbits. The way this interaction affects the accretion of gas and solids shapes the chemical composition of the planets and of their atmospheres. Here we investigate the effects of different chemical structures of the host protoplanetary disc on the planetary composition. We consider both scenarios of molecular (inheritance from the pre-stellar cloud) and atomic (complete chemical reset) initial abundances in the disc. We focus on four elemental tracers of different volatility: C, O, N, and S. We explore the entire extension of possible formation regions suggested by observations by coupling the disc chemical scenarios with N-body simulations of forming and migrating giant planets. The planet formation process produces giant planets with chemical compositions significantly deviating from that of the host disc. We find that the C/N, N/O, and S/N ratios follow monotonic trends with the extent of migration. The C/O ratio shows a more complex behaviour, dependent on the planet accretion history and on the chemical structure of the formation environment. The comparison between S/N* and C/N* (where * indicates normalisation to the stellar value), constrains the relative contribution of gas and solids to the total metallicity. Giant planets whose metallicity is dominated by the contribution of the gas are characterised by N/O* > C/O* > C/N* and allow for constraining the disc chemical scenario. When the planetary metallicity is instead dominated by the contribution of the solids we find that C/N* > C/O* > N/O*., 27 pages, 10 figures, 1 table. Published in The Astrophysical Journal
- Published
- 2022
8. Magnetically regulated collapse in the B335 protostar? II. Observational constraints on gas ionization and magnetic field coupling
- Author
-
Victoria Cabedo, Anaëlle Maury, Josep Miquel Girart, Marco Padovani, Patrick Hennebelle, Martin Houde, and Qizhou Zhang
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Non-ideal magnetohydrodynamic effects that rule the coupling of the magnetic field to the circumstellar gas during the low-mass star formation process depend heavily on the local physical conditions, such as the ionization fraction of the gas. The purpose of this work is to observationally characterize the level of ionization of the circumstellar gas at small envelope radii and investigate its relation to the efficiency of the coupling between the star-forming gas and the magnetic field in the Class 0 protostar B335. We have obtained molecular line emission maps of B335 with ALMA, which we use to measure the deuteration fraction of the gas, its ionization fraction, and the cosmic-ray ionization rate, at envelope radii $\lesssim$1000 au. We find large fractions of ionized gas, $\chi_{e} \simeq 1-8 \times 10^{-6}$. Our observations also reveal an enhanced ionization that increases at small envelope radii, reaching values up to $\zeta_{CR} \simeq 10^{-14}$~s$^{-1}$ at a few hundred au from the central protostellar object. We show that this extreme ionization rate can be attributed to the presence of cosmic rays accelerated close to the protostar. We report the first resolved map of the cosmic-ray ionization rate at scales $\lesssim 1000$~au in a solar-type Class 0 protostar, finding remarkably high values. Our observations suggest that local acceleration of cosmic rays, and not the penetration of interstellar Galactic cosmic rays, may be responsible for the gas ionization in the inner envelope, potentially down to disk forming scales. If confirmed, our findings imply that protostellar disk properties may also be determined by local processes setting the coupling between the gas and the magnetic field, and not only by the amount of angular momentum available at large envelope scales and the magnetic field strength in protostellar cores., Comment: A&A, Forthcoming article
- Published
- 2022
- Full Text
- View/download PDF
9. The signature of large scale turbulence driving on the structure of the interstellar medium
- Author
-
Tine Colman, Jean-François Robitaille, Patrick Hennebelle, Marc-Antoine Miville-Deschênes, Noé Brucy, Ralf S Klessen, Simon C O Glover, Juan D Soler, Davide Elia, Alessio Traficante, Sergio Molinari, Leonardo Testi, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Subjects
Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,ISM: structure ,Astrophysics of Galaxies (astro-ph.GA) ,turbulence ,Magellanic Clouds ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics::Galaxy Astrophysics - Abstract
The mechanisms that maintain turbulence in the interstellar medium (ISM) are still not identified. This work investigates how we can distinguish between two fundamental driving mechanisms: the accumulated effect of stellar feedback versus the energy injection from Galactic scales. We perform a series of numerical simulations describing a stratified star forming ISM subject to self-consistent stellar feedback. Large scale external turbulent driving of various intensities is added to mimic galactic driving mechanisms. We analyse the resulting column density maps with a technique called Multi-scale non-Gaussian segmentation that separates the coherent structures and the Gaussian background. This effectively discriminates between the various simulations and is a promising method to understand the ISM structure. In particular the power spectrum of the coherent structures flattens above 60 pc when turbulence is driven only by stellar feedback. When large-scale driving is applied, the turn-over shifts to larger scales. A systematic comparison with the Large Magellanic Cloud (LMC) is then performed. Only 1 out of 25 regions has a coherent power spectrum which is consistent with the feedback-only simulation. A detailed study of the turn-over scale leads us to conclude that regular stellar feedback is not enough to explain the observed ISM structure on scales larger than 60 pc. Extreme feedback in the form of supergiant shells likely plays an important role but cannot explain all the regions of the LMC. If we assume ISM structure is generated by turbulence, another large scale driving mechanism is needed to explain the entirety of the observations., Comment: 15 pages, 11 figures, to be published in MNRAS
- Published
- 2022
- Full Text
- View/download PDF
10. Discs and outflows in the early phases of massive star formation: Influence of magnetic fields and ambipolar diffusion
- Author
-
M. González, Neil Vaytet, Patrick Hennebelle, Benoît Commerçon, R. Mignon-Risse, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Observatoire des Sciences de l'Univers de Grenoble (OSUG ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Subjects
FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,magnetohydrodynamics (MHD) ,methods: numerical ,0103 physical sciences ,Protostar ,Astrophysics::Solar and Stellar Astrophysics ,Magnetic pressure ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,Solar mass ,stars: formation ,010308 nuclear & particles physics ,Ambipolar diffusion ,Star formation ,Astronomy and Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Astrophysics of Galaxies ,Accretion (astrophysics) ,Magnetic field ,stars: massive ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,radiative transfer ,Astrophysics of Galaxies (astro-ph.GA) ,hydrodynamics ,Astrophysics::Earth and Planetary Astrophysics ,Magnetohydrodynamics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We study mass accretion and ejection in the vicinity of massive star forming cores using high-resolution (5 au) 3D AMR numerical simulations. We investigate the mechanisms at the origin of outflows and characterise the properties of the disc forming around massive protostars. We include both protostellar radiative feedback via PMS evolutionary tracks and magnetic ambipolar diffusion. We studied 3 different cases: purely hydrodynamical, ideal MHD, and ambipolar diffusion. In the resistive models, we investigate the effects the initial amplitude of both magnetic field and rotation have on the properties of the massive protostellar system. We use simple criteria to identify the outflow and disc material and follow their evolution as the central star accretes mass up to 20 solar mass. The outflow is completely different when magnetic fields are introduced, so that magnetic processes are the main driver of the outflow up to stellar masses of ~20 solar mass. The disc properties depend on the physics included. The disc formed in the ideal and resistive runs show opposite properties in terms of plasma beta and of magnetic fields topology. While the disc in the ideal case is dominated by the magnetic pressure and the toroidal magnetic fields, the one formed in the resistive runs is dominated by the thermal pressure and has essentially vertical magnetic fields in the inner regions (R, 21 pages, 16 figures, accepted for publication in A&A
- Published
- 2022
- Full Text
- View/download PDF
11. Is the mm/submm dust polarization a robust tracer of the magnetic field topology in protostellar envelopes? A model exploration
- Author
-
Valeska Valdivia, Anaëlle Maury, and Patrick Hennebelle
- Subjects
Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Solar and Stellar Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics - Abstract
High resolution (sub-)millimeter polarization observations have opened a new era in the understanding of how B-fields are organized in star forming regions, unveiling an intricate interplay between the B-fields and the gas in protostellar cores. However, to assess the role of the B-field in the process of solar-type star formation, it is key to be able to understand to what extent these polarized dust emissions are good tracers of the B-field in the youngest protostellar objects. We present a thorough investigation of the fidelity and limitations of using dust polarized emission to map the B-field topologies in low-mass protostars. To assess the importance of these effects, we performed the analysis of B-field properties in 27 realizations of MHD models of star-forming cores. Assuming a uniform population of dust grains whose sizes follow the standard MRN, we analyze the synthetic polarized dust emission maps produced if these grains align with the local B-field thanks to B-RATs. We find that (sub-)millimeter polarized dust emission is a robust tracer of the B-field topologies in inner protostellar envelopes and is successful at capturing the details of the B-field spatial distribution down to radii ~100 au. Measurements of the los averaged B-field orientation using the polarized dust emission are precise to < 15{\deg} in about 75 - 95% of the independent lines of sight peering through protostellar envelopes. Large discrepancies between the integrated B-field mean orientation and the orientation reconstructed from the polarized dust emission are mostly observed in (i) lines of sight where the B-field is highly disorganized and (ii) lines of sight probing large column densities. Our analysis shows that high opacity of the thermal dust emission and low polarization fractions could be used to avoid utilizing the small fraction of measurements affected by large errors., Comment: Accepted for publication in A&A
- Published
- 2022
- Full Text
- View/download PDF
12. Influence of magnetic field and stellar radiative feedback on the collapse and the stellar mass spectrum of a massive star-forming clump
- Author
-
Patrick Hennebelle, Ugo Lebreuilly, Tine Colman, Davide Elia, Gary Fuller, Silvia Leurini, Thomas Nony, Eugenio Schisano, Juan D. Soler, Alessio Traficante, Ralf S. Klessen, Sergio Molinari, and Leonardo Testi
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Abstract
Context. In spite of decades of theoretical efforts, the physical origin of the stellar initial mass function (IMF) is still a subject of debate. Aims. We aim to gain an understanding of the influence of various physical processes such as radiative stellar feedback, magnetic field, and non-ideal magneto-hydrodynamics on the IMF. Methods. We present a series of numerical simulations of collapsing 1000 M⊙ clumps, taking into account the radiative feedback and magnetic field with spatial resolution down to 1 AU. We performed both ideal and non-ideal MHD runs, and various radiative feedback efficiencies are considered. We also developed analytical models that we confront with the numerical results. Results. We computed the sum of the luminosities produced by the stars in the calculations and it shows a good comparison with the bolometric luminosities reported in observations of massive star-forming clumps. The temperatures, velocities, and densities are also found to be in good agreement with recent observations. The stellar mass spectrum inferred for the simulations is, generally speaking, not strictly universal and it varies, in particular, with magnetic intensity. It is also influenced by the choice of the radiative feedback efficiency. In all simulations, a sharp drop in the stellar distribution is found at about Mmin ≃ 0.1 M⊙, which is likely a consequence of the adiabatic behaviour induced by dust opacities at high densities. As a consequence, when the combination of magnetic and thermal support is not too high, the mass distribution presents a peak located at 0.3–0.5 M⊙. When the magnetic and thermal support are high, the mass distribution is better described by a plateau, that is, dN/dlog M ∝ M−Γ, Γ ≃ 0. At higher masses, the mass distributions drop following power-law behaviours until a maximum mass, Mmax, whose value increases with field intensity and radiative feedback efficiency. Between Mmin and Mmax, the distributions inferred from the simulations are in good agreement with an analytical model inferred from gravo-turbulent theory. Due to the density PDF ∝ρ−3/2 relevant for collapsing clouds, values on the order of Γ ≃ 3/4 are inferred both analytically and numerically. More precisely, after 150 M⊙ of gas have been accreted, the most massive star has a mass of about 8 M⊙ when magnetic field is significant, and 3 M⊙ only when both the radiative feedback efficiency and magnetic field are low, respectively. Conclusions. When both the magnetic field and radiative feedback are taken into account, they are found to have a significant influence on the stellar mass spectrum. In particular, both of these effects effectively reduce fragmentation and lead to the formation of more massive stars.
- Published
- 2022
- Full Text
- View/download PDF
13. Universal protoplanetary disk size under complete non-ideal magnetohydrodynamics: The interplay between ion-neutral friction, Hall effect, and the Ohmic dissipation
- Author
-
Yueh-Ning Lee, Pierre Marchand, Yu-Hsuan Liu, and Patrick Hennebelle
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The role of non-ideal magnetohydrodynamics has been proven critical during the formation of the protoplanetary disk, particularly in regulating its size. We provide a simple model to predict the disk size under the interplay among the ambipolar diffusion, the Hall effect, and the Ohmic dissipation. The model predicts a small disk size of around 20 AU, that depends only sub-linearly on disk parameters, for a wide range of initial conditions of sub-Solar mass and moderate magnetization. It is able to explain phenomena manifested in existing numerical simulations, including the bimodal disk behavior under parallel and anti-parallel alignment between the rotation and magnetic field. In the parallel configuration, the disk size decreases and eventually disappears. In the anti-parallel configuration, and the disk has an outer partition (or pseudo-disk) that is flat, shrinking , and short-lived, as well as a inner partition that grows slowly with mass and is long-lived. Even with significant initial magnetization, the vertical field in the disk can only dominate at the early stage when the mass is low, and the toroidal field eventually dominates in all disks., Accepted for publication in Astrophysical Journal
- Published
- 2021
14. Amplification and generation of turbulence during self-gravitating collapse
- Author
-
Patrick Hennebelle, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), This work was granted access to HPC resources of CINES and CCRT under the allocation x2014047023 made by GENCI (Grand Equipement National de Calcul Intensif)., This research has received funding from the European Research Council synergy grant ECOGAL (Grant : 855130)., and European Project: 291227,EC:FP7:ERC,ERC-2011-ADG_20110209,ECOGAL(2012)
- Subjects
Angular momentum ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,ISM: clouds ,Gravitation ,Spherical geometry ,Physics::Fluid Dynamics ,0103 physical sciences ,Gravitational collapse ,010306 general physics ,010303 astronomy & astrophysics ,Equipartition theorem ,Physics ,stars: formation ,Turbulence ,turbulence ,Astronomy and Astrophysics ,Polytropic process ,Mechanics ,Dissipation ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,instabilities ,gravitation ,Astrophysics of Galaxies (astro-ph.GA) ,hydrodynamics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The formation of astrophysical structures, such as stars, compact objects but also galaxies, entail an,enhancement of densities by many orders of magnitude which occurs through gravitational collapse. The role played by turbulence during this process is important. Turbulence generates density fluctuations, exerts a support against gravity and possibly delivers angular momentum. How turbulence exactly behave during the collapse and get amplified remains a matter of investigation. Spherical averaging of the fluid equations is carried out, leading to 1D fluid equations that describe the evolution of mean quantities in particular the mean radial velocity as well as the mean radial and transverse turbulent velocities. These equations differ from the ones usually employed in the literature. We then perform a series of 3D numerical simulations of collapsing clouds for a wide range of thermal and turbulent supports with two polytropic equation of state, $P \propto \rho^\Gamma$, with $\Gamma=1$ and 1.25. For each 3D simulations we perform a series of 1D simulations using the spherically averaged equations and with the same initial conditions. By performing a detailed comparison between 3D and 1D simulations, we can analyse in great details the observed behaviours. Altogether we find that the two approaches agree remarkably well demonstrating the validity of the inferred equations although when turbulence is initially strong, major deviations from spherical geometry certainly preclude quantitative comparisons. The detailed comparisons lead us to an estimate of the turbulent dissipation parameter that when the turbulence is initially low, is found to be in good agreement with previous estimate of non self-gravitating supersonic turbulence. abridged., Comment: accepted for publication in A&A
- Published
- 2021
- Full Text
- View/download PDF
15. A two-step gravitational cascade for the fragmentation of self-gravitating discs
- Author
-
Noé Brucy, Patrick Hennebelle, Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
Angular momentum ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,FOS: Physical sciences ,Context (language use) ,01 natural sciences ,Power law ,010305 fluids & plasmas ,methods: numerical ,Smoothed-particle hydrodynamics ,Gravitation ,symbols.namesake ,accretion ,0103 physical sciences ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Godunov's scheme ,Astronomy and Astrophysics ,Mechanics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,accretion discs ,Astrophysics - Astrophysics of Galaxies ,Riemann solver ,protoplanetary discs ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Cascade ,gravitation ,instabilities ,Astrophysics of Galaxies (astro-ph.GA) ,hydrodynamics ,symbols ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Self-gravitating discs are believed to play an important role in astrophysics in particular regarding the star and planet formation process. In this context, discs subject to an idealized cooling process, characterized by a cooling timescale $\beta$ expressed in unit of orbital timescale, have been extensively studied. We take advantage of the Riemann solver and the 3D Godunov scheme implemented in the code Ramses to perform high resolution simulations, complementing previous studies that have used smoothed particle hydrodynamics (SPH) or 2D grid codes. We observe that the critical value of $\beta$ for which the disc fragments is consistent with most previous results, and is not well converged with resolution. By studying the probability density function of the fluctuations of the column density ($\Sigma$-PDF), we argue that there is no strict separation between the fragmented and the unfragmented regimes but rather a smooth transition with the probability of apparition of fragments steadily diminishing as the cooling becames less effective. We find that the high column density part of the $\Sigma$-PDF follows a simple power law whose slope turns out to be proportional to $\beta$ and we propose an explanation based on the balance between cooling and heating through gravitational stress. Our explanation suggests that a more efficient cooling requires more heating implying a larger fraction of dense material which, in the absence of characteristic scales, results in a shallower scale-free power law. We propose that the gravitational cascade proceeds in two steps, first the formation of a dense filamentary spiral pattern through a sequence of quasi-static equilibrium triggered by the viscous transport of angular momentum, and second the collapse alongside these filaments that eventually results in the formation of bounded fragments., Comment: 17 pages, 17 figures. Accepted for publication in MNRAS
- Published
- 2021
- Full Text
- View/download PDF
16. Protoplanetary disk formation from the collapse of a prestellar core
- Author
-
Patrick Hennebelle, Sébastien Charnoz, Yueh Ning Lee, Department of Earth Sciences [NTNU Taipei], National Taiwan Normal University (NTNU), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
- Subjects
010504 meteorology & atmospheric sciences ,Young stellar object ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Protoplanetary disk ,01 natural sciences ,magnetohydrodynamics (MHD) ,accretion ,0103 physical sciences ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,14. Life underwater ,010303 astronomy & astrophysics ,planetary systems ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,0105 earth and related environmental sciences ,Physics ,[PHYS]Physics [physics] ,Earth and Planetary Astrophysics (astro-ph.EP) ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Star formation ,accretion disks ,protoplanetary disks ,Astronomy and Astrophysics ,Planetary system ,Astrophysics - Astrophysics of Galaxies ,Accretion (astrophysics) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,hydrodynamics ,Astrophysics::Earth and Planetary Astrophysics ,Magnetohydrodynamics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
While it is generally accepted that the magnetic field and its non-ideal effects play important roles during the stellar formation, simple models of pure hydrodynamics and angular momentum conservation are still widely employed in the studies of disk assemblage in the framework of the so-called "alpha-disk" model due to their simplicity. There has only been a few efforts trying to bridge the gap between a collapsing prestellar core and a developed disk. The goal of the present work is to revisit the assemblage of the protoplanetary disk (PPD), by performing 3D MHD simulations with ambipolar diffusion and full radiative transfer. We follow the global evolution of the PPD from the prestellar core collapse for 100 kyr, with resolution of one AU. The formed disk is more realistic and is in agreement with recent observations of disks around class-0 young stellar objects. The mass flux arriving onto the disk and the radial mass accretion rate within the disk are measured and compared to analytical self-similar models. The surface mass flux is very centrally peaked, implying that most of the mass falling onto the star does not transit through the mid-plane of the disk. The disk mid-plane is almost dead to turbulence, whereas upper layers and the disk outer edge are very turbulent. The snow-line is significantly further away than in a passive disk. We developed a zoomed rerun technique to quickly obtain a reasonable disk that is highly stratified, weakly magnetized inside, and strongly magnetized outside. During the class-0 phase of PPD formation, the interaction between the disk and the infalling envelope is important and ought not be neglected. Accretion onto the star is found to mostly depend on dynamics of the collapsing envelope, rather than the detailed disk structure., Comment: Accepted for publication in A\&A on Feb. 14th 2021
- Published
- 2021
- Full Text
- View/download PDF
17. Star Formation, Theory
- Author
-
Patrick Hennebelle
- Subjects
Physics ,Star formation ,Astrophysics - Published
- 2021
- Full Text
- View/download PDF
18. An observational correlation between magnetic field, angular momentum and fragmentation in the envelopes of Class 0 protostars?
- Author
-
Eric Keto, Qizhou Zhang, Shih-Ping Lai, Valeska Valdivia, Josep M. Girart, Anaëlle Maury, Victoria Cabedo-Soto, Patrick Hennebelle, M. Gaudel, Ramprasad Rao, Maud Galametz, Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge], Institut d'Estudis Espacials de Catalunya (IEEC-CSIC), Institut de Ciencies de l'Espai [Barcelona] (ICE-CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), National Tsing Hua University [Hsinchu] (NTHU), European Project: 679937,H2020,ERC-2015-STG,MagneticYSOs(2016), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Harvard University-Smithsonian Institution, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), European Commission, Ministerio de Ciencia e Innovación (España), Agencia Estatal de Investigación (España), and Ministerio de Ciencia, Innovación y Universidades (España)
- Subjects
Angular momentum ,FOS: Physical sciences ,Astrophysics ,Kinetic energy ,7. Clean energy ,01 natural sciences ,Submillimeter Array ,protostars [Stars] ,0103 physical sciences ,Protostar ,Astrophysics::Solar and Stellar Astrophysics ,instrumentation: interferometers ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,formation [Stars] ,Astrophysics::Galaxy Astrophysics ,Physics ,ISM: kinematics and dynamics ,[PHYS]Physics [physics] ,stars: formation ,Magnetic energy ,stars: protostars ,010308 nuclear & particles physics ,Velocity gradient ,magnetic fields [ISM] ,ISM [Submillimeter] ,Astronomy and Astrophysics ,interferometers [Instrumentation] ,Astrophysics - Astrophysics of Galaxies ,Magnetic field ,kinematics and dynamics [ISM] ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,submillimeter: ISM ,Outflow ,Astrophysics::Earth and Planetary Astrophysics ,ISM: magnetic fields ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Aims. The main goal of the following analysis is to assess the potential role of magnetic fields in regulating the envelope rotation, the formation of disks and the fragmentation of Class 0 protostars in multiple systems. Methods. We use the Submillimeter Array to carry out observations of the dust polarized emission at 0.87 mm, in the envelopes of a large sample of 20 Class 0 protostars. We estimate the mean magnetic field orientation over the central 1000 au envelope scales to characterize the orientation of the main component of the organized magnetic field at the envelope scales in these embedded protostars. This direction is compared to that of the protostellar outflow in order to study the relation between their misalignment and the kinematics of the circumstellar gas. The latter is traced via velocity gradient observed in the molecular line emission (mainly N2H+) of the gas at intermediate envelope scales. Results. We discover a strong relationship between the misalignment of the magnetic field orientation with the outflow and the amount of angular momentum observed at similar scales in the protostellar envelope, revealing a potential link between the kinetic and the magnetic energy at envelope scales. The relation could be driven by favored B-misalignments in more dynamical envelopes or a dependence of the envelope dynamics with the large-scale B initial configuration. Comparing the trend with the presence of fragmentation, we observe that single sources are mostly associated with conditions of low angular momentum in the inner envelope and good alignment of the magnetic field with protostellar outflows, at intermediate scales. Our results suggest that the properties of the magnetic field in protostellar envelopes bear a tight relationship with the rotating-infalling gas directly involved in the star and disk formation: we find that it may not only influence the fragmentation of protostellar cores into multiple stellar systems, but also set the conditions establishing the pristine properties of planet-forming disks., This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (MagneticYSOs project, grant agreement No. 679937, PI: Maury). J.M.G. is supported by the grant AYA2017-84390- C2-R (AEI/FEDER, UE).
- Published
- 2020
- Full Text
- View/download PDF
19. A statistical analysis of dust polarization properties in ALMA observations of Class 0 protostellar cores
- Author
-
Vincent Guillet, V. J. M. Le Gouellec, Charles L. H. Hull, R. Mignon-Risse, Valeska Valdivia, Anaëlle Maury, F. Louvet, Patrick Hennebelle, M. González, A. Verliat, Josep M. Girart, European Southern Observatory (ESO), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Ciencies de l'Espai [Barcelona] (ICE-CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut d'Estudis Espacials de Catalunya (IEEC-CSIC), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université Paris-Saclay, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Storengy France, European Southern Observatory, Ministerio de Ciencia, Innovación y Universidades (España), Japan Society for the Promotion of Science, National Astronomical Observatory of Japan, European Commission, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), and Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,symbols.namesake ,Paramagnetism ,Polarization ,protostars [Stars] ,0103 physical sciences ,Radiative transfer ,Protostar ,Astrophysics::Solar and Stellar Astrophysics ,Planck ,010303 astronomy & astrophysics ,formation [Stars] ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,polarization ,stars: formation ,stars: protostars ,jets and outflows [ISM] ,010308 nuclear & particles physics ,magnetic fields [ISM] ,stars: magnetic field ,Estimator ,Astronomy and Astrophysics ,Polarization (waves) ,Astrophysics - Astrophysics of Galaxies ,Interstellar medium ,magnetic field [Stars] ,ISM: jets and outflows ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,ISM: magnetic fields ,Magnetohydrodynamics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Context. Recent observational progress has challenged the dust grain-alignment theories used to explain the polarized dust emission routinely observed in star-forming cores. Aims. In an effort to improve our understanding of the dust grain alignment mechanism(s), we have gathered a dozen ALMA maps of (sub)millimeter-wavelength polarized dust emission from Class 0 protostars and carried out a comprehensive statistical analysis of dust polarization quantities. Methods. We analyze the statistical properties of the polarization fraction Pfrac and the dispersion of polarization position angles S. More specifically, we investigate the relationship between S and Pfrac as well as the evolution of the product S × Pfrac as a function of the column density of the gas in the protostellar envelopes. We compare the observed trends with those found in polarization observations of dust in the interstellar medium and in synthetic observations of non-ideal magneto-hydrodynamic (MHD) simulations of protostellar cores. Results. We find a significant S Pfrac-0.79 correlation in the polarized dust emission from protostellar envelopes seen with ALMA; the power-law index significantly differs from the one observed by Planck in star-forming clouds. The product S × Pfrac, which is sensitive to the dust grain alignment efficiency, is approximately constant across three orders of magnitude in envelope column density (from NH2 = 1022 cm-2 to NH2 = 1025 cm-2), with a mean value of 0.36-0.17+0.10. This suggests that the grain alignment mechanism producing the bulk of the polarized dust emission in star-forming cores may not systematically depend on the local conditions such as the local gas density. However, in the lowest-luminosity sources in our sample, we find a hint of less efficient dust grain alignment with increasing column density. Our observations and their comparison with synthetic observations of MHD models suggest that the total intensity versus the polarized dust are distributed at different intrinsic spatial scales, which can affect the statistics from the ALMA observations, for example, by producing artificially high Pfrac. Finally, synthetic observations of MHD models implementing radiative alignment torques (RATs) show that the statistical estimator S × Pfrac is sensitive to the strength of the radiation field in the core. Moreover, we find that the simulations with a uniform perfect alignment (PA) of dust grains yield, on average, much higher S × Pfrac values than those implementing RATs; the ALMA values lie among those predicted by PA, and they are significantly higher than the ones obtained with RATs, especially at large column densities. Conclusions. Ultimately, our results suggest that dust alignment mechanism(s) are efficient at producing dust polarized emission in the various local conditions typical of Class 0 protostars. The grain alignment efficiency found in these objects seems to be higher than the efficiency produced by the standard RAT alignment of paramagnetic grains. Further studies will be needed to understand how more efficient grain alignment via, for example, different irradiation conditions, dust grain characteristics, or additional grain alignment mechanisms can reproduce the observations., V.J.M.L.G. acknowledges the support of the ESO Studentship Program. A.J.M. acknowledges support from the Joint ALMA Observatory Visitor Program, and ESO Visitor program. J.M.G. is supported by the Spanish grant AYA2017-84390-C2-R (AEI/FEDER, UE). C.L.H.H. acknowledges the support of both the NAOJ Fellowship as well as JSPS KAKENHI grants 18K13586 and 20K14527. This work has benefited from the support of the European Research Council under the Horizon 2020 Framework Programme (Starting Grant MagneticYSOs with grant agreement no. 679937)
- Published
- 2020
- Full Text
- View/download PDF
20. The Origin of the Stellar Mass Distribution and Multiplicity
- Author
-
Yueh Ning Lee, Javier Ballesteros-Paredes, Shu-ichiro Inutsuka, Stella S. R. Offner, Philippe André, J. M. Diederik Kruijssen, Hans Zinnecker, and Patrick Hennebelle
- Subjects
Physics ,Initial mass function ,010504 meteorology & atmospheric sciences ,Stellar mass ,Star formation ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Stars ,Planetary science ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Multiplicity (chemistry) ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
In this chapter, we review some historical understanding and recent advances on the Initial Mass Function (IMF) and the Core Mass Function (CMF), both in terms of observations and theories. We focus mostly on star formation in clustered environment since this is suggested by observations to be the dominant mode of star formation. The statistical properties and the fragmentation behaviour of turbulent gas is discussed, and we also discuss the formation of binaries and small multiple systems., Review chapter published in Space Science Reviews
- Published
- 2020
21. Physical Processes in Star Formation
- Author
-
Stella S. R. Offner, Alexei G. Kritsuk, J. M. Diederik Kruijssen, Philipp Girichidis, Ralf S. Klessen, Simon C. O. Glover, Marco Padovani, Martin Krause, and Patrick Hennebelle
- Subjects
010504 meteorology & atmospheric sciences ,Milky Way ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Star (graph theory) ,01 natural sciences ,Gravitation ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,Star formation ,Molecular cloud ,Astronomy ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Stars ,Supernova ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms., 86 pages, 4 figures. To appear in Space Science Reviews, topical collection Star formation
- Published
- 2020
- Full Text
- View/download PDF
22. Large-scale Turbulent Driving Regulates Star Formation in High-redshift Gas-rich Galaxies
- Author
-
Patrick Hennebelle, Noé Brucy, Frédéric Bournaud, Cédric Colling, Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
- Subjects
010504 meteorology & atmospheric sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,0103 physical sciences ,Disc ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,Star formation ,Plane (geometry) ,Velocity dispersion ,Astronomy and Astrophysics ,Galactic plane ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Astrophysics of Galaxies ,Redshift ,Galaxy ,Supernova ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science - Abstract
The question of what regulates star formation is a long standing issue. To investigate this issue, we run simulations of a kiloparsec cube section of a galaxy with three kinds of stellar feedback: the formation of HII regions, the explosion of supernovae, and the UV heating. We show that stellar feedback is sufficient to reduce the averaged star formation rate (SFR) to the level of the Schmidt- Kennicutt law in Milky-Way like galaxies but not in high-redshift gas rich galaxies suggesting that another type of support should be added. We investigate whether an external driving of the turbulence such as the one created by the large galactic scales could diminish the SFR at the observed level. Assuming that the Toomre parameter is close to 1 as suggested by the observations, we infer a typical turbulent forcing that we argue should be applied parallel to the plane of the galactic disc. When this forcing is applied in our simulations, the SFR within our simulations closely follows the Schmidt- Kennicutt relation. We found that the velocity dispersion is strongly anisotropic with the velocity dispersion alongside the galactic plane being up to 10 times larger than the perpendicular velocity., Comment: 11 pages, 6 figures
- Published
- 2020
- Full Text
- View/download PDF
23. Formation and Evolution of Disks Around Young Stellar Objects
- Author
-
Kengo Tomida, John J. Tobin, Tomoya Hirota, Rolf Kuiper, Álvaro Sánchez-Monge, Bo Zhao, Anaëlle Maury, Patrick Hennebelle, Asmita Bhandare, Yueh Ning Lee, Anna L. Rosen, and Marco Padovani
- Subjects
Angular momentum ,Young stellar object ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Article ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010308 nuclear & particles physics ,Star formation ,Turbulence ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Magnetic field ,Planetary science ,Astrophysics - Solar and Stellar Astrophysics ,Circumstellar disks ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Magnetic fields ,Outflow ,Astrophysics::Earth and Planetary Astrophysics ,Magnetohydrodynamics ,Jets & outflows ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical studies instead show disk formation to be difficult from dense molecular cores magnetized to a realistic level, owing to efficient magnetic braking that transports a large fraction of the angular momentum away from the circumstellar region. We review recent progress in the formation and early evolution of disks around young stellar objects of both low-mass and high-mass, with an emphasis on mechanisms that may bridge the gap between observation and theory, including non-ideal MHD effects and asymmetric perturbations in the collapsing core (e.g., magnetic field misalignment and turbulence). We also address the associated processes of outflow launching and the formation of multiple systems, and discuss possible implications in properties of protoplanetary disks., Comment: 57 pages, Space Science Reviews, topical collection Star Formation
- Published
- 2020
- Full Text
- View/download PDF
24. From Diffuse Gas to Dense Molecular Cloud Cores
- Author
-
Fumitaka Nakamura, Javier Ballesteros-Paredes, Ralf S. Klessen, Philippe André, Enrique Vázquez-Semadeni, Patrick Hennebelle, J. M. Diederik Kruijssen, Angela Adamo, and Mélanie Chevance
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Star formation ,Molecular cloud ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Galaxy ,Virial theorem ,Interstellar medium ,Gravitation ,Stars ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Thermal ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they do it is not completely understood. We review the current knowledge of molecular clouds and their substructure from scales $\sim~$1~kpc down to the filament and core scale. We first review the mechanisms of cloud formation from the warm diffuse interstellar medium down to the cold and dense molecular clouds, the process of molecule formation and the role of the thermal and gravitational instabilities. We also discuss the main physical mechanisms through which clouds gather their mass, and note that all of them may have a role at various stages of the process. In order to understand the dynamics of clouds we then give a critical review of the widely used virial theorem, and its relation to the measurable properties of molecular clouds. Since these properties are the tools we have for understanding the dynamical state of clouds, we critically analyse them. We finally discuss the ubiquitous filamentary structure of molecular clouds and its connection to prestellar cores and star formation., 73 pages, 11 figures, preprint of a review to appear in Space Science Reviews Topical collection "Star formation". Submitted January 31st 2020; accepted May 17th 2020
- Published
- 2020
- Full Text
- View/download PDF
25. What determines the formation and characteristics of protoplanetary discs?
- Author
-
Patrick Hennebelle, Benoît Commerçon, Sébastien Charnoz, Yueh Ning Lee, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), National Taiwan Normal University (NTNU), This work was granted access to HPC resources of CINES and CCRT under the allocation x2014047023 made by GENCI (Grand Equipement National de Calcul Intensif)., We thank the programme national de physique stellaire, the programme national de planétologie and the programme national de physique et chimie du milieu interstellaire for their supports., ANR-11-IDEX-0005,USPC,Université Sorbonne Paris Cité(2011), European Project: 306483,EC:FP7:ERC,ERC-2012-StG_20111012,MAGMIST(2013), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), and ANR-11-IDEX-0005-02/10-LABX-0023,UnivEarthS,Earth - Planets - Universe: observation, modeling, transfer(2011)
- Subjects
ISM: structure ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Rotation ,01 natural sciences ,ISM: clouds ,Planet ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Solar mass ,stars: formation ,Accretion (meteorology) ,010308 nuclear & particles physics ,Ambipolar diffusion ,turbulence ,protoplanetary disks ,Astronomy and Astrophysics ,Radius ,Astrophysics - Astrophysics of Galaxies ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics ,Magnetohydrodynamics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Planets form in protoplanetary discs. Their masses, distribution, and orbits sensitively depend on the structure of the protoplanetary discs. However, what sets the initial structure of the discs in terms of mass, radius and accretion rate is still unknown. We perform non-ideal MHD numerical simulations using the adaptive mesh refinement code Ramses, of a collapsing, one solar mass, molecular core to study the disc formation and early, up to 100 kyr, evolution, paying great attention to the impact of numerical resolution and accretion scheme. We found that while the mass of the central object is almost independent of the numerical parameters such as the resolution and the accretion scheme onto the sink particle, the disc mass, and to a lower extent its size, heavily depend on the accretion scheme, which we found, is itself resolution dependent. This implies that the accretion onto the star and through the disc are largely decoupled. For a relatively large domain of initial conditions (except at low magnetisation), we found that the properties of the disc do not change too significantly. In particular both the level of initial rotation and turbulence do not influence the disc properties provide the core is sufficiently magnetized. After a short relaxation phase, the disc settles in a stationary state. It then slowly grows in size but not in mass. The disc itself is weakly magnetized but its immediate surrounding is on the contrary highly magnetized. Our results show that the disc properties directly depend on the inner boundary condition, i.e. the accretion scheme onto the central object, suggesting that the disc mass is eventually controlled by the small scale accretion process, possibly the star-disc interaction. Because of ambipolar diffusion and its significant resistivity, the disc diversity remains limited and except for low magnetisation, their properties are (abridged)., accepted for publication in A&A
- Published
- 2020
- Full Text
- View/download PDF
26. Angular momentum profiles of Class 0 protostellar envelopes
- Author
-
P. Palmeirim, Maud Galametz, Sébastien Maret, Ph. André, Linda Podio, Patrick Hennebelle, M. Gaudel, Claudio Codella, S. Cabrit, Leonardo Testi, Anaëlle Maury, Bilal Ladjelate, Arnaud Belloche, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Max-Planck-Institut für Radioastronomie (MPIFR), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), European Southern Observatory (ESO), Instituto de Astrofísica e Ciências do Espaço (IASTRO), Instituto de RadioAstronomía Milimétrica (IRAM), Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge], European Project: 291294,EC:FP7:ERC,ERC-2011-ADG_20110209,ORISTARS(2012), European Project: 679937,H2020,ERC-2015-STG,MagneticYSOs(2016), École normale supérieure - Paris (ENS-PSL), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Harvard University-Smithsonian Institution
- Subjects
Angular momentum ,FOS: Physical sciences ,Context (language use) ,Kinematics ,Astrophysics ,01 natural sciences ,Specific relative angular momentum ,0103 physical sciences ,Differential rotation ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,ISM: kinematics and dynamics ,[PHYS]Physics [physics] ,radio lines: ISM ,stars: formation ,stars: protostars ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Velocity gradient ,Star formation ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Accretion (astrophysics) ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
[abridged] Understanding how the infalling gas redistribute most of its initial angular momentum inherited from prestellar cores before reaching the stellar embryo is a key question. Disk formation has been naturally considered as a possible solution to this "angular momentum problem". However, how the initial angular momentum of protostellar cores is distributed and evolves during the main accretion phase and the beginning of disk formation has largely remained unconstrained up to now. In the framework of the IRAM CALYPSO survey, we used high dynamic range C$^{18}$O (2-1) and N$_2$H$^+$ (1-0) observations to quantify the distribution of specific angular momentum along the equatorial axis in a sample of 12 Class 0 protostellar envelopes from scales ~50 to 10000 au. The radial distributions of specific angular momentum in the CALYPSO sample suggest two distinct regimes within protostellar envelopes: the specific angular momentum decreases as $j \propto r^{1.6 \pm 0.2}$ down to ~1600 au and then tends to become relatively constant around 6 $\times$ 10$^{-4}$ km s$^{-1}$ pc down to ~50 au. The values of specific angular momentum measured in the inner Class 0 envelopes, namely that of the material directly involved in the star formation process ($$1600 au, suggesting that they may not be related to rotational motions of the envelopes. We conclude that the specific angular momentum observed at these scales could find its origin in core-forming motions (infall, turbulence) or trace an imprint of the initial conditions for the formation of protostellar cores., Comment: 62 pages, 66 figures
- Published
- 2020
- Full Text
- View/download PDF
27. The history of dynamics and stellar feedback revealed by the HI filamentary structure in the disk of the Milky Way
- Author
-
Sarah Ragan, J. Syed, Jürgen Ott, Andrés F. Izquierdo, Rowan J. Smith, Henrik Beuther, Juan D. Soler, Ralf S. Klessen, Nicola Schneider, H. Linz, Robin G. Treß, Mark H. Heyer, Yu Wang, Michael Rugel, James Urquhart, Jeroen Stil, Patrick Hennebelle, Mattia C. Sormani, Simon C. O. Glover, L. D. Anderson, Th. Henning, and Naomi McClure-Griffiths
- Subjects
Physics ,Spiral galaxy ,010308 nuclear & particles physics ,Milky Way ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Galactic plane ,01 natural sciences ,Astrophysics - Astrophysics of Galaxies ,Magnetic field ,Interstellar medium ,Radial velocity ,Supernova ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Perpendicular ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present a study of the filamentary structure in the emission from the neutral atomic hydrogen (HI) at 21 cm across velocity channels in the 40'' and 1.5-km/s resolution position-position-velocity cube resulting from the combination of the single-dish and interferometric observations in The HI/OH/Recombination (THOR) line survey. Using the Hessian matrix method in combination with tools from circular statistics, we find that the majority of the filamentary structures in the HI emission are aligned with the Galactic plane. Part of this trend can be assigned to long filamentary structures that are coherent across several velocity channels. However, we also find ranges of Galactic longitude and radial velocity where the HI filamentary structures are preferentially oriented perpendicular to the Galactic plane. These are located (i) around the tangent point of the Scutum spiral arm, $l \approx 28^{\circ}$ and $v_{\rm LSR}\approx 100$ km/s, (ii) toward $l \approx 45^{\circ}$ and $v_{\rm LSR}\approx 50$ km/s, (iii) around the Riegel-Crutcher cloud, and (iv) toward the terminal velocities. Comparison with numerical simulations indicates that the prevalence of horizontal filamentary structures is most likely the result of the large-scale dynamics and that vertical structures identified in (i) and (ii) may arise from the combined effect of supernova (SN) feedback and strong magnetic fields. The vertical filamentary structures in (iv) can be related to the presence of clouds from extra-planar HI gas falling back into the Galactic plane after being expelled by SNe. Our results indicate that a systematic characterization of the emission morphology toward the Galactic plane provides an unexplored link between the observations and the dynamical behaviour of the interstellar medium, from the effect of large-scale Galactic dynamics to the Galactic fountains driven by SNe., Comment: 28 pages. 37 figures. Accepted for publication in Astronomy & Astrophysics (09SEP2020)
- Published
- 2020
- Full Text
- View/download PDF
28. Searching for kinematic evidence of Keplerian disks around Class 0 protostars with CALYPSO
- Author
-
M. Gaudel, S. Anderl, Ph. André, Sébastien Maret, Linda Podio, Patrick Hennebelle, Anaëlle Maury, Frederic Gueth, Claudio Codella, Charlène Lefèvre, Arnaud Belloche, S. Cabrit, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Radioastronomie (MPIFR), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
FOS: Physical sciences ,Astrophysics ,Rotation ,01 natural sciences ,0103 physical sciences ,Protostar ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Envelope (waves) ,Line (formation) ,Physics ,[PHYS]Physics [physics] ,Jet (fluid) ,stars: formation ,stars: protostars ,010308 nuclear & particles physics ,Plane (geometry) ,protoplanetary disks ,Plateau de Bure Interferometer ,Astronomy and Astrophysics ,[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Moment (physics) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
The formation of protoplanetary disks is not well understood. To understand how and when these disks are formed, it is crucial to characterize the kinematics of the youngest protostars at a high angular resolution. Here we study a sample of 16 Class 0 protostars to measure their rotation profile at scales from 50 to 500~au and search for Keplerian rotation. We used high-angular-resolution line observations obtained with the Plateau de Bure Interferometer as part of the CALYPSO large program. From $\mathrm{^{13}CO}$ ($J=2-1$), $\mathrm{C^{18}O}$ ($J=2-1$) and SO ($N_{j}=5_{6}-4_{5}$) moment maps, we find that seven sources show rotation about the jet axis at a few hundred au scales: SerpS-MM18, L1448-C, L1448-NB, L1527, NGC1333- IRAS2A, NGC1333-IRAS4B, and SVS13-B. We analyzed the kinematics of these sources in the $uv$ plane to derive the rotation profiles down to 50~au scales. We find evidence for Keplerian rotation in only two sources, L1527 and L1448-C. Overall, this suggests that Keplerian disks larger than 50 au are uncommon around Class 0 protostars. However, in some of the sources, the line emission could be optically thick and dominated by the envelope emission. Due to the optical thickness of these envelopes, some of the disks could have remained undetected in our observations., Accepted for publication in Astronomy & Astrophysics
- Published
- 2020
- Full Text
- View/download PDF
29. Editorial to the Topical Collection on Star Formation
- Author
-
R. von Steiger, Maurizio Falanga, Patrick Hennebelle, A. M. Bykov, G. Meynet, Alexandre Marcowith, Corinne Charbonnel, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire Univers et Particules de Montpellier (LUPM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,010504 meteorology & atmospheric sciences ,Star formation ,Astronomy ,Astronomy and Astrophysics ,Cosmogony ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Galaxy ,Stars ,Planetary science ,Space and Planetary Science ,Planet ,0103 physical sciences ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
International audience; Formation of stars at different evolution stages of the Universe is at the heart of the natural ranging from cosmogony to life origin studies. Indeed stars are the very fundamental building blocks of the Universe, which strongly influence and to some extent, control galaxy and planet formation and evolution.
- Published
- 2020
- Full Text
- View/download PDF
30. Protostellar disk formation by a nonrotating, nonaxisymmetric collapsing cloud: model and comparison with observations
- Author
-
Mathilde Gaudel, A. Verliat, Patrick Hennebelle, Anaëlle Maury, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution, Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-CY Cergy Paris Université (CY)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS), Smithsonian Institution-Harvard University [Cambridge], Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), and Harvard University-Smithsonian Institution
- Subjects
Angular momentum ,Astronomical unit ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Kinematics ,Rotation ,01 natural sciences ,Specific relative angular momentum ,ISM: clouds ,methods: numerical ,0103 physical sciences ,Gravitational collapse ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,ISM: kinematics and dynamics ,[PHYS]Physics [physics] ,stars: formation ,010308 nuclear & particles physics ,turbulence ,protoplanetary disks ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Center of mass ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Planet-forming disks are fundamental objects thought to be inherited from large scale rotation, through the conservation of angular momentum during the collapse of a prestellar dense core. We investigate the possibility for a protostellar disk to be formed from a motionless dense core which contains non-axisymmetric density fluctuations. The rotation is thus generated locally by the asymmetry of the collapse. We study the evolution of the angular momentum in a non-axisymmetric collapse of a dense core from an analytical point of view. To test the theory, we perform three-dimensional simulations of a collapsing prestellar dense core using adaptative mesh refinement. We start from a non-axisymmetrical situation, considering a dense core with random density perturbations that follow a turbulence spectrum. We analyse the emerging disk comparing the angular momentum it contains with the one expected from our analytic development. We study the velocity gradients at different scales in the simulation as it is done with observations. We show that the angular momentum in the frame of a stellar object which is not located at the center of mass of the core is not conserved, due to inertial forces. Our simulations of such non-axisymmetrical collapse quickly produce accretion disks at the small scales in the core. The analysis of the kinematics at different scales in the simulated core reveals projected velocity gradients of amplitudes similar to the ones observed in protostellar cores, and which directions vary, sometimes even reversing when small and large scales are compared. These complex kinematics patterns appear in recent observations, and could be a discriminating feature with models where rotation is inherited from large scales. Our results from simulations without initial rotation are more consistent with these recent observations than when solid-body rotation is initially [abridged], Accepted for publication in Astronomy & Astrophysics. 10 pages, 11 figures
- Published
- 2020
- Full Text
- View/download PDF
31. Gravity and rotation drag the magnetic field in high-mass star formation
- Author
-
Thomas Henning, Wouter Vlemmings, Siyi Feng, Juan D. Soler, Rolf Kuiper, Hendrik Linz, Patrick Hennebelle, A. Ahmadi, Henrik Beuther, C. Gieser, and Rowan J. Smith
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Star formation ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Physik (inkl. Astronomie) ,Polarization (waves) ,Astrophysics - Astrophysics of Galaxies ,01 natural sciences ,Magnetic field ,Interstellar medium ,Gravitation ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Drag ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Protostar ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,0105 earth and related environmental sciences - Abstract
The formation of hot stars out of the cold interstellar medium lies at the heart of astrophysical research. Understanding the importance of magnetic fields during star formation remains a major challenge. With the advent of the Atacama Large Millimeter Array, the potential to study magnetic fields by polarization observations has tremendously progressed. However, the major question remains how much magnetic fields shape the star formation process or whether gravity is largely dominating. Here, we show that for the high-mass star-forming region G327.3 the magnetic field morphology appears to be dominantly shaped by the gravitational contraction of the central massive gas core where the star formation proceeds. We find that in the outer parts of the region, the magnetic field is directed toward the gravitational center of the region. Filamentary structures feeding the central core exhibit U-shaped magnetic field morphologies directed toward the gravitational center as well, again showing the gravitational drag toward the center. The inner part then shows rotational signatures, potentially associated with an embedded disk, and there the magnetic field morphology appears to be rotationally dominated. Hence, our results demonstrate that for this region gravity and rotation are dominating the dynamics and shaping the magnetic field morphology., Comment: 10 pages, 4 figures, accepted for the Astrophysical Journal, also available at https://www2.mpia-hd.mpg.de/homes/beuther/papers.html
- Published
- 2020
- Full Text
- View/download PDF
32. On the indeterministic nature of star formation on the cloud scale
- Author
-
Sam Geen, Rebekka Bieri, Ralf S. Klessen, Patrick Hennebelle, Stuart K. Watson, Joakim Rosdahl, University of Zurich, Geen, Sam, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Initial mass function ,FOS: Physical sciences ,410 Linguistics ,10104 Department of Comparative Linguistics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,ISM: clouds ,01 natural sciences ,methods: numerical ,Gravitation ,1912 Space and Planetary Science ,H II regions ,0103 physical sciences ,Radiative transfer ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Solar mass ,stars: formation ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Star formation ,Molecular cloud ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,stars: massive ,Stars ,Star cluster ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,490 Other languages ,Astrophysics of Galaxies (astro-ph.GA) ,3103 Astronomy and Astrophysics ,ISLE Center for the Interdisciplinary Study of Language Evolution ,890 Other literatures - Abstract
Molecular clouds are turbulent structures whose star formation efficiency (SFE) is strongly affected by internal stellar feedback processes. In this paper we determine how sensitive the SFE of molecular clouds is to randomised inputs in the star formation feedback loop, and to what extent relationships between emergent cloud properties and the SFE can be recovered. We introduce the yule suite of 26 radiative magnetohydrodynamic (RMHD) simulations of a 10,000 solar mass cloud similar to those in the solar neighbourhood. We use the same initial global properties in every simulation but vary the initial mass function (IMF) sampling and initial cloud velocity structure. The final SFE lies between 6 and 23 percent when either of these parameters are changed. We use Bayesian mixed-effects models to uncover trends in the SFE. The number of photons emitted early in the cluster's life and the length of the cloud provide are the strongest predictors of the SFE. The HII regions evolve following an analytic model of expansion into a roughly isothermal density field. The more efficient feedback is at evaporating the cloud, the less the star cluster is dispersed. We argue that this is because if the gas is evaporated slowly, the stars are dragged outwards towards surviving gas clumps due to the gravitational attraction between the stars and gas. While star formation and feedback efficiencies are dependent on nonlinear processes, statistical models describing cloud-scale processes can be constructed., 24 pages, 16 figures, 6 tables. Accepted to MNRAS, version updated with published title
- Published
- 2018
- Full Text
- View/download PDF
33. Protostellar Collapse Induced by Compression
- Author
-
Patrick, Hennebelle, Arnaud, Belloche, Anthony, Whitworth, and Philippe, André
- Published
- 2004
- Full Text
- View/download PDF
34. Interpreting the star formation efficiency of nearby molecular clouds with ionizing radiation
- Author
-
Juan D. Soler, Sam Geen, and Patrick Hennebelle
- Subjects
Physics ,010308 nuclear & particles physics ,Star formation ,Molecular cloud ,Milky Way ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Ionizing radiation ,Stars ,Space and Planetary Science ,0103 physical sciences ,Radiative transfer ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We investigate the origin of observed local star formation relations using radiative magnetohydrodynamic simulations with self-consistent star formation and ionising radiation. We compare these clouds to the density distributions of local star-forming clouds and find that the most diffuse simulated clouds match the observed clouds relatively well. We then compute both observationally-motivated and theoretically-motivated star formation efficiencies (SFEs) for these simulated clouds. By including ionising radiation, we can reproduce the observed SFEs in the clouds most similar to nearby Milky Way clouds. For denser clouds, the SFE can approach unity. These observed SFEs are typically 3 to 10 times larger than the "total" SFEs, i.e. the fraction of the initial cloud mass converted to stars. Converting observed to total SFEs is non-trivial. We suggest some techniques for doing so, though estimate up to a factor of ten error in the conversion.
- Published
- 2017
- Full Text
- View/download PDF
35. Chemical Evolution of Turbulent Multiphase Molecular Clouds
- Author
-
B. Godard, Patrick Hennebelle, Jacques Le Bourlot, Valeska Valdivia, Maryvonne Gerin, and Pierre Lesaffre
- Subjects
Physics ,010308 nuclear & particles physics ,Turbulence ,Molecular cloud ,Hydrogen molecule ,FOS: Physical sciences ,High resolution ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,7. Clean energy ,01 natural sciences ,Chemical evolution ,13. Climate action ,Space and Planetary Science ,Abundance (ecology) ,Chemical physics ,Astrophysics of Galaxies (astro-ph.GA) ,0103 physical sciences ,Molecule ,Magnetohydrodynamics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Molecular clouds are essentially made up of atomic and molecular hydrogen, which in spite of being the simplest molecule in the ISM plays a key role in the chemical evolution of molecular clouds. Since its formation time is very long, the H2 molecules can be transported by the turbulent motions within the cloud toward low density and warm regions, where its enhanced abundance can boost the abundances of molecules with high endothermicities. We present high resolution simulations where we include the evolution of the molecular gas under the effect of the dynamics, and we analyze its impact on the abundance of CH+., Comment: To appear in: Proceedings IAU Symposium No. 332, 2017
- Published
- 2017
- Full Text
- View/download PDF
36. The dynamically young outflow of the Class 0 protostar Cha-MMS1
- Author
-
Patrick Hennebelle, Sylvie Cabrit, B. Commerçon, Arnaud Belloche, L. A. Busch, Max-Planck-Institut für Radioastronomie (MPIFR), Argelander-Institut für Astronomie (AlfA), Rheinische Friedrich-Wilhelms-Universität Bonn, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
- Subjects
010504 meteorology & atmospheric sciences ,Continuum (design consultancy) ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,01 natural sciences ,Luminosity ,law.invention ,stars: jets ,law ,Bipolar outflow ,0103 physical sciences ,Protostar ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,stars: formation ,stars: protostars ,Molecular cloud ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,ISM: jets and outflows ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Outflow ,Hydrostatic equilibrium ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
On the basis of its low luminosity, its chemical composition, and the absence of a large-scale outflow, the dense core Cha-MMS1 located in the Chamaeleon I molecular cloud was proposed as a first hydrostatic core (FHSC) candidate a decade ago. Our goal is to test this hypothesis by searching for a slow, compact outflow driven by Cha-MMS1 that would match the predictions of MHD simulations for this short phase of star formation. We use the Atacama Large Millimetre/submillimetre Array (ALMA) to map Cha-MMS1 at high angular resolution in CO 3-2 and 13CO 3-2 as well as in continuum emission. We report the detection of a bipolar outflow emanating from the central core, along a (projected) direction roughly parallel to the filament in which Cha-MMS1 is embedded and perpendicular to the large-scale magnetic field. The morphology of the outflow indicates that its axis lies close to the plane of the sky. We measure velocities corrected for inclination of more than 90km/s which is clearly incompatible with the expected properties of a FHSC outflow. Several properties of the outflow are determined and compared to previous studies of Class 0 and Class I protostars. The outflow of Cha-MMS1 has a much smaller momentum force than the outflows of other Class 0 protostars. In addition, we find a dynamical age of 200-3000yr indicating that Cha-MMS1 might be one of the youngest ever observed Class 0 protostars. While the existence of the outflow suggests the presence of a disk, no disk is detected in continuum emission and we derive an upper limit of 55au to its radius. We conclude that Cha-MMS1 has already gone through the FHSC phase and is a young Class 0 protostar, but it has not brought its outflow to full power yet., Accepted for publication in A&A
- Published
- 2019
- Full Text
- View/download PDF
37. How first hydrostatic cores, tidal forces and gravo-turbulent fluctuations set the characteristic mass of stars
- Author
-
Patrick Hennebelle, Yueh Ning Lee, Gilles Chabrier, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,ISM: clouds ,01 natural sciences ,methods: numerical ,law.invention ,Set (abstract data type) ,Gravitation ,law ,0103 physical sciences ,Tidal force ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,stars: formation ,Turbulence ,turbulence ,Astronomy and Astrophysics ,Mechanics ,Astrophysics - Astrophysics of Galaxies ,Stars ,gravitation ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,hydrodynamics ,Hydrostatic equilibrium - Abstract
The stellar initial mass function (IMF) is playing a critical role in the history of our universe. We propose a theory that is based solely on local processes, namely the dust opacity limit, the tidal forces and the properties of the collapsing gas envelope. The idea is that the final mass of the central object is determined by the location of the nearest fragments, which accrete the gas located further away, preventing it to fall onto the central object. To estimate the relevant statistics in the neighbourhood of an accreting protostar, we perform high resolution numerical simulations. We also use these simulations to further test the idea that fragmentation in the vicinity of an existing protostar is determinant in setting the peak of the stellar mass spectrum. We develop an analytical model, which is based on a statistical counting of the turbulent density fluctuations, generated during the collapse, that are at least equal to the mass of the first hydrostatic core, and sufficiently important to supersede tidal and pressure forces to be self-gravitating. The analytical mass function presents a peak located at roughly 10 times the mass of the first hydrostatic core in good agreement with the numerical simulations. Since the physical processes involved are all local, i.e. occurs at scales of a few 100 AU or below, and do not depend on the gas distribution at large scale and global properties such as the mean Jeans mass, the mass spectrum is expected to be relatively universal., accepted for publication in ApJ
- Published
- 2019
- Full Text
- View/download PDF
38. The Role of Magnetic Field in Molecular Cloud Formation and Evolution
- Author
-
Shu-ichiro Inutsuka and Patrick Hennebelle
- Subjects
lcsh:Astronomy ,magnetic field ,molecular clouds ,Astrophysics ,01 natural sciences ,star formation ,lcsh:QB1-991 ,0103 physical sciences ,Thermal ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,multi-phase ,Physics ,010308 nuclear & particles physics ,Turbulence ,Star formation ,Molecular cloud ,turbulence ,lcsh:QC801-809 ,Astronomy and Astrophysics ,gravity ,Magnetic field ,Interstellar medium ,lcsh:Geophysics. Cosmic physics ,Stars ,Magnetohydrodynamics - Abstract
We review the role that magnetic field may have on the formation and evolution of molecular clouds. After a brief presentation and main assumptions leading to ideal MHD equations, their most important correction, namely the ion-neutral drift is described. The nature of the multi-phase interstellar medium (ISM) and the thermal processes that allows this gas to become denser are presented. Then we discuss our current knowledge of compressible magnetized turbulence, thought to play a fundamental role in the ISM. We also describe what is known regarding the correlation between the magnetic and the density fields. Then the influence that magnetic field may have on the interstellar filaments and the molecular clouds is discussed, notably the role it may have on the pre-stellar dense cores as well as regarding the formation of stellar clusters. Finally we briefly review its possible effects on the formation of molecular clouds themselves. We argue that given the magnetic intensities that have been measured, it is likely that magnetic field is (i) responsible of reducing the star formation rate in dense molecular cloud gas by a factor of a few, (ii) strongly shaping the interstellar gas by generating a lot of filaments and reducing the numbers of clumps, cores and stars, although its exact influence remains to be better understood. Moreover at small scales, magnetic braking is likely a dominant process that strongly modifies the outcome of the star formation process. Finally, we stress that by inducing the formation of more massive stars, magnetic field could possibly enhance the impact of stellar feedback.
- Published
- 2019
- Full Text
- View/download PDF
39. Dynamics of cluster-forming hub-filament systems
- Author
-
Carsten Kramer, Santiago García-Burillo, S. Suri, A. Luna, P. Didelon, M. González-García, Álvaro Sánchez-Monge, Javier Ballesteros-Paredes, Nicola Schneider, Patrick Hennebelle, S. P. Treviño-Morales, Javier R. Goicoechea, Y. N. Lee, S. Geen, Jouni Kainulainen, P. Pilleri, Pascal Tremblin, Asunción Fuente, Chalmers University of Technology [Göteborg], Universität zu Köln = University of Cologne, Max Planck Institute for Astronomy (MPIA), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Instituto de Física Fundamental [Madrid] (IFF), Zentrum für Astronomie der Universität Heidelberg (ZAH), Universität Heidelberg [Heidelberg] = Heidelberg University, ANR-16-CE92-0035,GENESIS,GENeration et Evolution des Structures du milieu InterStellaire(2016), European Project: 639459,H2020,ERC-2014-STG,PROMISE(2016), European Project: 610256,EC:FP7:ERC,ERC-2013-SyG,NANOCOSMOS(2014), European Project: 648505,H2020,ERC-2014-CoG,CSF(2015), European Project: 339177,EC:FP7:ERC,ERC-2013-ADG,STARLIGHT(2014), Universität zu Köln, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Universidad Nacional Autónoma de México (UNAM), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Universität Heidelberg [Heidelberg], European Commission, Ministerio de Economía y Competitividad (España), European Research Council, German Research Foundation, Centre National D'Etudes Spatiales (France), Ministerio de Ciencia, Innovación y Universidades (España), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ISM: structure ,FOS: Physical sciences ,macromolecular substances ,Kinematics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,ISM: clouds ,Article ,law.invention ,Quantitative Biology::Subcellular Processes ,Protein filament ,Accretion rate ,law ,0103 physical sciences ,ISM: individual objects: Monoceros R2 ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,ISM: kinematics and dynamics ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,individual objects: Monoceros R2 [ISM] ,kinematics and dynamics [ISM] ,Stars ,Star cluster ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,High mass ,structure [ISM] ,Hydrostatic equilibrium ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,clouds [ISM] ,Dust emission - Abstract
Context. High-mass stars and star clusters commonly form within hub-filament systems. Monoceros R2 (hereafter Mon R2), at a distance of 830 pc, harbors one of the closest of these systems, making it an excellent target for case studies. Aims. We investigate the morphology, stability and dynamical properties of the Mon R2 hub-filament system. Methods. We employed observations of the (CO)-C-13 and (CO)-O-18 1 -> 0 and 2 -> 1 lines obtained with the IRAM-30m telescope. We also used H-2 column density maps derived from Herschel dust emission observations. Results. We identified the filamentary network in Mon R-2 with the DisPerSE algorithm and characterized the individual filaments as either main (converging into the hub) or secondary (converging to a main filament). The main filaments have line masses of 30-100 M-circle dot pc(-1) and show signs of fragmentation, while the secondary filaments have line masses of 12-60 M-circle dot pc(-1) and show fragmentation only sporadically. In the context of Ostriker's hydrostatic filament model, the main filaments are thermally supercritical. If non-thermal motions are included, most of them are transcritical. Most of the secondary filaments are roughly transcritical regardless of whether non-thermal motions are included or not. From the morphology and kinematics of the main filaments, we estimate a mass accretion rate of 10(-4)-10(-3) M-circle dot yr(-1) into the central hub. The secondary filaments accrete into the main filaments at a rate of 0.1-0.4 x 10(-4) M-circle dot yr(-1). The main filaments extend into the central hub. Their velocity gradients increase toward the hub, suggesting acceleration of the gas. We estimate that with the observed infall velocity, the mass-doubling time of the hub is similar to 2.5 Myr, ten times longer than the free-fall time, suggesting a dynamically old region. These timescales are comparable with the chemical age of the HII region. Inside the hub, the main filaments show a ring-or a spiral-like morphology that exhibits rotation and infall motions. One possible explanation for the morphology is that gas is falling into the central cluster following a spiral-like pattern.© ESO 2019., S.P.T.M. and J.K.acknowledge to the European Union's Horizon 2020 research and innovation program for funding support given under grant agreement No 639459 (PROMISE). A.F. thanks the Spanish MINECO for funding support from grants AYA2016-75 066-C2-2-P, and ERC under ERC-2013-SyG, G.A. 610 256 NANOCOSMOS. A.S.M. and S. S. thank the Deutsche Forschungsgemeinschaft (DFG) for funding support via the collaborative research grant SFB 956, projects A6 and A4. P. P. acknowledges financial support from the Center National de Etudes Spatiales (CNES). N.S. acknowledges support from the French ANR and the German DFG through the project "GENESIS" (ANR-16-CE92-0035-01/DFG1591/2-1). S. S. acknowledges support from the European Research Council under the Horizon 2020 Framework Program via the ERC Consolidator Grant CSF-648 505. S.G. is funded by the European Research Council under Grant Agreement no. 339 177 (STARLIGHT) of the European Community's Seventh Framework Programme (FP7/2007-2013). J.R.G. thanks the Spanish MICIU for funding support from grant AYA2017-85 111-P.
- Published
- 2019
- Full Text
- View/download PDF
40. Histogram of oriented gradients: a technique for the study of molecular cloud formation
- Author
-
Frank Bigiel, Simon C. O. Glover, Peter Schilke, Ralf S. Klessen, Paul C. Clark, Alyssa A. Goodman, Juergen Ott, Sarah Ragan, Steven N. Longmore, James Urquhart, Henrik Beuther, L. D. Anderson, Yu Wang, Paul F. Goldsmith, Michael Rugel, Joseph C. Mottram, Th. Henning, Nirupam Roy, Juan D. Soler, Patrick Hennebelle, Mark H. Heyer, Robert J. Smith, Jouni Kainulainen, Naomi McClure-Griffiths, and Karl M. Menten
- Subjects
Spatial correlation ,FOS: Physical sciences ,Astrophysics ,Approx ,01 natural sciences ,ISM [radio lines] ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,molecules [ISM] ,Physics ,Line-of-sight ,ISM [galaxies] ,010308 nuclear & particles physics ,Molecular cloud ,Astronomy and Astrophysics ,Galactic plane ,Astrophysics - Astrophysics of Galaxies ,Magnetic field ,Orientation (vector space) ,Shear (sheet metal) ,atoms [ISM] ,13. Climate action ,Space and Planetary Science ,Computer Science::Computer Vision and Pattern Recognition ,Astrophysics of Galaxies (astro-ph.GA) ,structure [ISM] ,Astrophysics - Instrumentation and Methods for Astrophysics ,clouds [ISM] - Abstract
We introduce the histogram of oriented gradients (HOG), a tool developed for machine vision that we propose as a new metric for the systematic characterization of observations of atomic and molecular gas and the study of molecular cloud formation models. In essence, the HOG technique takes as input extended spectral-line observations from two tracers and provides an estimate of their spatial correlation across velocity channels. We characterize HOG using synthetic observations of HI and $^{13}$CO(J=1-0) emission from numerical simulations of MHD turbulence leading to the formation of molecular gas after the collision of two atomic clouds. We find a significant spatial correlation between the two tracers in velocity channels where $v_{HI}\approx v_{^{13}CO}$, independent of the orientation of the collision with respect to the line of sight. We use HOG to investigate the spatial correlation of the HI, from the THOR survey, and the $^{13}$CO(J=1-0) emission, from the GRS, toward the portion of the Galactic plane 33.75$\lt l\lt$35.25$^{o}$ and $|b|\lt$1.25$^{o}$. We find a significant spatial correlation between the tracers in extended portions of the studied region. Although some of the regions with high spatial correlation are associated with HI self-absorption features, suggesting that it is produced by the cold atomic gas, the correlation is not exclusive to this kind of region. The HOG results also indicate significant differences between individual regions: some show spatial correlation in channels around $v_{HI}\approx v_{^{13}CO}$ while others present this correlation in velocity channels separated by a few km/s. We associate these velocity offsets to the effect of feedback and to the presence of physical conditions that are not included in the atomic-cloud-collision simulations, such as more general magnetic field configurations, shear, and global gas infall., Comment: 32 pages, 36 figures. Accepted for publication at A&A (28DEC2018)
- Published
- 2019
- Full Text
- View/download PDF
41. Characterizing young protostellar disks with the CALYPSO IRAM-PdBI survey: large Class 0 disks are rare
- Author
-
Anaëlle Maury, Bilal Ladjelate, Benoît Tabone, Bertrand Lefloch, Linda Podio, Patrick Hennebelle, Arnaud Belloche, M. Gaudel, Frederic Gueth, Ph. André, Sébastien Maret, Sylvie Cabrit, Aurore Bacmann, S. Anderl, Leonardo Testi, Sylvain Bontemps, Claudio Codella, Charlène Lefèvre, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), European Southern Observatory (ESO), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Radioastronomie (MPIFR), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astrofisico di Arcetri (OAA), Istituto Nazionale di Astrofisica (INAF), Institut de RadioAstronomie Millimétrique (IRAM), Centre National de la Recherche Scientifique (CNRS), FORMATION STELLAIRE 2019, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Service d'endocrinologie pédiatrique [CHU Lille], Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Hôpital Jeanne de Flandre [Lille], Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Hôpital Jeanne de Flandre [Lille]-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), and Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Large class ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Disk size ,0103 physical sciences ,Protostar ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,stars: formation ,stars: protostars ,Plateau de Bure Interferometer ,Astronomy and Astrophysics ,Radius ,Astrophysics - Astrophysics of Galaxies ,Rotational energy ,radio continuum: ISM ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Millimeter ,Astrophysics::Earth and Planetary Astrophysics ,[SDU.ASTR.GA]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Understanding the formation mechanisms of protoplanetary disks and multiple systems, and their pristine properties, is a key question for modern astrophysics. The properties of the youngest disks, embedded in rotating infalling protostellar envelopes, have largely remained unconstrained up to now. In the framework of the IRAM-PdBI CALYPSO survey, we have obtained sub-arcsecond observations of the dust continuum emission at 231 GHz and 94 GHz, for a sample of 16 solar-type Class 0 protostars. In an attempt to identify disk-like structures embedded at small scales in the protostellar envelopes, we model the dust continuum emission visibility profiles using both Plummer-like envelope models and envelope models including additional Gaussian disk-like components. Our analysis shows that in the CALYPSO sample, 11 of the 16 Class 0 protostars are better reproduced by models including a disk-like dust continuum component contributing to the flux at small scales, but less than 25% of these candidate protostellar disks are resolved at radii > 60 au. Including all available literature constraints on Class 0 disks at subarcsecond scales, we show that our results are representative: most (> 72% in a sample of 26 protostars) Class 0 protostellar disks are small and emerge only at radii < 60 au. Our multiplicity fraction at scales 100-5000 au is in global agreement with the multiplicity properties of Class I protostars at similar scales. We confront our observational constraints on the disk size distribution in Class 0 protostars to the typical disk properties from protostellar formation models. Because they reduce the centrifugal radius, and produce a disk size distribution peaking at radii, Accepted for publication in Astronomy \& Astrophysics. 24 pages of main text, 22 pages of additional content (under the form of three appendices) - revised version including language and typos corrections
- Published
- 2019
- Full Text
- View/download PDF
42. Indirect evidence of significant grain growth in young protostellar envelopes from polarized dust emission
- Author
-
Stefan Reissl, Valeska Valdivia, Anaëlle Maury, Robert Brauer, Patrick Hennebelle, Vincent Guillet, Maud Galametz, Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Montpellier 2 - Sciences et Techniques (UM2), and Université de Montpellier (UM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Planetesimal ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,magnetic fields ,01 natural sciences ,methods: numerical ,Planet ,0103 physical sciences ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,[PHYS]Physics [physics] ,polarization ,stars: protostars ,Star formation ,Astronomy and Astrophysics ,Polarization (waves) ,Astrophysics - Astrophysics of Galaxies ,Grain size ,Grain growth ,Wavelength ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics::Earth and Planetary Astrophysics - Abstract
How and when in the star formation sequence do dust grains start to grow into pebbles is a cornerstone question to both star and planet formation. We compute the polarized radiative transfer from a model solar-type protostellar core, using the POLARIS code, aligning the dust grains with the local magnetic field, following the radiative torques (RATs) theory. We test the dependency of the resulting dust polarized emission with the maximum grain size of the dust size distribution at the envelope scale, from amax = 1 micron to 50 micron. Our work shows that, in the framework of RAT alignment, large dust grains are required to produce polarized dust emission at levels similar to those currently observed in solar-type protostellar envelopes at millimeter wavelengths. Considering the current theoretical dificulties to align a large fraction of small ISM-like grains in the conditions typical of protostellar envelopes, our results suggest that grain growth (typically > 10 micron) might have already significantly progressed at scales 100-1000 au in the youngest objects, observed less than 10^5 years after the onset of collapse. Observations of dust polarized emission might open a new avenue to explore dust pristine properties and describe, for example, the initial conditions for the formation of planetesimals., Accepted for publication in MNRAS. Accepted 2019 July 23. Received 2019 July 23; in original form 2019 April 05
- Published
- 2019
- Full Text
- View/download PDF
43. The RWST, a comprehensive statistical description of the non-Gaussian structures in the ISM
- Author
-
F. Boulanger, C. Colling, B. Regaldo-Saint Blancard, Sixin Zhang, Patrick Hennebelle, Erwan Allys, François Levrier, Stéphane Mallat, Astrophysique, Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL), Peking University [Beijing], Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Collège de France - Chaire Sciences des données, Collège de France (CdF (institution)), ERC-2016-ADG-742719, Programme National 'Physique et Chimie du Milieu Interstellaire' (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES., ANR-17-CE31-0022,BxB,Champs B interstellaires et modes B de l'inflation(2017), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université Paris Diderot - Paris 7 (UPD7), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Chaire Sciences des données, Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Collège de France (CdF), ANR-17-CE31-0022,BxB,Champs B interstellaires et modes B de l’inflation(2017), and HEP, INSPIRE
- Subjects
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn] ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,[PHYS.PHYS.PHYS-GEN-PH] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Gaussian ,ISM: structure ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,magnetohydrodynamics (MHD) ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,symbols.namesake ,Wavelet ,0103 physical sciences ,Prior probability ,Radiative transfer ,Statistical physics ,010306 general physics ,010303 astronomy & astrophysics ,ISM: general ,Physics ,methods: statistical ,turbulence ,Fluid Dynamics (physics.flu-dyn) ,Wavelet transform ,Astronomy and Astrophysics ,Probability and statistics ,Physics - Fluid Dynamics ,Astrophysics - Astrophysics of Galaxies ,methods: data analysis ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Nonlinear system ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Space and Planetary Science ,Physics - Data Analysis, Statistics and Probability ,Astrophysics of Galaxies (astro-ph.GA) ,symbols ,A priori and a posteriori ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,[PHYS.PHYS.PHYS-DATA-AN] Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] ,Data Analysis, Statistics and Probability (physics.data-an) ,[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis, Statistics and Probability [physics.data-an] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The interstellar medium (ISM) is a complex non-linear system governed by gravity and magneto-hydrodynamics, as well as radiative, thermodynamical, and chemical processes. Our understanding of it mostly progresses through observations and numerical simulations, and a quantitative comparison between these two approaches requires a generic and comprehensive statistical description. The goal of this paper is to build such a description, with the purpose to permit an efficient comparison independent of any specific prior or model. We start from the Wavelet Scattering Transform (WST), a low-variance statistical description of non-Gaussian processes, developed in data science, that encodes long-range interactions through a hierarchical multiscale approach based on the Wavelet transform. We perform a reduction of the WST through a fit of its angular dependencies, allowing to gather most of the information it contains into a few components whose physical meanings are identified, and that describe, e.g., isotropic and anisotropic behaviours. The result of this paper is the Reduced Wavelet Scattering Transform (RWST), a statistical description with a small number of coefficients that characterizes complex structures arising from non-linear phenomena, free from any specific prior. The RWST coefficients encode moments of order up to four, have reduced variances, and quantify the couplings between scales. To show the efficiency and generality of this description, we apply it successfully to three kinds of processes: fractional Brownian motions, MHD simulations, and Herschel observations in a molecular cloud. With fewer than 100 coefficients when probing 6 scales and 8 angles on 256*256 maps, we were able with the RWST to perform quantitative comparisons, to infer relevant physical properties, and to produce realistic synthetic fields., Comment: V2. Matches version published in A&A
- Published
- 2019
- Full Text
- View/download PDF
44. Dust Polarization Toward Embedded Protostars in Ophiuchus with ALMA. III. Survey Overview
- Author
-
Thomas Henning, Dominique Segura-Cox, Woojin Kwon, Sarah Sadavoy, John J. Tobin, Benoît Commerçon, Philip C. Myers, Ian W. Stephens, Patrick Hennebelle, Leslie W. Looney, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
- Subjects
Young stellar object ,Polarimetry ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,0103 physical sciences ,Protostar ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Physics ,010308 nuclear & particles physics ,Star formation ,Astronomy and Astrophysics ,Polarization (waves) ,Astrophysics - Astrophysics of Galaxies ,Magnetic field ,[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA] ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Ophiuchus ,Circumstellar dust ,Astrophysics::Earth and Planetary Astrophysics - Abstract
We present 0.25 arcsec resolution (35 au) ALMA 1.3 mm dust polarization observations for 37 young stellar objects (YSOs) in the Ophiuchus cloud. These data encompass all the embedded protostars in the cloud and several Flat and Class II objects to produce the largest, homogeneous study of dust polarization on disk scales to date. The goal of this study is to study dust polarization down to disk scales. We find that 14/37 (38%) of the YSOs are detected in polarization. Nine of these sources have uniform polarization angles and four sources have azimuthal polarization. The sources with uniform polarization tend to have steeper inclinations (> 60 degree) than those with azimuthal polarization (< 60 degree). The majority (9/14) of the detected sources have polarization morphologies and disk properties consistent with dust self-scattering in optically thick disks. The remaining sources may be instead tracing magnetic fields. Their inferred field directions from rotating the polarization vectors by 90 degree are mainly poloidal or hourglass shaped. We find no evidence of a strong toroidal field component toward any of our disks. For the 23 YSOs that are undetected in polarization, roughly half of them have 3-sigma upper limits of < 2%. These sources also tend to have inclinations < 60 degree and they are generally compact. Since lower inclination sources tend to have azimuthal polarization, these YSOs may be undetected in polarization due to unresolved polarization structure within our beam. We propose that disks with inclinations > 60 degree are the best candidates for future polarization studies of dust self-scattering as these systems will generally show uniform polarization vectors that do not require very high resolution to resolve. We release the continuum and polarization images for all the sources with this publication. Data from the entire survey can be obtained from Dataverse., Accepted to ApJS, 52 pages, 52 figures, full data release on Dataverse
- Published
- 2019
- Full Text
- View/download PDF
45. Core and stellar mass functions in massive collapsing filaments
- Author
-
Evangelia Ntormousi, Patrick Hennebelle, Foundation for Research and Technology - Hellas (FORTH), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), European Project: 306483,EC:FP7:ERC,ERC-2012-StG_20111012,MAGMIST(2013), European Project: 291294,EC:FP7:ERC,ERC-2011-ADG_20110209,ORISTARS(2012), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP)
- Subjects
Equation of state ,Initial mass function ,Stellar mass ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,01 natural sciences ,ISM: clouds ,Virial theorem ,0103 physical sciences ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,stars: formation ,010308 nuclear & particles physics ,Star formation ,turbulence ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Magnetic field ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,ISM: magnetic fields ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Order of magnitude - Abstract
The connection between the pre-stellar core mass function (CMF) and the stellar initial mass function (IMF) lies at the heart of all star formation theories. In this paper, we study the earliest phases of star formation with a series of high-resolution numerical simulations that include the formation of sinks. In particular, we focus on the transition from cores to sinks within a massive molecular filament. We compare the CMF and IMF between magnetized and unmagnetized simulations, and between different resolutions. We find that selecting cores based on their kinematic virial parameter excludes collapsing objects because they host large velocity dispersions. Selecting only the thermally unstable magnetized cores, we observe that their mass-to-flux ratio spans almost two orders of magnitude for a given mass. We also see that, when magnetic fields are included, the CMF peaks at higher core mass values with respect to pure hydrodynamical simulations. Nonetheless, all models produce sink mass functions with a high-mass slope consistent with Salpeter. Finally, we examine the effects of resolution and find that, in isothermal simulations, even models with very high dynamical range fail to converge in the mass function. Our main conclusion is that, although the resulting CMFs and IMFs have similar slopes in all simulations, the cores have slightly different sizes and kinematical properties when a magnetic field is included. However, a core selection based on the mass-to-flux ratio alone is not enough to alter the shape of the CMF, if we do not take thermal stability into account. Finally, we conclude that extreme care should be given to resolution issues when studying sink formation with an isothermal equation of state., Comment: Accepted for publication by A&A
- Published
- 2019
- Full Text
- View/download PDF
46. What Is the Role of Stellar Radiative Feedback in Setting the Stellar Mass Spectrum?
- Author
-
Gilles Chabrier, Benoît Commerçon, Patrick Hennebelle, Yueh Ning Lee, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Initial mass function ,010504 meteorology & atmospheric sciences ,Stellar mass ,Astrophysics::High Energy Astrophysical Phenomena ,Stellar accretion ,Hydrodynamical simulations ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Luminosity ,Collapsing clouds ,0103 physical sciences ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Stellar feedback ,0105 earth and related environmental sciences ,Physics ,Solar mass ,Accretion (meteorology) ,Mass distribution ,Star formation ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) - Abstract
In spite of decades of theoretical efforts, the physical origin of the stellar initial mass function (IMF) is still debated. Particularly crucial is the question of what sets the peak of the distribution. To investigate this issue we perform high resolution numerical simulations with radiative feedback exploring in particular the role of the stellar and accretion luminosities. We also perform simulations with a simple effective equation of state (eos) and we investigate 1000 solar mass clumps having respectively 0.1 and 0.4 pc of initial radii. We found that most runs, both with radiative transfer or an eos, present similar mass spectra with a peak broadly located around 0.3-0.5 M$_\odot$ and a powerlaw-like mass distribution at higher masses. However, when accretion luminosity is accounted for, the resulting mass spectrum of the most compact clump tends to be moderately top-heavy. The effect remains limited for the less compact one, which overall remains colder. Our results support the idea that rather than the radiative stellar feedback, this is the transition from the isothermal to the adiabatic regime, which occurs at a gas density of about 10$^{10}$ cm$^{-3}$, that is responsible for setting the peak of the initial mass function. This stems for the fact that $i)$ extremely compact clumps for which the accretion luminosity has a significant influence are very rare and $ii)$ because of the luminosity problem, which indicates that the effective accretion luminosity is likely weaker than expected., Comment: accepted for publication in ApJ
- Published
- 2020
- Full Text
- View/download PDF
47. 3D chemical structure of diffuse turbulent ISM
- Author
-
Valeska Valdivia, Pierre Lesaffre, Michel Perault, Elena Bellomi, G. Pineau des Forêts, Patrick Hennebelle, B. Godard, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Radioastronomie (LRA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Logarithmic scale ,ISM: structure ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,ISM: clouds ,01 natural sciences ,methods: numerical ,0103 physical sciences ,Statistics ,Dispersion (water waves) ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,ISM: kinematics and dynamics ,Physics ,methods: statistical ,Line-of-sight ,010308 nuclear & particles physics ,Molecular cloud ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,ISM: molecules ,Magnetic field ,Interstellar medium ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Magnetohydrodynamics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Context. The amount of data collected by spectrometers from radio to ultraviolet (UV) wavelengths opens a new era where the statistical and chemical information contained in the observations can be used concomitantly to investigate the thermodynamical state and the evolution of the interstellar medium (ISM). Aims. In this paper, we study the statistical properties of the HI-to-H2 transition observed in absorption in the local diffuse and multiphase ISM. Our goal is to identify the physical processes that control the probability of occurrence of any line of sight and the origins of the variations of the integrated molecular fraction from one line of sight to another. Methods. The turbulent diffuse ISM is modeled using the RAMSES code, which includes detailed treatments of the magnetohydrodynamics, the thermal evolution of the gas, and the chemistry of H2. The impacts of the UV radiation field, the mean density, the turbulent forcing, the integral scale, the magnetic field, and the gravity on the molecular content of the gas are explored through a parametric study that covers a wide range of physical conditions. The statistics of the HI-to-H2 transition are interpreted through analytical prescriptions and compared with the observations using a modified and robust version of the Kolmogorov-Smirnov test. Results. The analysis of the observed background sources shows that the lengths of the lines of sight follow a flat distribution in logarithmic scale from ~100 pc to ~3 kpc. Without taking into account any variation of the parameters along a line of sight or from one line of sight to another, the results of one simulation, convolved with the distribution of distances of the observational sample, are able to simultaneously explain the position, the width, the dispersion, and most of the statistical properties of the HI-to-H2 transition observed in the local ISM. The tightest agreement is obtained for a neutral diffuse gas modeled over ~200 pc, with a mean density n̅H̅ = 1−2 cm−3, illuminated by the standard interstellar UV radiation field, and stirred up by a large-scale compressive turbulent forcing. Within this configuration, the 2D probability histogram of the column densities of H and H2, poetically called the kingfisher diagram, is remarkably stable and is almost unaltered by gravity, the strength of the turbulent forcing, the resolution of the simulation, or the strength of the magnetic field Bx, as long as Bx < 4 μG. The weak effect of the resolution and our analytical prescription suggest that the column densities of HI are likely built up in large-scale warm neutral medium and cold neutral medium (CNM) structures correlated in density over ~20 pc and ~10 pc, respectively, while those of H2 are built up in CNM structures between ~3 and ~10 pc. Conclusions. Combining the chemical and statistical information contained in the observations of HI and H2 sheds new light on the study of the diffuse matter. Applying this new tool to several atomic and molecular species is a promising perspective to understanding the effects of turbulence, magnetic field, thermal instability, and gravity on the formation and evolution of molecular clouds.
- Published
- 2020
- Full Text
- View/download PDF
48. The FRIGG project: From intermediate galactic scales to self-gravitating cores
- Author
-
Patrick Hennebelle, Laboratoire de Radioastronomie (LRA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Angular momentum ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Context (language use) ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,Virial theorem ,0103 physical sciences ,Spatial dependence ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Physics ,[PHYS]Physics [physics] ,Star formation ,Velocity dispersion ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Interstellar medium ,Supernova ,13. Climate action ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Abridged. Understanding the detailed structure of the interstellar gas is essential for our knowledge of the star formation process. The small-scale structure of the interstellar medium (ISM) is a direct consequence of the galactic scales and making the link between the two is essential. We perform adaptive mesh simulations that aim to bridge the gap between the intermediate galactic scales and the self-gravitating prestellar cores. For this purpose we use stratified supernova regulated ISM magneto-hydrodynamical (MHD) simulations at the kpc scale to set up the initial conditions. We then zoom, performing a series of concentric uniform refinement and then refining on the Jeans length for the last levels. This allows us to reach a spatial resolution of a few $10^{-3}$ pc. The cores are identified using a clump finder and various criteria based on virial analysis. Their most relevant properties are computed and, due to the large number of objects formed in the simulations, reliable statistics are obtained. The cores properties show encouraging agreements with observations. The mass spectrum presents a clear powerlaw at high masses with an exponent close to $\simeq -1.3$ and a peak at about 1-2 $M_\odot$. The velocity dispersion and the angular momentum distributions are respectively a few times the local sound speed and a few $10^{-2}$ pc km s$^{-1}$. We also find that the distribution of thermally supercritical cores present a range of magnetic mass-to-flux over critical mass-to-flux ratio which typically ranges between $\simeq$0.3 and 3., Comment: accepted for publication in A&A
- Published
- 2018
- Full Text
- View/download PDF
49. Cosmic rays as regulators of molecular cloud properties
- Author
-
Marco Padovani, Patrick Hennebelle, and Daniele Galli
- Subjects
Physics ,Field line ,Ambipolar diffusion ,Molecular cloud ,Astrophysics::High Energy Astrophysical Phenomena ,Hydrogen molecule ,FOS: Physical sciences ,Cosmic ray ,Decoupling (cosmology) ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Computational physics ,Magnetic field ,Astrophysics of Galaxies (astro-ph.GA) ,Ionization ,General Earth and Planetary Sciences ,Atomic physics ,Astrophysics::Galaxy Astrophysics ,General Environmental Science - Abstract
Cosmic rays are the main agents in controlling the chemical evolution and setting the ambipolar diffusion time of a molecular cloud. We summarise the processes causing the energy degradation of cosmic rays due to their interaction with molecular hydrogen, focusing on the magnetic effects that influence their propagation. Making use of magnetic field configurations generated by numerical simulations, we show that the increase of the field line density in the collapse region results in a reduction of the cosmic-ray ionisation rate. As a consequence the ionisation fraction decreases, facilitating the decoupling between the gas and the magnetic field., Comment: 4 pages, 3 figures, conference proceedings in "Wind Bubbles, Astrospheres and the Heliosphere: Environments and Cosmic Rays", Bochum, Germany. Published in ASTRA proceedings, an Open Access Journal for Refereed Proceedings in Extraterrestrial Research
- Published
- 2018
50. Stellar mass spectrum within massive collapsing clumps
- Author
-
Patrick Hennebelle, Yueh Ning Lee, HANA MICRON, parent, Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Initial mass function ,Opacity ,Stellar mass ,stars: luminosity function ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,0103 physical sciences ,Adiabatic process ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,ISM: kinematics and dynamics ,stars: formation ,010308 nuclear & particles physics ,Molecular cloud ,turbulence ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies ,Accretion (astrophysics) ,Magnetic field ,13. Climate action ,Space and Planetary Science ,mass function ,Astrophysics of Galaxies (astro-ph.GA) ,Mass spectrum ,ISM: magnetic fields ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
Context. The stellar mass spectrum is an important property of the stellar cluster and a fundamental quantity to understand our Universe. The fragmentation of diffuse molecular cloud into stars is subject to physical processes such as gravity, turbulence, thermal pressure, and magnetic field. Aims. The final mass of a star is believed to be a combined outcome of a virially unstable reservoir and subsequent accretion. We aim to clarify the roles of different supporting energies, notably the thermal pressure and magnetic field, in determining the stellar mass. Methods. Following our previous studies, we performed a series of numerical experiments of stellar cluster formation inside an isolated molecular clump. We investigated whether any characteristic mass is introduced into the fragmentation processes by changing the effective equation of state (EOS) of the diffuse gas, that is to say gas whose density is below the critical density at which dust becomes opaque to its radiation, and the strength of the magnetic field. Results. The EOS of the diffuse gas, including the bulk temperature and polytropic index, does not significantly affect the shape of the stellar mass spectrum. The presence of magnetic field slightly modifies the shape of the mass spectrum only when extreme values are applied. Conclusions. This study confirms that the peak of the initial mass function is primarily determined by the adiabatic high-density end of the EOS that mimics the radiation inside the high-density gas. Furthermore, the shape of the mass spectrum is mostly sensitive to the density PDF and the magnetic field likely only a secondary role. In particular, we stress that the Jeans mass at the mean cloud density and at the critical density are not responsible for setting the peak.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.