85 results on '"Patrick Maget"'
Search Results
2. Long discharges in a steady state with D 2 and N 2 on the actively cooled tungsten upper divertor in WEST
- Author
-
S. Brezinsek, Jérôme Bucalossi, P. Moreau, Clarisse Bourdelle, Patrick Maget, Lena Delpech, Yann Corre, Nicolas Fedorczak, A. Ekedahl, E. Tsitrone, A. Gallo, Régis Bisson, T. Dittmar, M. Houry, J. P. Gunn, T. Loarer, Jonathan Gaspar, D. Douai, West Team, G. De Temmerman, R. Mitteau, C. Desgranges, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), ITER organization (ITER), Institut universitaire des systèmes thermiques industriels (IUSTI), European Project: 63253, and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)
- Subjects
Nuclear and High Energy Physics ,Jet (fluid) ,Materials science ,Tokamak ,Hydrogen ,[PHYS.PHYS]Physics [physics]/Physics [physics] ,Divertor ,Joint European Torus ,chemistry.chemical_element ,Plasma ,Tungsten ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Outgassing ,chemistry ,law ,0103 physical sciences ,Atomic physics ,ddc:620 ,010306 general physics - Abstract
International audience; Nitrogen (N2) will be used in ITER to enhance the radiative fraction to ~90%, thereby cooling the edge plasma and preventing damage to the plasma-facing components. However, the reactivity of N2 with hydrogen isotopes can lead to the formation of tritiated ammonia (NT3). This should be considered in terms of the in-vessel tritium inventory, the regeneration of the cryo pumps, and the processes in the ITER de-tritiation plant. In the 'W' Environment in Steady-state Tokamak (WEST), a series of long L-mode discharges (~50 s), with a constant N2 seeding from the outer strike point region has been performed on the upper actively cooled divertor. In the absence of active pumping, the N2 balance shows steady-state retention during plasma discharge, and is partially (~35%) released in between discharges. Although a significant amount of N2( 18.65 Pa m3) has been injected, the wall still exhibited N2 pumping capabilities. Under these conditions, as long as this N2 reservoir is not saturated, there is not enough N available for the detectable threshold of ND3 formation to be reached. In these WEST experiments, no ammonia is detected during the pulse or after the pulse in the outgassing phase. These results are consistent with and complementary to the N2 seeded experiments performed in the Joint European Torus (JET) with its ITER-like wall and in the Axially Symmetric Divertor Experiment (ASDEX) upgrade.
- Published
- 2020
- Full Text
- View/download PDF
3. An analytic model for the collisional transport and poloidal asymmetry distribution of impurities in tokamak plasmas
- Author
-
Patrick Maget, T. Nicolas, Pierre Manas, Xavier Garbet, Olivier Agullo, J. Frank, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Tokamak ,Distribution (number theory) ,media_common.quotation_subject ,01 natural sciences ,Asymmetry ,rotation ,neoclassic ,010305 fluids & plasmas ,law.invention ,law ,Impurity ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,010306 general physics ,tokamak ,media_common ,Physics ,Analytic model ,Plasma ,Condensed Matter Physics ,Computational physics ,Nuclear Energy and Engineering ,impurity ,transport ,asymmetry - Abstract
International audience; The coupling between the poloidal distribution and the collisional flux of impurities can be exploited to derive a simplified analytical model covering toroidal rotation and electrostatic potential asymmetry effects, valid in the Pfirsh-Schlüter regime. This model is compared with earlier works and with the drift-kinetic code NEO, which includes the full Fokker-Planck collision operator. The low computational cost of the model, compared to NEO, is particularly adapted for fast integrated simulation purposes.
- Published
- 2020
- Full Text
- View/download PDF
4. First lower hybrid current drive experiments on the WEST tokamak
- Author
-
West Team, A. Ekedahl, D. Vezinet, M. Goniche, J. P. Gunn, Jorge Morales, X. Regal-Mezin, Nicolas Fedorczak, C. Desgranges, F. Saint-Laurent, C. Reux, C. Christopher Klepper, Jérôme Bucalossi, Clarisse Bourdelle, R. J. Dumont, J.F. Artaud, Lena Delpech, P. Moreau, O. Meyer, Didier Mazon, Patrick Maget, C. Gil, P. Devynck, J. Garcia, Rémy Nouailletas, and Y. Peysson
- Subjects
Tokamak ,Materials science ,Divertor ,chemistry.chemical_element ,Electron ,Tungsten ,law.invention ,chemistry ,law ,Electron temperature ,Current (fluid) ,Atomic physics ,Reflection coefficient ,Voltage - Abstract
The first lower hybrid current drive experiments in the full tungsten WEST tokamak are reported. Good wave coupling is found at rather low plasma current (q95∼4.3) and medium density (ne∼3×1019m-3). Reflection coefficient is in agreement with the expectation from the linear theory of coupling. With low reflection coefficients, 5MW was coupled for 2 seconds. High central electron temperature, up to 5keV, is achieved at ne = 3-4×1019m-3. Flat and even hollow profiles of tungsten density are derived from the bolometry diagnostic. The stored thermal energy follows the H96-P scaling law with very slight degradation with density. The current drive efficiency has been assessed in low loop voltage (VL∼0.15V) discharges. Low plasma current operation and rather high effective charge (Zeff∼3) lead to modest current drive efficiency (ƞ = 0.5-0.65 × 1019 A.W−1m-2). Long pulse operation (∼30s) with high LHCD power (PLH=2.7MW) is achieved with stationary parameters, in particular electron and impurity densities, with the upper water-cooled tungsten divertor.
- Published
- 2020
- Full Text
- View/download PDF
5. Sustained W-melting experiments on actively cooled ITER-like plasma facing unit in WEST
- Author
-
Panagiotis Tolias, M. Richou, L. Dubus, V. Bruno, Eric Nardon, E. Delmas, Fabrice Rigollet, Lena Delpech, K. Krieger, Patrick Maget, X. Regal-Mezin, J. W. Coenen, P. Mandelbaum, C. Desgranges, T. Loarer, J-L Schwob, Clarisse Bourdelle, Marc Missirlian, C. Pocheau, E. Tsitrone, C. Reux, R. Mitteau, A. Durif, J. L. Gardarein, A. Ekedahl, Jonathan Gaspar, A. Grosjean, A. Podolnik, E. Thoren, Nicolas Fedorczak, S. Brezinsek, X. Courtois, R. Dejarnac, Svetlana V. Ratynskaia, J. Gerardin, C. Guillemaut, M. Firdaouss, Yann Corre, N. Chanet, M. Diez, O. Skalli-Fettachi, Rémy Nouailletas, M. Houry, P. Moreau, J. P. Gunn, P Reilhac, WEST Team, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Royal Institute of Technology [Stockholm] (KTH ), Institut fur Energie und Klimaforschung - Plasmaphysik (IEK-4), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, University of Wisconsin-Madison, Czech Academy of Sciences [Prague] (CAS), Institut FRESNEL (FRESNEL), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Institut universitaire des systèmes thermiques industriels (IUSTI), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Azrieli College of Engineering, Jerusalem, Israel, The Hebrew University of Jerusalem (HUJ), European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Department of Space and Plasma Physics [Stockholm], KTH School of Electrical Engineering, Royal Institute of Technology [Stockholm] (KTH )-Royal Institute of Technology [Stockholm] (KTH ), Helmholtz-Gemeinschaft = Helmholtz Association, Institute of Plasma Physics [Praha], Rigollet, Fabrice, and Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium - EUROfusion - - H20202014-01-01 - 2018-12-31 - 633053 - VALID
- Subjects
[PHYS]Physics [physics] ,Materials science ,[SPI] Engineering Sciences [physics] ,Nuclear engineering ,Heat flux calculation ,Plasma ,Condensed Matter Physics ,01 natural sciences ,IR thermography ,Atomic and Molecular Physics, and Optics ,010305 fluids & plasmas ,Unit (housing) ,[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,Plasma Facing Unit ,[SPI]Engineering Sciences [physics] ,[PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,Tungsten melting ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,[PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,010306 general physics ,Mathematical Physics ,[SPI.MECA.THER] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] - Abstract
The consequences of tungsten (W) melting on divertor lifetime and plasma operation are high priority issues for ITER. Sustained and controlled W-melting experiment has been achieved for the first time in WEST on a poloidal sharp leading edge of an actively cooled ITER-like plasma facing unit (PFU). A series of dedicated high power steady state plasma discharges were performed to reach the melting point of tungsten. The leading edge was exposed to a parallel heat flux of about 100 MW.m−2 for up to 5 s providing a melt phase of about 2 s without noticeable impact of melting on plasma operation (radiated power and tungsten impurity content remained stable at constant input power) and no melt ejection were observed. The surface temperature of the MB was monitored by a high spatial resolution (0.1 mm/pixel) infrared camera viewing the melt zone from the top of the machine. The melting discharge was repeated three times resulting in about 6 s accumulated melting duration leading to material displacement from three similar pools. Cumulated on the overall sustained melting periods, this leads to excavation depth of about 230 μm followed by a re-solidified tungsten bump of 200 μm in the JxB direction.
- Published
- 2021
- Full Text
- View/download PDF
6. WEST actively cooled load resilient ion cyclotron resonance heating system results
- Author
-
L. Colas, Nicola Bertelli, West Team, R. Ragona, Cornwall Lau, Patrick Mollard, E. Delmas, P. Garibaldi, Y. P. Zhao, A. Ekedahl, H. D. Xu, C. Christopher Klepper, Yinglin Song, Bo Lu, Shuai Yuan, E. Lerche, G.M. Wallace, Elijah Martin, F. Durodié, N. Faure, Walid Helou, G.T. Hoang, Karl Vulliez, Patrick Maget, Qingxi Yang, Jean-Marc Delaplanche, J.M. Bernard, Clarisse Bourdelle, C. Desgranges, F. Ferlay, Julien Hillairet, G Urbanczyk, M. Ono, M. Goniche, C. Guillemaut, Y.M. Wang, Daniele Milanesio, V. Bobkov, Z. Chen, R. J. Dumont, F Durand, Riccardo Maggiora, Syun'ichi Shiraiwa, R. Volpe, Gilles Lombard, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), ITER organization (ITER), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Princeton Plasma Physics Laboratory (PPPL), Princeton University, Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Oak Ridge National Laboratory [Oak Ridge] (ORNL), UT-Battelle, LLC, Southwestern Institute of Physics, Politecnico di Torino = Polytechnic of Turin (Polito), Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Plasma Science and Fusion Center (PSFC), Massachusetts Institute of Technology (MIT), The WEST team, Southwestern Institute of Physics (SWIP), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,WEST ,Materials science ,Phase (waves) ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,ICRF ,business.industry ,[SPI.PLASMA]Engineering Sciences [physics]/Plasmas ,020206 networking & telecommunications ,Plasma ,Condensed Matter Physics ,ion cyclotronion cyclotron resonance heating ICRH ,ICRH ,High-confinement mode ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,Ion cyclotron resonance heating ,Optoelectronics ,Resilience (materials science) ,Antenna (radio) ,business - Abstract
International audience; Three identical new WEST Ion Cyclotron Resonance Heating (ICRH) antennas have been designed, assembled then commissioned on plasma from 2013 to 2019. The WEST ICRH system is both load-resilient and compatible with long-pulse operations. The three antennas have been successfully operated together on plasma in 2019 and 2020. The load resilience capability has been demonstrated and the antenna feedback controls for phase and matching have been developed. The breakdown detection systems have been validated and successfully protected the antennas. The use of ICRH in combination with Lower Hybrid has triggered the first high confinement mode transitions identified on WEST.
- Published
- 2021
- Full Text
- View/download PDF
7. Corrigendum: Extended magneto-hydro-dynamic model for neoclassical tearing mode computations (2016 Nucl. Fusion 56 086004)
- Author
-
Xavier Garbet, Patrick Maget, Hinrich Lütjens, A. Marx, Jean-François Luciani, Olivier Février, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), ANR-10-EQPX-0029,EQUIP@MESO,Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale(2010), and ANR-14-CE32-0004,AMICI,Modélisation avancée du contrôle des îlots pour ITER(2014)
- Subjects
Physics ,Nuclear and High Energy Physics ,Fusion ,Computation ,Mode (statistics) ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Tearing ,010306 general physics ,Magneto ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
- Full Text
- View/download PDF
8. Corrigendum : Extended Magneto-Hydro-Dynamic model for Neoclassical Tearing Mode computations
- Author
-
Patrick Maget, Olivier Février, Xavier Garbet, Hinrich Lütjens, Jean-François Luciani, Alain Marx, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Swiss Plasma Center (SPC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE32-0004,AMICI,Modélisation avancée du contrôle des îlots pour ITER(2014), ANR-10-EQPX-0029,EQUIP@MESO,Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale(2010), MAGET, Patrick, Appel à projets générique - Modélisation avancée du contrôle des îlots pour ITER - - AMICI2014 - ANR-14-CE32-0004 - Appel à projets générique - VALID, Equipements d'excellence - Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale - - EQUIP@MESO2010 - ANR-10-EQPX-0029 - EQPX - VALID, and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,[PHYS.PHYS.PHYS-PLASM-PH] Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] - Abstract
This is a correction for 2016 Nuclear Fusion 56, 086004 (2019); International audience; An extended fluid model covering neoclassical physics has been implemented in the XTOR code for Magneto-Hydro-Dynamic computations and is described in [1]. This model allows recovering neoclassical flux average quantities like the bootstrap current and the poloidal ion flow, and in the presence of a magnetic island, it generates a drive for Neoclassical Tearing Modes. The contribution of parallel heat fluxes on the bootstrap current is significant, and it was retained in the simulations presented in this paper. However, we have realized that the closure that is used for these parallel heat fluxes does not meet an important constraint on its spatial distribution, and although this does not change the equilibrium quantities, we do see an impact on the dynamics of the magnetic island. In the following, we propose a different closure that satisfies this constraint, and we also present a slight modification of the neoclassical implementation in the momentum equation. In order to show how these modifications impact the simulations, we present a limited number of examples performed with the new model, with diagnostics tools allowing a better understanding of the physics at play.
- Published
- 2019
9. Numerical experiments of island stabilization by RF heating with stiff temperature profile
- Author
-
Hinrich Lütjens, Olivier Février, Patrick Maget, Fabien Widmer, Xavier Garbet, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Swiss Plasma Center (SPC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), ANR-14-CE32-0004,AMICI,Modélisation avancée du contrôle des îlots pour ITER(2014), ANR-10-EQPX-0029,EQUIP@MESO,Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale(2010), European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), Centre de Recherches en Physique des Plasmas (CRPP), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Tokamak ,MHD ,macromolecular substances ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Dielectric heating ,medicine ,010306 general physics ,tokamak ,magnetic island ,ComputingMilieux_MISCELLANEOUS ,Turbulence ,Stiffness ,Plasma ,Mechanics ,nonlinear simulation ,Condensed Matter Physics ,equipment and supplies ,Power (physics) ,Nonlinear system ,Nuclear Energy and Engineering ,13. Climate action ,Magnetohydrodynamics ,medicine.symptom ,control - Abstract
International audience; The nature of turbulent transport in tokamak plasmas results in temperature profiles that are called resilient or stiff, and the stabilization of magnetic islands by a localized heat source is expected to be extremely sensitive to the stiffness strength. Theoretical expectations are verified with nonlinear simulations, showing a good agreement and confirming the enhanced stabilization efficiency due to large profile stiffness when the power used for the control is small compared with the heating power producing the equilibrium profiles. Heat sources that are present in the island region before the RF heating is applied contribute to reduce the island size, but at the same time, they severely damp the control capability.
- Published
- 2018
- Full Text
- View/download PDF
10. Physics conditions for robust control of tearing modes in a rotating tokamak plasma
- Author
-
D. Brunetti, Dario Borgogno, E. Lazzaro, Luca Comisso, Patrick Maget, S. Nowak, Olivier Février, Hinrich Lütjens, Carlo Sozzi, Olivier Sauter, Daniela Grasso, BPRG-INFM, Dept. of Energetics, Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Association EURATOM-CEA (CEA/DSM/DRFC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS (UMR_7086)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Istituto di Fisica del Plasma, EURATOM-ENEA-CNR Association, Consiglio Nazionale delle Ricerche [Roma] (CNR), Politecnico di Torino = Polytechnic of Turin (Polito), Princeton Plasma Physics Laboratory (PPPL), Princeton University, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Fédérale de Lausanne (EPFL), and National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)
- Subjects
Physics ,Tokamak ,Plasma ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,optimal control ,Nuclear Energy and Engineering ,law ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Tearing ,wave beam sweeping ,Robust control ,tokamaks ,010306 general physics ,NTM stabilization ,rf current drive ,robust control ,ComputingMilieux_MISCELLANEOUS - Abstract
The disruptive collapse of the current sustained equilibrium of a tokamak is perhaps the single most serious obstacle on the path toward controlled thermonuclear fusion. The current disruption is generally too fast to be identified early enough and tamed efficiently, and may be associated with a variety of initial perturbing events. However, a common feature of all disruptive events is that they proceed through the onset of magnetohydrodynamic instabilities and field reconnection processes developing magnetic islands, which eventually destroy the magnetic configuration. Therefore the avoidance and control of magnetic reconnection instabilities is of foremost importance and great attention is focused on the promising stabilization techniques based on localized rf power absorption and current drive. Here a short review is proposed of the key aspects of high power rf control schemes (specifically electron cyclotron heating and current drive) for tearing modes, considering also some effects of plasma rotation. From first principles physics considerations, new conditions are presented and discussed to achieve control of the tearing perturbations by means of high power (PEC Pohm) in regimes where strong nonlinear instabilities may be driven, such as secondary island structures, which can blur the detection and limit the control of the instabilities. Here we consider recent work that has motivated the search for the improvement of some traditional control strategies, namely the feedback schemes based on strict phase tracking of the propagating magnetic islands.
- Published
- 2018
- Full Text
- View/download PDF
11. Stabilisation d'un îlot magnétique par chauffage localisé dans un tokamak avec des profils de température résilients
- Author
-
Xavier Garbet, Olivier Février, Patrick Maget, Hinrich Lütjens, Fabien Widmer, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Association EURATOM-CEA (CEA/DSM/DRFC), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE32-0004,AMICI,Modélisation avancée du contrôle des îlots pour ITER(2014), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Swiss Plasma Center (SPC), and Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Subjects
Physics ,Tokamak ,Plasma heating ,Turbulence ,Plasma turbulence ,Plasma ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Temperature gradient ,Amplitude ,law ,Plasma instability ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,PACS: 52.30.Cv, 52.35.Py, 52.55.Fa, 52.55.Tn - Abstract
International audience; In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gradient and leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island stabilization by a localized heat source, is investigated analytically in the present paper. We show that the efficiency of the stabilization is deeply modified compared to previous estimates due to the strong dependence of the turbulence level on the additional heat source amplitude inside the island.
- Published
- 2018
- Full Text
- View/download PDF
12. Comparison of magnetic island stabilization strategies from magneto-hydrodynamic simulations
- Author
-
Hinrich Lütjens, Olivier Février, Patrick Maget, Peter Beyer, Association EURATOM-CEA (CEA/DSM/DRFC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE32-0004,AMICI,Modélisation avancée du contrôle des îlots pour ITER(2014), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Tokamak ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Robustness (computer science) ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,resistive MHD ,010306 general physics ,magnetic island ,tokamak ,ComputingMilieux_MISCELLANEOUS ,Physics ,[PHYS]Physics [physics] ,Toroid ,Plasma ,Mechanics ,Condensed Matter Physics ,simulation ,Nonlinear system ,Nuclear Energy and Engineering ,Control system ,reconnection ,Magnetohydrodynamics ,Current (fluid) ,control - Abstract
International audience; The degradation of plasma confinement in tokamaks caused by magnetic islands motivates to better understand their possible suppression using electron cyclotron current drive (ECCD) and to investigate the various strategies relevant for this purpose. In this work, we evaluate the efficiency of several control methods through nonlinear simulations of this process with the toroidal magneto-hydro-dynamic (MHD) code XTOR-2F (Lutjens and Luciani 2010 J. Comput. Phys. 229 8130-43), which has been extended to incorporate in Ohm's law a source term modeling the driven current resulting from the interaction of the EC waves with the plasma. A basic control system has been implemented in the code, allowing testing of advanced strategies that require feedback on island position or phase. We focus in particular on the robustness of the control strategies towards uncertainties that apply to the control and ECCD systems, such as the risk of misalignment of the current deposition or the possible inability to generate narrow current deposition.
- Published
- 2017
- Full Text
- View/download PDF
13. Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation
- Author
-
H. Sasao, T. Bolzonella, D. C. McDonald, Lorenzo Figini, Peter Lang, A. Boboc, G. Pautasso, R. Neu, V. Vitale, J.F. Artaud, G. De Tommasi, C. Gil, A. Kojima, Akihiko Isayama, S. Saarelma, Patrick Maget, Yasunori Kawano, Y. Miyata, L. Pigatto, Carlo Sozzi, Timothy Goodman, Paolo Bettini, David Terranova, M. Romanelli, B. Pégourié, E. de la Luna, Manabu Takechi, K. Galazka, Maiko Yoshida, F. Orsitto, A. Mele, J. Garcia, J. Galdon, Ryota Imazawa, Paola Platania, S. Clement-Lorenzo, Hajime Urano, Go Matsunaga, W. Stepniewski, M. Enoeda, Hisato Kawashima, L. Garzotti, Masakatsu Fukumoto, M. Toma, Daniela Farina, Kazuo Hoshino, S. Soare, M. Scannapiego, Yutaka Kamada, S. Sakurai, Paolo Innocente, K. Shinohara, M. Dibon, H. Kubo, R. Zagórski, S. Mastrostefano, O. Asztalos, D. Ricci, K. Itami, Stefano Coda, T. Kobayashi, Gergö Pokol, Daniel Dunai, Kenji Tanaka, A. Moro, Giuseppe Marchiori, C. Gleason-González, S. Nowak, Tamás Szepesi, Chr. Day, N. Hayashi, Filippo Sartori, Ph. Lauber, Jesús Vega, D. Douai, T. Nakano, K. Shimizu, E. Barbato, Nuno Cruz, G. Giruzzi, Shunsuke Ide, M. Wischmeier, Alfredo Pironti, Fabio Villone, Shinichi Moriyama, Kensaku Kamiya, M. Garcia-Munoz, Massimiliano Mattei, E. Joffrin, J. Shiraishi, T. Suzuki, Gustavo Granucci, T. Wakatsuki, Andreas Bierwage, Y. Suzuki, Giruzzi, G., Yoshida, M., Artaud, J. F., Asztalos, Ö., Barbato, E., Bettini, P., Bierwage, A., Boboc, A., Bolzonella, T., Clement Lorenzo, S., Coda, S., Cruz, N., Day, C. h. r., DE TOMMASI, Gianmaria, Dibon, M., Douai, D., Dunai, D., Enoeda, M., Farina, D., Figini, L., Fukumoto, M., Galazka, K., Galdon, J., Garcia, J., Garcia Muñoz, M., Garzotti, L., Gil, C., Gleason Gonzalez, C., Goodman, T., Granucci, G., Hayashi, N., Hoshino, K., Ide, S., Imazawa, R., Innocente, P., Isayama, A., Itami, K., Joffrin, E., Kamada, Y., Kamiya, K., Kawano, Y., Kawashima, H., Kobayashi, T., Kojima, A., Kubo, H., Lang, P., Lauber, P. h., de la Luna, E., Maget, P., Marchiori, G., Mastrostefano, S., Matsunaga, G., Mattei, M., Mcdonald, D. C., Mele, Adriano, Miyata, Y., Moriyama, S., Moro, A., Nakano, T., Neu, R., Nowak, S., Orsitto, F. P., Pautasso, G., Pégourié, B., Pigatto, L., Pironti, Alfredo, Platania, P., Pokol, G. I., Ricci, D., Romanelli, M., Saarelma, S., Sakurai, S., Sartori, F., Sasao, H., Scannapiego, M., Shimizu, K., Shinohara, K., Shiraishi, J., Soare, S., Sozzi, C., Stępniewski, W., Suzuki, T., Suzuki, Y., Szepesi, T., Takechi, M., Tanaka, K., Terranova, D., Toma, M., Urano, H., Vega, J., Villone, F., Vitale, V., Wakatsuki, T., Wischmeier, M., Zagórski, R., Asztalos, O., Clement-Lorenzo, S., Day, Chr, De Tommasi, G., Garcia-Munoz, M., Gleason-Gonzalez, C., De La Luna, E., Mele, A., Pã©gouriã©, B., Pironti, A., Stè©pniewski, W., Zagã³rski, R., Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, and Universidad de Sevilla. RNM138: Física Nuclear Aplicada
- Subjects
Nuclear and High Energy Physics ,Tokamak ,diagnostic ,JT-60SA ,01 natural sciences ,Modelling ,010305 fluids & plasmas ,law.invention ,modelling ,Research plan ,law ,0103 physical sciences ,diagnostics ,ddc:530 ,010306 general physics ,Diagnostics ,tokamak ,Operation ,Nuclear and High Energy Physic ,Physics ,modeling ,operation ,Condensed Matter Physics ,Chemical physics ,Systems engineering - Abstract
The JT-60SA tokamak, being built under the Broader Approach agreement jointly by Europe and Japan, is due to start operation in 2020 and is expected to give substantial contributions to both ITER and DEMO scenario optimisation. A broad set of preparation activities for an efficient start of the experiments on JT-60SA is being carried out, involving elaboration of the Research Plan, advanced modelling in various domains, feasibility and conception studies of diagnostics and other sub-systems in connection with the priorities of the scientific programme, development and validation of operation tools. The logic and coherence of this approach, as well as the most significant results of the main activities undertaken are presented and summarised. EURATOM 633053
- Published
- 2017
- Full Text
- View/download PDF
14. Overview of the JET results in support to ITER
- Author
-
Alfredo Pironti, J. Simpson-Hutchinson, Sean Conroy, J. Uljanovs, D. Middleton-Gear, G. Possnert, C. Angioni, R. McAdams, Nicholas Watkins, E. Fortuna-Zalesna, A. Garcia-Carrasco, K. Gałązka, D. Nodwell, Pasquale Gaudio, R.A. Pitts, Svetlana V. Ratynskaia, Seppo Koivuranta, O. J. Kwon, C. Boyd, A. Boboc, M. Reinhart, Igor Lengar, Jarrod Leddy, Hiroyasu Utoh, J. H. Ahn, A. Stevens, J. Lönnroth, U. Kruezi, C. Guillemaut, N. Fonnesu, W. Studholme, Marek Rubel, P. Cahyna, O. McCormack, A. S. Jacobsen, D. Mazon, Gunta Kizane, N. Ashikawa, William Tang, J. Goff, F. Nespoli, Thomas Giegerich, G. Petravich, Angela Busse, Corneliu Porosnicu, M. Bigi, M. Wheatley, Christopher N. Bowman, J. Zacks, Ivan Calvo, U. Losada, H. Weisen, B. Bauvir, Stanislas Pamela, Sylvain Brémond, M.F. Stamp, Scott W. McIntosh, A. Rakha, S. Glöggler, V. Braic, C. Bottereau, S. Murphy, S. Knott, Luigi Fortuna, P. Bunting, N. Vora, S. D. Scott, A. Lazaros, R. Dejarnac, P. Buratti, H.R. Strauss, Gabriele Croci, M. Nocente, A. Hollingsworth, S. Reynolds, D. J. Wilson, D. D. Brown, T.C. Luce, S. Zoletnik, E. Nilsson, L. Laguardia, O. Marchuk, F.P. Orsitto, E. Cecil, V. Huber, J. B. Girardo, Stylianos Varoutis, M. D. Axton, Hyun-Tae Kim, E. Safi, Ch. Day, S. Arshad, J. Rzadkiewicz, P. Prior, A. Meigs, S. Esquembri, P. Gohil, K. Purahoo, Torbjörn Hellsten, N. Tipton, R. Guirlet, E. Joffrin, V. Aldred, Calin Besliu, M. Valentinuzzi, G. T. Jones, J. Edwards, Giuseppe Ambrosino, Laurent Marot, N. Lam, F. Crisanti, G. Verona Rinati, R. Marshal, Michael L. Brown, D. Frigione, D. Chandra, Michaele Freisinger, R. Olney, Jari Varje, S. Whetham, F. Parra Diaz, M. R. Hough, P. Dinca, F. Salzedas, A. Goodyear, R. Gowland, J. A. Wilson, J. Horacek, D. King, K. Flinders, I. R. Merrigan, M. Ghate, R. Michling, F. Saint-Laurent, G. Kocsis, D. Van Eester, C. Young, R. O. Dendy, A. Meakins, N. Pace, C. L. Hunter, D. Alegre, S. Foster, V. Riccardo, M. Bulman, C. Jeong, Marek Szawlowski, B. D. Whitehead, Vasily Kiptily, James Harrison, Hiroshi Tojo, G. T. A. Huijsmans, J. W. Coenen, X. Litaudon, Justin Williams, C. Hidalgo, S. Lesnoj, I.E. Day, A. W. Morris, R. Mooney, Yann Corre, S. Brezinsek, B. Gonçalves, M. Kresina, D. Coombs, F. Köchl, J. L. Gardarein, W. Davis, Aqsa Shabbir, Kanti M. Aggarwal, L. Colas, A. B. Kukushkin, Seppo Sipilä, Elisabeth Rachlew, Leena Aho-Mantila, O. G. Pompilian, E. Viezzer, Shane Cooper, Fabio Villone, P. Blanchard, Patrick Tamain, P. Camp, T. Szabolics, C. Luna, Kalle Heinola, H. G. Esser, V. Bobkov, James Buchanan, Andrew West, Hajime Urano, Roberta Lima Gomes, J.P. Coad, Th. Pütterich, A. Sinha, S. Hollis, R. D. Wood, G. D. Ewart, F. S. Griph, T. Kobuchi, X. Lefebvre, S. Warder, A.J. Thornton, S. Peschanyi, B. Graham, Giuseppe Telesca, M. Kempenaars, J. Bernardo, M. Hughes, Eva Belonohy, S. Schmuck, Kai Nordlund, T. J. Smith, P. Hertout, K. D. Lawson, M. Brix, Matthew Sibbald, Grégoire Hornung, C. Tame, Matthew Carr, S. Wray, P. T. Doyle, A. Somers, Giuseppe Chitarin, D. C. Campling, Mitul Abhangi, I. Jepu, David A. Wood, J. Miettunen, A. Sopplesa, Raffaele Fresa, S. Saarelma, M. Bacharis, J. Pozzi, P. Vallejos Olivares, Teddy Craciunescu, Raffaele Albanese, S. Knipe, Jason P. Byrne, A. C. C. Sips, S. Hazel, V. Kazantzidis, G. Stankūnas, A. Kundu, J. Mailloux, C. Guerard, Pramit Dutta, J. E. Boom, Eduardo Alves, P. Grazier, Saskia Mordijck, V.S. Neverov, Kazuo Hoshino, A. P. Vadgama, P. D. Brennan, P. Innocente, Piergiorgio Sonato, M. Irishkin, M. Berry, D. W. Robson, Dieter Leichtle, Fabio Pisano, P. McCullen, T. M. Huddleston, Kensaku Kamiya, D. Pacella, Tommy Ahlgren, A. Kirschner, B. Magesh, A. Ash, J. Mlynář, C. Castaldo, C. Marchetto, D. L. Hillis, M. Incelli, B. Viola, R. J. Robins, E. Andersson Sundén, G. Ramogida, Matthew Reinke, Gerd Meisl, Yannis Kominis, R. Proudfoot, C. Noble, N. J. Conway, V. P. Lo Schiavo, Jorge Luis Rodriguez, Hugo Bufferand, C. H. A. Hogben, B. Evans, R. Sartori, H. Greuner, M. G. Dunne, K. Schöpf, M. I. K. Santala, E. Giovannozzi, A. E. Shevelev, C. Gil, P. Boulting, P. Sagar, A.E. Shumack, P. A. Coates, C. Ayres, R. Prakash, C. Giroud, M. Parsons, J. C. Giacalone, S. Meshchaninov, A. Peackoc, G. De Temmerman, A.C.A. Figueiredo, D. Gallart, P. Santa, Sergey Popovichev, Ivan Lupelli, M. Valovic, Thomas Johnson, Y. Martynova, M. Rack, Olivier Sauter, J. Garcia, P. Siren, I. Balboa, S. Lee, Hans Nordman, R. Roccella, M. Faitsch, Julien Hillairet, Patrick J. McCarthy, C. Reux, Irena Ivanova-Stanik, V. Coccorese, Ye. O. Kazakov, R. El-Jorf, C. Hamlyn-Harris, Matthias Weiszflog, C. F. Maggi, Panagiotis Tolias, N. C. Hawkes, E. Clark, Bruno Santos, B. Sieglin, R. Rodionov, Roch Kwiatkowski, P. Denner, C. Woodley, Hugh Summers, Francesco Pizzo, G. Pucella, D. Croft, F. Di Maio, M. Tomes, D. Molina, A. Fernades, L. Amicucci, Marco Cecconello, A. Bisoffi, Z. Ul-Abidin, J. Wilkinson, H. Maier, S. Rowe, M. Beckers, P.J. Knight, E. Pajuste, Choong-Seock Chang, K. Deakin, M. Enachescu, A. Cobalt, D. Tskhakaya Jun, Michela Gelfusa, Rémy Nouailletas, R. Ragona, N. Bonanomi, D. A. Homfray, K. Riddle, Yann Camenen, J. D. Thomas, R.P. Doerner, Timothy P. Robinson, Y. Miyoshi, Ph. Jacquet, H. T. Lambertz, D. Pulley, A. Bécoulet, E. Tholerus, O. Bogar, M. Peterka, R. Crowe, C. Sommariva, A. R. Talbot, N. K. Butler, N. Reid, R. Zagórski, Gerald Pintsuk, Juri Romazanov, Andre Neto, G. L. Ravera, Paolo Arena, A. Manning, F. Durodié, Maryna Chernyshova, D. Karkinsky, Štefan Matejčík, J. P. Thomas, A. Wilson, L. Joita, R. Naish, P. Strand, M. Balden, M. Kaufman, T. Powell, V. Schmidt, D. Barnes, José Vicente, S. Doswon, Daniel F. Valcarcel, Claudia Corradino, R. Warren, Annette M. Hynes, J. D. Strachan, A. M. Messiaen, M. Kovari, O. Omolayo, D. M. Witts, R. C. Felton, C. Fleming, C. A. Marren, Patrick Maget, J. Galdon-Quiroga, H. R. Koslowski, Bruce Lipschultz, Ana Elisa Bauer de Camargo Silva, J. Waterhouse, R. J. Dumont, M. Schneider, Sara Moradi, K. J. Nicholls, M. Beldishevski, Benedikt Geiger, A. Jardin, A. Ekedahl, A. Lyssoivan, C. Waldon, Davide Galassi, F. Jaulmes, A. Kirk, Yannick Marandet, F. Hasenbeck, Gabor Szepesi, R. C. Pereira, J. Juul Rasmussen, Nobuyuki Aiba, Michelle E. Walker, Gábor Cseh, Scott W. Mosher, R. Bastow, A. Di Siena, E. Lazzaro, M. Curuia, C. D. Challis, Z. Ghani, J. Deane, João M. C. Sousa, Henrik Sjöstrand, T. O'Gorman, H. R. Wilson, P. Devynck, M. Price, C. A. Thompson, Daniele Marocco, A. Cullen, M. Clark, M. Lennholm, D. Carralero, N. Balshaw, Roland Sabot, I. Stepanov, N. Petrella, Filippo Sartori, L. W. Packer, P. Thomas, M. Lungu, A. V. Krasilnikov, R. Young, Jonathan Graves, J. C. Hillesheim, Mǎdǎlina Vlad, Duccio Testa, Pierre Dumortier, Paulo Carvalho, M. Gosk, Yong-Su Na, M. Buckley, Carlos A. Silva, V. Fuchs, K. Vasava, P. A. Tigwell, B. Wakeling, M. Medland, M. Bellinger, K. Gal, Petter Ström, E. Veshchev, F. Nabais, A. Wynn, L. Lauro Taroni, B. Beckett, L. Gil, M. Towndrow, Brian Grierson, Harry M. Meyer, V. Philipps, A. de Castro, D. Kinna, D. Conka, Göran Ericsson, L. Piron, J. Hawkins, D. Cooper, Kenneth Hammond, V.V. Parail, Cristian Ruset, G.J. van Rooij, M. N. A. Beurskens, N. Fawlk, G. Evison, M. Van De Mortel, N. Marcenko, B. Slade, Th. Franke, Simone Peruzzo, N. den Harder, D. Baião, A. Martin de Aguilera, Frederic Imbeaux, Carlo Sozzi, J.L. de Pablos, J. Svensson, A. Withycombe, Ane Lasa, H. Sheikh, V.A. Yavorskij, Nick Walkden, E. Lerche, C. S. Gibson, Roberto Zanino, Y. Peysson, David Hatch, B. Bazylev, E. de la Cal, S. Hacquin, T. D. V. Haupt, S. A. Silburn, T.T.C. Jones, Maria Teresa Porfiri, Walid Helou, S. E. Sharapov, M. Zerbini, Ken W Bell, Marco Marinelli, Kyriakos Hizanidis, J. M. Fontdecaba, N. Teplova, K. K. Kirov, S. Vartanian, W. W. Pires de Sa, T. C. Hender, J. K. Blackburn, I. Monakhov, H. Patten, P. A. Simmons, Y. Austin, J. Regana, Stefano Coda, Amanda J. Page, D. Fuller, António J.N. Batista, A. Horton, P. Heesterman, S. Cramp, J. Hobirk, F. Clairet, A. Burckhart, M. Allinson, Larry R. Baylor, W. Leysen, D. B. Gin, P. Nielsen, A. Kantor, Yueqiang Liu, A.V. Stephen, Jose Ramon Martin-Solis, P. Mantica, B. C. Regan, Aleksander Drenik, A. Lukin, L. Thorne, G. Nemtsev, J. Denis, M. E. Graham, D. Rigamonti, W. Van Renterghem, M. Tardocchi, M. Koubiti, A. Malaquias, M. Tsalas, A. Cufar, Giuseppe Prestopino, D. Kogut, N. Pomaro, J. Keep, Jochen Linke, Shimpei Futatani, Boris Breizman, A. Sirinelli, M. Chandler, M. Fortune, F. Degli Agostini, I. Jenkins, T. Spelzini, G. Calabrò, O. N. Kent, A. Lunniss, Etienne Hodille, Z. Vizvary, Volker Naulin, T. Eich, F. Mink, A. Alkseev, P. W. Haydon, Massimo Angelone, Norberto Catarino, J. Lapins, Roberto Pasqualotto, R. Lawless, T. Schlummer, F. Bonelli, M. Wischmeier, Stéphane Devaux, G. Saibene, Dirk Reiser, Y. R. Martin, H. Bergsåker, Jon Godwin, Alessia Santucci, C. Lane, Justyna Grzonka, Ph. Mertens, Claudio Verona, David Moulton, E. Delabie, Anna Salmi, P. G. Smith, T. Bolzonella, Silvio Ceccuzzi, Ulrich Fischer, G. Liu, M. A. Henderson, M. Marinucci, T. Suzuki, Jakub Bielecki, João Figueiredo, M. Afzal, J. Cane, Robert Hager, Luciano Bertalot, M. Firdaouss, G. Tvalashvili, D. Hepple, D. Esteve, M. De Bock, Y. Baranov, R. D'Inca, G. De Tommasi, Ch. Linsmeier, T. Nicolas, I. J. Pearson, P. Finburg, Ireneusz Książek, S. Talebzadeh, A. Czarnecka, A. Botrugno, M. Gethins, Bohdan Bieg, R. Baughan, I. Borodkina, B. Kos, A. Muraro, T. Vasilopoulou, G. Hermon, S.J. Wukitch, Jari Likonen, D. P. Coster, Guglielmo Rubinacci, I. H. Coffey, Justine M. Kent, S. E. Dorling, J. Dankowski, Geert Verdoolaege, Daisuke Nishijima, R. Clarkson, E. R. Solano, M. Stephen, A. Lescinskis, P. Staniec, Karl Schmid, M. Mayer, Peter Lang, T. Franklin, M.I. Williams, C. G. Elsmore, F. Maviglia, C. Di Troia, C. Penot, A. Zarins, Pierre Manas, D. F. Gear, Yu Gao, Philipp Drews, E. Letellier, A. S. Thompson, L. Forsythe, I. Zychor, E. Khilkevich, A. Manzanares, T. Nakano, Paulo Rodrigues, J. Edmond, Sebastián Dormido-Canto, R. Dux, C. Appelbee, L. Moser, Angelo Cenedese, D. Fagan, N. Richardson, Giuseppe Gorini, V. Rohde, R. Paprok, João P. S. Bizarro, P. Aleynikov, M. Sertoli, Ł. Świderski, Simone Palazzo, O. W. Davies, D. Douai, N. Macdonald, M. Baruzzo, J. López-Razola, M. Lungaroni, D. Clatworthy, R. Bravanec, J. Lovell, Ambrogio Fasoli, S.-P. Pehkonen, M. E. Puiatti, P. Papp, G. Bodnar, V. Aslanyan, A. Weckmann, K. A. Taylor, R. Henriques, I. T. Chapman, Ewa Pawelec, Miles M. Turner, Steven J. Meitner, M. Bernert, Ph. Maquet, R. C. Meadows, A. Shaw, N. Vianello, L. Barrera Orte, Tomas Markovic, A. Fil, A. S. Couchman, Inessa Bolshakova, J. Fyvie, Konstantina Mergia, J. Gallagher, R.V. Budny, Frank Leipold, C. J. Rapson, R. C. Lobel, Gennady V. Miloshevsky, K.-D. Zastrow, Ph. Duckworth, Gianluca Rubino, G. Withenshaw, S. Maruyama, S. P. Hallworth Cook, M. Newman, Jérôme Bucalossi, P. Drewelow, Nuno Cruz, D. Iglesias, I. Nedzelski, T. Donne, P. Leichuer, R. Cesario, M. D. J. Bright, T. Boyce, N. Imazawa, Per Petersson, R. King, A. Loving, L. Garzotti, Jorge Ferreira, G. Corrigan, D. Sandiford, B. Tal, P. Puglia, Daniel Tegnered, J. Karhunen, James S. Wright, Tom Wauters, J. McKehon, K. Rathod, Olivier Février, Alessandro Formisano, Petra Bilkova, M. Groth, Ricardo Magnus Osorio Galvao, F. Medina, S. Collins, H. J. Boyer, Elena Bruno, Horacio Fernandes, M. J. Stead, R. Paccagnella, J. Kaniewski, Ion E. Stamatelatos, F. Causa, M. F. F. Nave, A. Patel, D. C. McDonald, L. Moreira, Mariano Ruiz, K. Dylst, Raymond A. Shaw, A. Brett, Jane Johnston, P. P. Pereira Puglia, J. Ongena, N. A. Benterman, V. N. Amosov, Christian Grisolia, J. Simpson, C. Perez von Thun, Jan Weiland, P. Tonner, F. Belli, T. Odupitan, T. Dittmar, Edmund Highcock, Taina Kurki-Suonio, I. Uytdenhouwen, Estelle Gauthier, M. Oberkofler, B. Alper, Iris D. Young, S. Soare, Yuji Hatano, D. Reece, D. Borodin, M. Moneti, W. Yanling, S. Mianowski, K. Fenton, Stephen J. Bailey, R. Coelho, Sandra C. Chapman, E. Łaszyńska, A. R. Field, F.J. Martínez, Anders Nielsen, M. Smithies, M. J. Mantsinen, A. J. Capel, N. D. Smith, A. Pires dos Reis, M.-L. Mayoral, T. Loarer, P. Carman, N. Grazier, S. Breton, J. M. A. Bradshaw, Alexandre C. Pereira, Fulvio Auriemma, Fulvio Militello, Barbara Cannas, D. Ulyatt, A. Kappatou, P. Blatchford, R. Scannell, B. I. Oswuigwe, Darren Price, Robert E. Grove, D. Guard, M. Leyland, G. Stubbs, J. W. Banks, V.V. Plyusnin, M. S. J. Rainford, Andrea Murari, Sanjeev Ranjan, A. Huber, V. Krasilnikov, C. Bower, H. Leggate, S. Abduallev, P. Tsavalas, G. Giruzzi, K. Maczewa, Colin Roach, P. Beaumont, R. P. Johnson, Anna Widdowson, L. A. Kogan, A. Baron Wiechec, Markus Airila, J. Morris, Robert Skilton, Katarzyna Słabkowska, M. A. Barnard, Jean-Paul Booth, Alessandro Pau, R. Price, R. Bament, M. Tokitani, I. Turner, T. Vu, P. Huynh, S.N. Gerasimov, D. I. Refy, Yunfeng Liang, Anders Hjalmarsson, S. Dalley, Roberto Ambrosino, O. Hemming, T. R. Blackman, Y. Zhou, Vasile Zoita, P. Vincenzi, A. Loarte, C. Rayner, Martin Imrisek, M. Tripsky, C. Mazzotta, A. Uccello, V. Basiuk, Lide Yao, V. Goloborod'ko, S. Villari, B. P. Duval, N. Bulmer, W. Zhang, L. Hackett, D. N. Borba, M. Halitovs, Mario Pillon, H. Arnichand, Alberto Alfier, A. Lawson, A. Masiello, T. Makkonen, A. Vitins, D. Rendell, D. Paton, L. Avotina, A. Krivska, M. Maslov, Richard Verhoeven, Marc Goniche, A. Broslawski, Marica Rebai, E. de la Luna, E. Militello-Asp, V. Cocilovo, L. Carraro, Michael Fitzgerald, Bernardo B. Carvalho, D. Young, C.G. Lowry, F. J. Casson, L.-G. Eriksson, T. M. Biewer, B. Esposito, F.G. Rimini, J. Fessey, G. Kaveney, S. Hall, Robin Barnsley, Michael Lehnen, N. Bekris, L. F. Ruchko, P. Batistoni, E. Alessi, M. G. O'Mullane, D. S. Darrow, C. N. Grundy, N. Hayter, Ivo S. Carvalho, M. Brombin, Enrico Zilli, M. Valisa, M. Reich, S. Panja, C. Gurl, Charles Harrington, Emmanuele Peluso, M. Porton, Michael Walsh, D. Falie, A. Reed, Jacob Eriksson, P. Macheta, J. M. Faustin, S. Cortes, S. Fietz, P. Piovesan, D. Ciric, Eric Nardon, R. Neu, Bojiang Ding, G.A. Rattá, F. Reimold, R. Craven, M. Cox, J. Orszagh, Aaro Järvinen, A. S. Thrysøe, A. Shepherd, I. Ďuran, Andrew M. Edwards, A. Kinch, J. Beal, M. Gherendi, Martin Köppen, D. Samaddar, P. Dalgliesh, I. Vinyar, J. Jansons, Nengchao Wang, J. Wu, John Wright, S. Wiesen, C. King, Alessandra Fanni, L. D. Horton, N. Krawczyk, J. Buch, K. Krieger, Václav Petržílka, D. Schworer, C. Watts, T. Keenan, Andrea Malizia, B. D. Stevens, P. Trimble, C. P. Lungu, V. Prajapati, Marco Ariola, C. Wellstood, S. Gilligan, Mirko Salewski, Michael Barnes, Florin Spineanu, H. Doerk, C. Kennedy, S. Jachmich, J. Caumont, Isabel L. Nunes, A. Petre, A. Kallenbach, M. Anghel, B. Lomanowski, Marco Riva, M. Romanelli, G. De Masi, T. May-Smith, T. Xu, A. Goussarov, S. Romanelli, M. Okabayashi, A. Baker, R. Salmon, T. Tala, Nicolas Fedorczak, S. Lanthaler, Giuliana Sias, J. Risner, Clarisse Bourdelle, M. E. Manso, Fabio Moro, R. Lucock, M. Bassan, M. T. Ogawa, V. Thompson, A. M. Whitehead, S. D. A. Reyes Cortes, Igor Bykov, Gennady Sergienko, E. Stefanikova, Mattia Frasca, H. Dabirikhah, Lorenzo Frassinetti, N. Dzysiuk, D. L. Keeling, Juan Manuel López, M. Turnyanskiy, Daniel Dunai, David Taylor, Arturo Buscarino, Carolina Björkas, A. Baciero, S. Meigh, M. Garcia-Munoz, Massimiliano Mattei, M. Hill, Gwyndaf Evans, S. Minucci, Xiang Gao, A. V. Chankin, Francesco Romanelli, A. Lahtinen, L. Giacomelli, A. Owen, Jesús Vega, Jonathan Citrin, Antti Hakola, Petr Vondracek, Sehyun Kwak, P. Abreu, L. Meneses, S. S. Medley, G. Gervasini, Surya K. Pathak, Kristel Crombé, M. Cleverly, H.S. Kim, C. Stan-Sion, Nobuyuki Asakura, E. Wang, A. Cardinali, L. Fazendeiro, R. Cavazzana, P. J. Lomas, J. Hawes, G. Stables, Silvia Spagnolo, S. P. Hotchin, N. R. Green, Slawomir Jednorog, Ewa Kowalska-Strzęciwilk, A. Martin, Linwei Li, Rajnikant Makwana, Richard Goulding, I. Voitsekhovitch, M. Bowden, I. Kodeli, Peter Hawkins, S. S. Henderson, Ondrej Ficker, Carl Hellesen, D. Yadikin, Fabio Subba, Luka Snoj, Anthony Laing, N. Ben Ayed, Mario Cavinato, M. Goodliffe, C. Clements, D. Kenny, Axel Klix, S. Gee, R. J. E. Smith, P. de Vries, L. Fittill, Min-Gu Yoo, S. Menmuir, K. Cave-Ayland, S. Potzel, D. Grist, K. Blackman, S. A. Robinson, Rodney Walker, David Pfefferlé, W. Broeckx, D. Harting, S. G. J. Tyrrell, F. Binda, L. Horvath, Davide Flammini, P. V. Edappala, Raul Moreno, G. M. D. Hogeweij, P. Card, A. Hagar, Ion Tiseanu, Rita Lorenzini, L. Appel, Jet Contributors, J. Flanagan, C. Paz Soldan, U. Samm, Otto Asunta, F. Eriksson, C. Taliercio, F. S. Zaitsev, G. F. Matthews, Tuomas Koskela, P. J. Howarth, D. Terranova, M. Skiba, Amanda Hubbard, R. Otin, K. G. McClements, M. Park, R. McKean, C. Christopher Klepper, I. Karnowska, Peter J. Pool, G. Ciraolo, Jennifer M. Lehmann, Institut de Mécanique des Fluides et des Solides (IMFS), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), VTT Technical Research Centre of Finland (VTT), Association EURATOM-TEKES, Association EURATOM-TEKES, Helsinki University of Technology, Finland, Assoc. Euratom-ENEA-CREATE, Universita Mediterranea of Reggio Calabria [Reggio Calabria], EURATOM/CCFE Fusion Association, Culham Science Centre [Abingdon], Instituto Tecnológico e Nuclear (ITN), ITN, University of Naples Federico II = Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Università degli studi di Catania = University of Catania (Unict), National Institute for Fusion Science (NIFS), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), ITER organization (ITER), Karlsruhe Institute of Technology (KIT), Institut de Chimie des Substances Naturelles (ICSN), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU), Institut d'ophtalmologie Hédi-Rais de Tunis, Service Cardiologie [CHU Toulouse], Pôle Cardiovasculaire et Métabolique [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), H. Niewodniczanski Institute of Nuclear Physics, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique (LHEEA), École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Euratom/UKAEA Fusion Assoc., Magnetic Sensor laboratory [Lviv] (MSL), National Polytechnic University of Lviv (LPNU), The National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) [Moscow, Russia], Institute of Energy and Climate Research - Plasma Physics (IEK-4), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association-Helmholtz-Gemeinschaft = Helmholtz Association, Institute for Problems of Material Science, National Academy of Sciences of Ukraine (NASU), Institute of Plasma Physics [Praha], Czech Academy of Sciences [Prague] (CAS), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Département Méthodes et Modèles Mathématiques pour l'Industrie (3MI-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Centre G2I, Department of Hydraulics, Transportations and Roads, Laboratoire de microbiologie et génétique moléculaires - UMR5100 (LMGM), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Metallurgical & Materials Engineering Department (MS 388), University of Nevada [Reno], AUTRES, Institute of Plasma Physics and Laser Microfusion [Warsaw] (IPPLM), Culham Centre for Fusion Energy (CCFE), Astrophysics Research Centre [Belfast] (ARC), Queen's University [Belfast] (QUB), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), School of Mathematics [Cardiff], Cardiff University, Associazone EURATOM ENEA sulla Fusione, EURATOM, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS (LPP ERM KMS), Ecole Royale Militaire / Koninklijke Militaire School (ERM KMS), Paul-Drude-Institut für Festkörperelektronik (PDI), Institut für Physik, University of Basel (Unibas), Dutch Institute for Fundamental Energy Research [Nieuwegein] (DIFFER), Dutch Institute for Fundamental Energy Research [Eindhoven] (DIFFER), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), CEA Cadarache, Dipartimento di Energia [Milano], Politecnico di Milano [Milan] (POLIMI), Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Lille économie management - UMR 9221 (LEM), Université d'Artois (UA)-Université catholique de Lille (UCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Euratom research and training programme 633053, Institut de Mécanique des Fluides et des Solides ( IMFS ), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique ( CNRS ), VTT Technical Research Centre of Finland ( VTT ), Univ. Mediterranea RC, Culham Science Centre, Instituto Tecnológico e Nuclear ( ITN ), Università degli studi di Napoli Federico II, Max-Planck-Institut für Plasmaphysik [Garching] ( IPP ), Università degli studi di Catania [Catania], National Institute for Fusion Science, National Institutes of Natural Sciences, Laboratoire de Physique Nucléaire et de Hautes Énergies ( LPNHE ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), School of Geography, Earth and Environmental Sciences, ITER Organization, Karlsruhe Institute of Technology ( KIT ), Laboratoire de Nanotechnologie et d'Instrumentation Optique ( LNIO ), Institut Charles Delaunay ( ICD ), Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Technologie de Troyes ( UTT ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de Chimie des Substances Naturelles ( ICSN ), Centre National de la Recherche Scientifique ( CNRS ), Institut de Recherche sur la Fusion par confinement Magnétique ( IRFM ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), European Fusion Development Agreement [Garching bei München] ( EFDA-CSU ), Service de cardiologie [Toulouse], Université Paul Sabatier - Toulouse 3 ( UPS ) -CHU Toulouse [Toulouse]-Hôpital de Rangueil, ITER [St. Paul-lez-Durance], ITER, Polska Akademia Nauk ( PAN ), Laboratoire de recherche en Hydrodynamique, Énergétique et Environnement Atmosphérique ( LHEEA ), École Centrale de Nantes ( ECN ) -Centre National de la Recherche Scientifique ( CNRS ), MSL, Lviv Polytechnic National University ( MSL ), Lviv Polytechnic National University, Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Institute of Energy and Climate Research - Plasma Physics ( IEK-4 ), Forschungszentrum Jülich GmbH, National Academy of Sciences of Ukraine ( NASU ), Lille - Economie et Management ( LEM ), Université catholique de Lille ( UCL ) -Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Czech Academy of Sciences [Prague] ( ASCR ), Physique des interactions ioniques et moléculaires ( PIIM ), Aix Marseille Université ( AMU ) -Centre National de la Recherche Scientifique ( CNRS ), Département Méthodes et Modèles Mathématiques pour l'Industrie ( 3MI-ENSMSE ), École des Mines de Saint-Étienne ( Mines Saint-Étienne MSE ), Institut Mines-Télécom [Paris]-Institut Mines-Télécom [Paris]-Centre G2I, Laboratoire de microbiologie et génétique moléculaires ( LMGM ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ), University of Nevada, Institute of Plasma Physics and Laser Microfusion [Warsaw] ( IPPLM ), UCL Department of Space and Climate Physics, University College of London [London] ( UCL ), Astrophysics Research Centre [Belfast] ( ARC ), Queen's University [Belfast] ( QUB ), Laboratoire d'Electronique et des Technologies de l'Information ( CEA-LETI ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Grenoble Alpes [Saint Martin d'Hères], Cardiff School of Mathematics, Laboratoire de physique des plasmas de l'ERM, Laboratorium voor plasmafysica van de KMS ( LPP ERM KMS ), Ecole Royale Militaire / Koninklijke Militaire School ( ERM KMS ), Paul-Drude-Institut für Festkörperelektronik, University of Basel ( Unibas ), Dutch Institute for Fundamental Energy Research [Nieuwegein] ( DIFFER ), Dutch Institute for Fundamental Energy Research [Eindhoven] ( DIFFER ), Institut Jean Lamour ( IJL ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Lorraine ( UL ), Dipartimento di Energia, Politecnico di Milano [Milan], Max Planck Institute for Plasma Physics, Laboratoire de Mécanique, Modélisation et Procédés Propres ( M2P2 ), Aix Marseille Université ( AMU ) -Ecole Centrale de Marseille ( ECM ) -Centre National de la Recherche Scientifique ( CNRS ), Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. ANT - Advanced Nuclear Technologies Research Group, JET Contributors, Litaudon, X, Abduallev, S, Abhangi, M, Abreu, P, Afzal, M, Aggarwal, K, Ahlgren, T, Ahn, J, Aho Mantila, L, Aiba, N, Airila, M, Albanese, R, Aldred, V, Alegre, D, Alessi, E, Aleynikov, P, Alfier, A, Alkseev, A, Allinson, M, Alper, B, Alves, E, Ambrosino, G, Ambrosino, R, Amicucci, L, Amosov, V, Andersson Sundén, E, Angelone, M, Anghel, M, Angioni, C, Appel, L, Appelbee, C, Arena, P, Ariola, M, Arnichand, H, Arshad, S, Ash, A, Ashikawa, N, Aslanyan, V, Asunta, O, Auriemma, F, Austin, Y, Avotina, L, Axton, M, Ayres, C, Bacharis, M, Baciero, A, Baiã¡o, D, Bailey, S, Baker, A, Balboa, I, Balden, M, Balshaw, N, Bament, R, Banks, J, Baranov, Y, Barnard, M, Barnes, D, Barnes, M, Barnsley, R, Baron Wiechec, A, Barrera Orte, L, Baruzzo, M, Basiuk, V, Bassan, M, Bastow, R, Batista, A, Batistoni, P, Baughan, R, Bauvir, B, Baylor, L, Bazylev, B, Beal, J, Beaumont, P, Beckers, M, Beckett, B, Becoulet, A, Bekris, N, Beldishevski, M, Bell, K, Belli, F, Bellinger, M, Belonohy, Ã, Ben Ayed, N, Benterman, N, Bergsã¥ker, H, Bernardo, J, Bernert, M, Berry, M, Bertalot, L, Besliu, C, Beurskens, M, Bieg, B, Bielecki, J, Biewer, T, Bigi, M, Bãlkovã¡, P, Binda, F, Bisoffi, A, Bizarro, J, Bjã¶rkas, C, Blackburn, J, Blackman, K, Blackman, T, Blanchard, P, Blatchford, P, Bobkov, V, Boboc, A, Bodnã¡r, G, Bogar, O, Bolshakova, I, Bolzonella, T, Bonanomi, N, Bonelli, F, Boom, J, Booth, J, Borba, D, Borodin, D, Borodkina, I, Botrugno, A, Bottereau, C, Boulting, P, Bourdelle, C, Bowden, M, Bower, C, Bowman, C, Boyce, T, Boyd, C, Boyer, H, Bradshaw, J, Braic, V, Bravanec, R, Breizman, B, Bremond, S, Brennan, P, Breton, S, Brett, A, Brezinsek, S, Bright, M, Brix, M, Broeckx, W, Brombin, M, Broså‚awski, A, Brown, D, Brown, M, Bruno, E, Bucalossi, J, Buch, J, Buchanan, J, Buckley, M, Budny, R, Bufferand, H, Bulman, M, Bulmer, N, Bunting, P, Buratti, P, Burckhart, A, Buscarino, A, Busse, A, Butler, N, Bykov, I, Byrne, J, Cahyna, P, Calabrã², G, Calvo, I, Camenen, Y, Camp, P, Campling, D, Cane, J, Cannas, B, Capel, A, Card, P, Cardinali, A, Carman, P, Carr, M, Carralero, D, Carraro, L, Carvalho, B, Carvalho, I, Carvalho, P, Casson, F, Castaldo, C, Catarino, N, Caumont, J, Causa, F, Cavazzana, R, Cave Ayland, K, Cavinato, M, Cecconello, M, Ceccuzzi, S, Cecil, E, Cenedese, A, Cesario, R, Challis, C, Chandler, M, Chandra, D, Chang, C, Chankin, A, Chapman, I, Chapman, S, Chernyshova, M, Chitarin, G, Ciraolo, G, Ciric, D, Citrin, J, Clairet, F, Clark, E, Clark, M, Clarkson, R, Clatworthy, D, Clements, C, Cleverly, M, Coad, J, Coates, P, Cobalt, A, Coccorese, V, Cocilovo, V, Coda, S, Coelho, R, Coenen, J, Coffey, I, Colas, L, Collins, S, Conka, D, Conroy, S, Conway, N, Coombs, D, Cooper, D, Cooper, S, Corradino, C, Corre, Y, Corrigan, G, Cortes, S, Coster, D, Couchman, A, Cox, M, Craciunescu, T, Cramp, S, Craven, R, Crisanti, F, Croci, G, Croft, D, Crombã©, K, Crowe, R, Cruz, N, Cseh, G, Cufar, A, Cullen, A, Curuia, M, Czarnecka, A, Dabirikhah, H, Dalgliesh, P, Dalley, S, Dankowski, J, Darrow, D, Davies, O, Davis, W, Day, C, Day, I, De Bock, M, De Castro, A, De La Cal, E, De La Luna, E, De Masi, G, De Pablos, J, De Temmerman, G, De Tommasi, G, De Vries, P, Deakin, K, Deane, J, Degli Agostini, F, Dejarnac, R, Delabie, E, Den Harder, N, Dendy, R, Denis, J, Denner, P, Devaux, S, Devynck, P, Di Maio, F, Di Siena, A, Di Troia, C, Dinca, P, D'Inca, R, Ding, B, Dittmar, T, Doerk, H, Doerner, R, Donnã©, T, Dorling, S, Dormido Canto, S, Doswon, S, Douai, D, Doyle, P, Drenik, A, Drewelow, P, Drews, P, Duckworth, P, Dumont, R, Dumortier, P, Dunai, D, Dunne, M, Äžuran, I, Durodiã©, F, Dutta, P, Duval, B, Dux, R, Dylst, K, Dzysiuk, N, Edappala, P, Edmond, J, Edwards, A, Edwards, J, Eich, T, Ekedahl, A, El Jorf, R, Elsmore, C, Enachescu, M, Ericsson, G, Eriksson, F, Eriksson, J, Eriksson, L, Esposito, B, Esquembri, S, Esser, H, Esteve, D, Evans, B, Evans, G, Evison, G, Ewart, G, Fagan, D, Faitsch, M, Falie, D, Fanni, A, Fasoli, A, Faustin, J, Fawlk, N, Fazendeiro, L, Fedorczak, N, Felton, R, Fenton, K, Fernades, A, Fernandes, H, Ferreira, J, Fessey, J, Fã©vrier, O, Ficker, O, Field, A, Fietz, S, Figueiredo, A, Figueiredo, J, Fil, A, Finburg, P, Firdaouss, M, Fischer, U, Fittill, L, Fitzgerald, M, Flammini, D, Flanagan, J, Fleming, C, Flinders, K, Fonnesu, N, Fontdecaba, J, Formisano, A, Forsythe, L, Fortuna, L, Fortuna Zalesna, E, Fortune, M, Foster, S, Franke, T, Franklin, T, Frasca, M, Frassinetti, L, Freisinger, M, Fresa, R, Frigione, D, Fuchs, V, Fuller, D, Futatani, S, Fyvie, J, Gã¡l, K, Galassi, D, Gaå‚azka, K, Galdon Quiroga, J, Gallagher, J, Gallart, D, Galvã¡o, R, Gao, X, Gao, Y, Garcia, J, Garcia Carrasco, A, GarcÃa Muñoz, M, Gardarein, J, Garzotti, L, Gaudio, P, Gauthier, E, Gear, D, Gee, S, Geiger, B, Gelfusa, M, Gerasimov, S, Gervasini, G, Gethins, M, Ghani, Z, Ghate, M, Gherendi, M, Giacalone, J, Giacomelli, L, Gibson, C, Giegerich, T, Gil, C, Gil, L, Gilligan, S, Gin, D, Giovannozzi, E, Girardo, J, Giroud, C, Giruzzi, G, Glã¶ggler, S, Godwin, J, Goff, J, Gohil, P, Goloborod'Ko, V, Gomes, R, Goncalves, B, Goniche, M, Goodliffe, M, Goodyear, A, Gorini, G, Gosk, M, Goulding, R, Goussarov, A, Gowland, R, Graham, B, Graham, M, Graves, J, Grazier, N, Grazier, P, Green, N, Greuner, H, Grierson, B, Griph, F, Grisolia, C, Grist, D, Groth, M, Grove, R, Grundy, C, Grzonka, J, Guard, D, Guã©rard, C, Guillemaut, C, Guirlet, R, Gurl, C, Utoh, H, Hackett, L, Hacquin, S, Hagar, A, Hager, R, Hakola, A, Halitovs, M, Hall, S, Hallworth Cook, S, Hamlyn Harris, C, Hammond, K, Harrington, C, Harrison, J, Harting, D, Hasenbeck, F, Hatano, Y, Hatch, D, Haupt, T, Hawes, J, Hawkes, N, Hawkins, J, Hawkins, P, Haydon, P, Hayter, N, Hazel, S, Heesterman, P, Heinola, K, Hellesen, C, Hellsten, T, Helou, W, Hemming, O, Hender, T, Henderson, M, Henderson, S, Henriques, R, Hepple, D, Hermon, G, Hertout, P, Hidalgo, C, Highcock, E, Hill, M, Hillairet, J, Hillesheim, J, Hillis, D, Hizanidis, K, Hjalmarsson, A, Hobirk, J, Hodille, E, Hogben, C, Hogeweij, G, Hollingsworth, A, Hollis, S, Homfray, D, Horã¡ä ek, J, Hornung, G, Horton, A, Horton, L, Horvath, L, Hotchin, S, Hough, M, Howarth, P, Hubbard, A, Huber, A, Huber, V, Huddleston, T, Hughes, M, Huijsmans, G, Hunter, C, Huynh, P, Hynes, A, Iglesias, D, Imazawa, N, Imbeaux, F, Imrãå¡ek, M, Incelli, M, Innocente, P, Irishkin, M, Ivanova Stanik, I, Jachmich, S, Jacobsen, A, Jacquet, P, Jansons, J, Jardin, A, Jã¤rvinen, A, Jaulmes, F, Jednorã³g, S, Jenkins, I, Jeong, C, Jepu, I, Joffrin, E, Johnson, R, Johnson, T, Johnston, J, Joita, L, Jones, G, Jones, T, Hoshino, K, Kallenbach, A, Kamiya, K, Kaniewski, J, Kantor, A, Kappatou, A, Karhunen, J, Karkinsky, D, Karnowska, I, Kaufman, M, Kaveney, G, Kazakov, Y, Kazantzidis, V, Keeling, D, Keenan, T, Keep, J, Kempenaars, M, Kennedy, C, Kenny, D, Kent, J, Kent, O, Khilkevich, E, Kim, H, Kinch, A, King, C, King, D, King, R, Kinna, D, Kiptily, V, Kirk, A, Kirov, K, Kirschner, A, Kizane, G, Klepper, C, Klix, A, Knight, P, Knipe, S, Knott, S, Kobuchi, T, Kã¶chl, F, Kocsis, G, Kodeli, I, Kogan, L, Kogut, D, Koivuranta, S, Kominis, Y, Kã¶ppen, M, Kos, B, Koskela, T, Koslowski, H, Koubiti, M, Kovari, M, Kowalska StrzÈ©ciwilk, E, Krasilnikov, A, Krasilnikov, V, Krawczyk, N, Kresina, M, Krieger, K, Krivska, A, Kruezi, U, Ksiaå¼ek, I, Kukushkin, A, Kundu, A, Kurki Suonio, T, Kwak, S, Kwiatkowski, R, Kwon, O, Laguardia, L, Lahtinen, A, Laing, A, Lam, N, Lambertz, H, Lane, C, Lang, P, Lanthaler, S, Lapins, J, Lasa, A, Last, J, Å aszyå„ska, E, Lawless, R, Lawson, A, Lawson, K, Lazaros, A, Lazzaro, E, Leddy, J, Lee, S, Lefebvre, X, Leggate, H, Lehmann, J, Lehnen, M, Leichtle, D, Leichuer, P, Leipold, F, Lengar, I, Lennholm, M, Lerche, E, Lescinskis, A, Lesnoj, S, Letellier, E, Leyland, M, Leysen, W, Li, L, Liang, Y, Likonen, J, Linke, J, Linsmeier, C, Lipschultz, B, Liu, G, Liu, Y, Lo Schiavo, V, Loarer, T, Loarte, A, Lobel, R, Lomanowski, B, Lomas, P, Lã¶nnroth, J, Lã³pez, J, López Razola, J, Lorenzini, R, Losada, U, Lovell, J, Loving, A, Lowry, C, Luce, T, Lucock, R, Lukin, A, Luna, C, Lungaroni, M, Lungu, C, Lungu, M, Lunniss, A, Lupelli, I, Lyssoivan, A, Macdonald, N, Macheta, P, Maczewa, K, Magesh, B, Maget, P, Maggi, C, Maier, H, Mailloux, J, Makkonen, T, Makwana, R, Malaquias, A, Malizia, A, Manas, P, Manning, A, Manso, M, Mantica, P, Mantsinen, M, Manzanares, A, Maquet, P, Marandet, Y, Marcenko, N, Marchetto, C, Marchuk, O, Marinelli, M, Marinucci, M, Markoviä , T, Marocco, D, Marot, L, Marren, C, Marshal, R, Martin, A, Martin, Y, MartÃn De Aguilera, A, Martãnez, F, MartÃn SolÃs, J, Martynova, Y, Maruyama, S, Masiello, A, Maslov, M, Matejcik, S, Mattei, M, Matthews, G, Maviglia, F, Mayer, M, Mayoral, M, May Smith, T, Mazon, D, Mazzotta, C, Mcadams, R, Mccarthy, P, Mcclements, K, Mccormack, O, Mccullen, P, Mcdonald, D, Mcintosh, S, Mckean, R, Mckehon, J, Meadows, R, Meakins, A, Medina, F, Medland, M, Medley, S, Meigh, S, Meigs, A, Meisl, G, Meitner, S, Meneses, L, Menmuir, S, Mergia, K, Merrigan, I, Mertens, P, Meshchaninov, S, Messiaen, A, Meyer, H, Mianowski, S, Michling, R, Middleton Gear, D, Miettunen, J, Militello, F, Militello Asp, E, Miloshevsky, G, Mink, F, Minucci, S, Miyoshi, Y, Mlynã¡å™, J, Molina, D, Monakhov, I, Moneti, M, Mooney, R, Moradi, S, Mordijck, S, Moreira, L, Moreno, R, Moro, F, Morris, A, Morris, J, Moser, L, Mosher, S, Moulton, D, Murari, A, Muraro, A, Murphy, S, Asakura, N, Na, Y, Nabais, F, Naish, R, Nakano, T, Nardon, E, Naulin, V, Nave, M, Nedzelski, I, Nemtsev, G, Nespoli, F, Neto, A, Neu, R, Neverov, V, Newman, M, Nicholls, K, Nicolas, T, Nielsen, A, Nielsen, P, Nilsson, E, Nishijima, D, Noble, C, Nocente, M, Nodwell, D, Nordlund, K, Nordman, H, Nouailletas, R, Nunes, I, Oberkofler, M, Odupitan, T, Ogawa, M, O'Gorman, T, Okabayashi, M, Olney, R, Omolayo, O, O'Mullane, M, Ongena, J, Orsitto, F, Orszagh, J, Oswuigwe, B, Otin, R, Owen, A, Paccagnella, R, Pace, N, Pacella, D, Packer, L, Page, A, Pajuste, E, Palazzo, S, Pamela, S, Panja, S, Papp, P, Paprok, R, Parail, V, Park, M, Parra Diaz, F, Parsons, M, Pasqualotto, R, Patel, A, Pathak, S, Paton, D, Patten, H, Pau, A, Pawelec, E, Paz Soldan, C, Peackoc, A, Pearson, I, Pehkonen, S, Peluso, E, Penot, C, Pereira, A, Pereira, R, Pereira Puglia, P, Perez Von Thun, C, Peruzzo, S, Peschanyi, S, Peterka, M, Petersson, P, Petravich, G, Petre, A, Petrella, N, Petrå¾ilka, V, Peysson, Y, Pfefferlã©, D, Philipps, V, Pillon, M, Pintsuk, G, Piovesan, P, Pires Dos Reis, A, Piron, L, Pironti, A, Pisano, F, Pitts, R, Pizzo, F, Plyusnin, V, Pomaro, N, Pompilian, O, Pool, P, Popovichev, S, Porfiri, M, Porosnicu, C, Porton, M, Possnert, G, Potzel, S, Powell, T, Pozzi, J, Prajapati, V, Prakash, R, Prestopino, G, Price, D, Price, M, Price, R, Prior, P, Proudfoot, R, Pucella, G, Puglia, P, Puiatti, M, Pulley, D, Purahoo, K, Pã¼tterich, T, Rachlew, E, Rack, M, Ragona, R, Rainford, M, Rakha, A, Ramogida, G, Ranjan, S, Rapson, C, Rasmussen, J, Rathod, K, Rattã¡, G, Ratynskaia, S, Ravera, G, Rayner, C, Rebai, M, Reece, D, Reed, A, Rã©fy, D, Regan, B, Regaã±a, J, Reich, M, Reid, N, Reimold, F, Reinhart, M, Reinke, M, Reiser, D, Rendell, D, Reux, C, Reyes Cortes, S, Reynolds, S, Riccardo, V, Richardson, N, Riddle, K, Rigamonti, D, Rimini, F, Risner, J, Riva, M, Roach, C, Robins, R, Robinson, S, Robinson, T, Robson, D, Roccella, R, Rodionov, R, Rodrigues, P, Rodriguez, J, Rohde, V, Romanelli, F, Romanelli, M, Romanelli, S, Romazanov, J, Rowe, S, Rubel, M, Rubinacci, G, Rubino, G, Ruchko, L, Ruiz, M, Ruset, C, Rzadkiewicz, J, Saarelma, S, Sabot, R, Safi, E, Sagar, P, Saibene, G, Saint Laurent, F, Salewski, M, Salmi, A, Salmon, R, Salzedas, F, Samaddar, D, Samm, U, Sandiford, D, Santa, P, Santala, M, Santos, B, Santucci, A, Sartori, F, Sartori, R, Sauter, O, Scannell, R, Schlummer, T, Schmid, K, Schmidt, V, Schmuck, S, Schneider, M, Schã¶pf, K, Schwã¶rer, D, Scott, S, Sergienko, G, Sertoli, M, Shabbir, A, Sharapov, S, Shaw, A, Shaw, R, Sheikh, H, Shepherd, A, Shevelev, A, Shumack, A, Sias, G, Sibbald, M, Sieglin, B, Silburn, S, Silva, A, Silva, C, Simmons, P, Simpson, J, Simpson Hutchinson, J, Sinha, A, Sipilã¤, S, Sips, A, Sirã©n, P, Sirinelli, A, Sjã¶strand, H, Skiba, M, Skilton, R, Slabkowska, K, Slade, B, Smith, N, Smith, P, Smith, R, Smith, T, Smithies, M, Snoj, L, Soare, S, Solano, E, Somers, A, Sommariva, C, Sonato, P, Sopplesa, A, Sousa, J, Sozzi, C, Spagnolo, S, Spelzini, T, Spineanu, F, Stables, G, Stamatelatos, I, Stamp, M, Staniec, P, Stankå«nas, G, Stan Sion, C, Stead, M, Stefanikova, E, Stepanov, I, Stephen, A, Stephen, M, Stevens, A, Stevens, B, Strachan, J, Strand, P, Strauss, H, Strã¶m, P, Stubbs, G, Studholme, W, Subba, F, Summers, H, Svensson, J, Åšwiderski, Å, Szabolics, T, Szawlowski, M, Szepesi, G, Suzuki, T, Tã¡l, B, Tala, T, Talbot, A, Talebzadeh, S, Taliercio, C, Tamain, P, Tame, C, Tang, W, Tardocchi, M, Taroni, L, Taylor, D, Taylor, K, Tegnered, D, Telesca, G, Teplova, N, Terranova, D, Testa, D, Tholerus, E, Thomas, J, Thomas, P, Thompson, A, Thompson, C, Thompson, V, Thorne, L, Thornton, A, Thrysã¸e, A, Tigwell, P, Tipton, N, Tiseanu, I, Tojo, H, Tokitani, M, Tolias, P, Tomeå¡, M, Tonner, P, Towndrow, M, Trimble, P, Tripsky, M, Tsalas, M, Tsavalas, P, Tskhakaya Jun, D, Turner, I, Turner, M, Turnyanskiy, M, Tvalashvili, G, Tyrrell, S, Uccello, A, Ul Abidin, Z, Uljanovs, J, Ulyatt, D, Urano, H, Uytdenhouwen, I, Vadgama, A, Valcarcel, D, Valentinuzzi, M, Valisa, M, Vallejos Olivares, P, Valovic, M, Van De Mortel, M, Van Eester, D, Van Renterghem, W, Van Rooij, G, Varje, J, Varoutis, S, Vartanian, S, Vasava, K, Vasilopoulou, T, Vega, J, Verdoolaege, G, Verhoeven, R, Verona, C, Verona Rinati, G, Veshchev, E, Vianello, N, Vicente, J, Viezzer, E, Villari, S, Villone, F, Vincenzi, P, Vinyar, I, Viola, B, Vitins, A, Vizvary, Z, Vlad, M, Voitsekhovitch, I, Vondrã¡ä ek, P, Vora, N, Vu, T, Pires De Sa, W, Wakeling, B, Waldon, C, Walkden, N, Walker, M, Walker, R, Walsh, M, Wang, E, Wang, N, Warder, S, Warren, R, Waterhouse, J, Watkins, N, Watts, C, Wauters, T, Weckmann, A, Weiland, J, Weisen, H, Weiszflog, M, Wellstood, C, West, A, Wheatley, M, Whetham, S, Whitehead, A, Whitehead, B, Widdowson, A, Wiesen, S, Wilkinson, J, Williams, J, Williams, M, Wilson, A, Wilson, D, Wilson, H, Wilson, J, Wischmeier, M, Withenshaw, G, Withycombe, A, Witts, D, Wood, D, Wood, R, Woodley, C, Wray, S, Wright, J, Wu, J, Wukitch, S, Wynn, A, Xu, T, Yadikin, D, Yanling, W, Yao, L, Yavorskij, V, Yoo, M, Young, C, Young, D, Young, I, Young, R, Zacks, J, Zagorski, R, Zaitsev, F, Zanino, R, Zarins, A, Zastrow, K, Zerbini, M, Zhang, W, Zhou, Y, Zilli, E, Zoita, V, Zoletnik, S, Zychor, I, Materials Physics, Department of Physics, European Commission, Litaudon, X., Abduallev, S., Abhangi, M., Abreu, P., Afzal, M., Aggarwal, K. M., Ahlgren, T., Ahn, J. H., Aho-Mantila, L., Aiba, N., Airila, M., Albanese, R., Aldred, V., Alegre, D., Alessi, E., Aleynikov, P., Alfier, A., Alkseev, A., Allinson, M., Alper, B., Alves, E., Ambrosino, G., Ambrosino, R., Amicucci, L., Amosov, V., Andersson Sundén, E., Angelone, M., Anghel, M., Angioni, C., Appel, L., Appelbee, C., Arena, P., Ariola, M., Arnichand, H., Arshad, S., Ash, A., Ashikawa, N., Aslanyan, V., Asunta, O., Auriemma, F., Austin, Y., Avotina, L., Axton, M. D., Ayres, C., Bacharis, M., Baciero, A., Baião, D., Bailey, S., Baker, A., Balboa, I., Balden, M., Balshaw, N., Bament, R., Banks, J. W., Baranov, Y. F., Barnard, M. A., Barnes, D., Barnes, M., Barnsley, R., Baron Wiechec, A., Barrera Orte, L., Baruzzo, M., Basiuk, V., Bassan, M., Bastow, R., Batista, A., Batistoni, P., Baughan, R., Bauvir, B., Baylor, L., Bazylev, B., Beal, J., Beaumont, P. S., Beckers, M., Beckett, B., Becoulet, A., Bekris, N., Beldishevski, M., Bell, K., Belli, F., Bellinger, M., Belonohy, É., Ben Ayed, N., Benterman, N. A., Bergsåker, H., Bernardo, J., Bernert, M., Berry, M., Bertalot, L., Besliu, C., Beurskens, M., Bieg, B., Bielecki, J., Biewer, T., Bigi, M., Bílková, P., Binda, F., Bisoffi, A., Bizarro, J. P. S., Björkas, C., Blackburn, J., Blackman, K., Blackman, T. R., Blanchard, P., Blatchford, P., Bobkov, V., Boboc, A., Bodnár, G., Bogar, O., Bolshakova, I., Bolzonella, T., Bonanomi, N., Bonelli, F., Boom, J., Booth, J., Borba, D., Borodin, D., Borodkina, I., Botrugno, A., Bottereau, C., Boulting, P., Bourdelle, C., Bowden, M., Bower, C., Bowman, C., Boyce, T., Boyd, C., Boyer, H. J., Bradshaw, J. M. A., Braic, V., Bravanec, R., Breizman, B., Bremond, S., Brennan, P. D., Breton, S., Brett, A., Brezinsek, S., Bright, M. D. J., Brix, M., Broeckx, W., Brombin, M., Brosławski, A., Brown, D. P. D., Brown, M., Bruno, E., Bucalossi, J., Buch, J., Buchanan, J., Buckley, M. A., Budny, R., Bufferand, H., Bulman, M., Bulmer, N., Bunting, P., Buratti, P., Burckhart, A., Buscarino, A., Busse, A., Butler, N. K., Bykov, I., Byrne, J., Cahyna, P., Calabrò, G., Calvo, I., Camenen, Y., Camp, P., Campling, D. C., Cane, J., Cannas, B., Capel, A. J., Card, P. J., Cardinali, A., Carman, P., Carr, M., Carralero, D., Carraro, L., Carvalho, B. B., Carvalho, I., Carvalho, P., Casson, F. J., Castaldo, C., Catarino, N., Caumont, J., Causa, F., Cavazzana, R., Cave-Ayland, K., Cavinato, M., Cecconello, M., Ceccuzzi, S., Cecil, E., Cenedese, A., Cesario, R., Challis, C. D., Chandler, M., Chandra, D., Chang, C. S., Chankin, A., Chapman, I. T., Chapman, S. C., Chernyshova, M., Chitarin, G., Ciraolo, G., Ciric, D., Citrin, J., Clairet, F., Clark, E., Clark, M., Clarkson, R., Clatworthy, D., Clements, C., Cleverly, M., Coad, J. P., Coates, P. A., Cobalt, A., Coccorese, V., Cocilovo, V., Coda, S., Coelho, R., Coenen, J. W., Coffey, I., Colas, L., Collins, S., Conka, D., Conroy, S., Conway, N., Coombs, D., Cooper, D., Cooper, S. R., Corradino, C., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Couchman, A. S., Cox, M. P., Craciunescu, T., Cramp, S., Craven, R., Crisanti, F., Croci, G., Croft, D., Crombé, K., Crowe, R., Cruz, N., Cseh, G., Cufar, A., Cullen, A., Curuia, M., Czarnecka, A., Dabirikhah, H., Dalgliesh, P., Dalley, S., Dankowski, J., Darrow, D., Davies, O., Davis, W., Day, C., Day, I. E., De Bock, M., de Castro, A., de la Cal, E., de la Luna, E., De Masi, G., de Pablos, J. L., De Temmerman, G., De Tommasi, G., de Vries, P., Deakin, K., Deane, J., Degli Agostini, F., Dejarnac, R., Delabie, E., den Harder, N., Dendy, R. O., Denis, J., Denner, P., Devaux, S., Devynck, P., Di Maio, F., Di Siena, A., Di Troia, C., Dinca, P., D’Inca, R., Ding, B., Dittmar, T., Doerk, H., Doerner, R. P., Donné, T., Dorling, S. E., Dormido-Canto, S., Doswon, S., Douai, D., Doyle, P. T., Drenik, A., Drewelow, P., Drews, P., Duckworth, Ph., Dumont, R., Dumortier, P., Dunai, D., Dunne, M., Ďuran, I., Durodié, F., Dutta, P., Duval, B. P., Dux, R., Dylst, K., Dzysiuk, N., Edappala, P. V., Edmond, J., Edwards, A. M., Edwards, J., Eich, Th., Ekedahl, A., El-Jorf, R., Elsmore, C. G., Enachescu, M., Ericsson, G., Eriksson, F., Eriksson, J., Eriksson, L. G., Esposito, B., Esquembri, S., Esser, H. G., Esteve, D., Evans, B., Evans, G. E., Evison, G., Ewart, G. D., Fagan, D., Faitsch, M., Falie, D., Fanni, A., Fasoli, A., Faustin, J. M., Fawlk, N., Fazendeiro, L., Fedorczak, N., Felton, R. C., Fenton, K., Fernades, A., Fernandes, H., Ferreira, J., Fessey, J. A., Février, O., Ficker, O., Field, A., Fietz, S., Figueiredo, A., Figueiredo, J., Fil, A., Finburg, P., Firdaouss, M., Fischer, U., Fittill, L., Fitzgerald, M., Flammini, D., Flanagan, J., Fleming, C., Flinders, K., Fonnesu, N., Fontdecaba, J. M., Formisano, A., Forsythe, L., Fortuna, L., Fortuna-Zalesna, E., Fortune, M., Foster, S., Franke, T., Franklin, T., Frasca, M., Frassinetti, L., Freisinger, M., Fresa, R., Frigione, D., Fuchs, V., Fuller, D., Futatani, S., Fyvie, J., Gál, K., Galassi, D., Gałązka, K., Galdon-Quiroga, J., Gallagher, J., Gallart, D., Galvão, R., Gao, X., Gao, Y., Garcia, J., Garcia-Carrasco, A., García-Muñoz, M., Gardarein, J. -L., Garzotti, L., Gaudio, P., Gauthier, E., Gear, D. F., Gee, S. J., Geiger, B., Gelfusa, M., Gerasimov, S., Gervasini, G., Gethins, M., Ghani, Z., Ghate, M., Gherendi, M., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Giegerich, T., Gil, C., Gil, L., Gilligan, S., Gin, D., Giovannozzi, E., Girardo, J. B., Giroud, C., Giruzzi, G., Glöggler, S., Godwin, J., Goff, J., Gohil, P., Goloborod’Ko, V., Gomes, R., Gonçalves, B., Goniche, M., Goodliffe, M., Goodyear, A., Gorini, G., Gosk, M., Goulding, R., Goussarov, A., Gowland, R., Graham, B., Graham, M. E., Graves, J. P., Grazier, N., Grazier, P., Green, N. R., Greuner, H., Grierson, B., Griph, F. S., Grisolia, C., Grist, D., Groth, M., Grove, R., Grundy, C. N., Grzonka, J., Guard, D., Guérard, C., Guillemaut, C., Guirlet, R., Gurl, C., Utoh, H. H., Hackett, L. J., Hacquin, S., Hagar, A., Hager, R., Hakola, A., Halitovs, M., Hall, S. J., Hallworth Cook, S. P., Hamlyn-Harris, C., Hammond, K., Harrington, C., Harrison, J., Harting, D., Hasenbeck, F., Hatano, Y., Hatch, D. R., Haupt, T. D. V., Hawes, J., Hawkes, N. C., Hawkins, J., Hawkins, P., Haydon, P. W., Hayter, N., Hazel, S., Heesterman, P. J. L., Heinola, K., Hellesen, C., Hellsten, T., Helou, W., Hemming, O. N., Hender, T. C., Henderson, M., Henderson, S. S., Henriques, R., Hepple, D., Hermon, G., Hertout, P., Hidalgo, C., Highcock, E. G., Hill, M., Hillairet, J., Hillesheim, J., Hillis, D., Hizanidis, K., Hjalmarsson, A., Hobirk, J., Hodille, E., Hogben, C. H. A., Hogeweij, G. M. D., Hollingsworth, A., Hollis, S., Homfray, D. A., Horáček, J., Hornung, G., Horton, A. R., Horton, L. D., Horvath, L., Hotchin, S. P., Hough, M. R., Howarth, P. J., Hubbard, A., Huber, A., Huber, V., Huddleston, T. M., Hughes, M., Huijsmans, G. T. A., Hunter, C. L., Huynh, P., Hynes, A. M., Iglesias, D., Imazawa, N., Imbeaux, F., Imríšek, M., Incelli, M., Innocente, P., Irishkin, M., Ivanova-Stanik, I., Jachmich, S., Jacobsen, A. S., Jacquet, P., Jansons, J., Jardin, A., Järvinen, A., Jaulmes, F., Jednoróg, S., Jenkins, I., Jeong, C., Jepu, I., Joffrin, E., Johnson, R., Johnson, T., Johnston, Jane, Joita, L., Jones, G., Jones, T. T. C., Hoshino, K. K., Kallenbach, A., Kamiya, K., Kaniewski, J., Kantor, A., Kappatou, A., Karhunen, J., Karkinsky, D., Karnowska, I., Kaufman, M., Kaveney, G., Kazakov, Y., Kazantzidis, V., Keeling, D. L., Keenan, T., Keep, J., Kempenaars, M., Kennedy, C., Kenny, D., Kent, J., Kent, O. N., Khilkevich, E., Kim, H. T., Kim, H. S., Kinch, A., King, C., King, D., King, R. F., Kinna, D. J., Kiptily, V., Kirk, A., Kirov, K., Kirschner, A., Kizane, G., Klepper, C., Klix, A., Knight, P., Knipe, S. J., Knott, S., Kobuchi, T., Köchl, F., Kocsis, G., Kodeli, I., Kogan, L., Kogut, D., Koivuranta, S., Kominis, Y., Köppen, M., Kos, B., Koskela, T., Koslowski, H. R., Koubiti, M., Kovari, M., Kowalska-Strzęciwilk, E., Krasilnikov, A., Krasilnikov, V., Krawczyk, N., Kresina, M., Krieger, K., Krivska, A., Kruezi, U., Książek, I., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kwak, S., Kwiatkowski, R., Kwon, O. J., Laguardia, L., Lahtinen, A., Laing, A., Lam, N., Lambertz, H. T., Lane, C., Lang, P. T., Lanthaler, S., Lapins, J., Lasa, A., Last, J. R., Łaszyńska, E., Lawless, R., Lawson, A., Lawson, K. D., Lazaros, A., Lazzaro, E., Leddy, J., Lee, S., Lefebvre, X., Leggate, H. J., Lehmann, J., Lehnen, M., Leichtle, D., Leichuer, P., Leipold, F., Lengar, I., Lennholm, M., Lerche, E., Lescinskis, A., Lesnoj, S., Letellier, E., Leyland, M., Leysen, W., Li, L., Liang, Y., Likonen, J., Linke, J., Linsmeier, Ch., Lipschultz, B., Liu, G., Liu, Y., Lo Schiavo, V. P., Loarer, T., Loarte, A., Lobel, R. C., Lomanowski, B., Lomas, P. J., Lönnroth, J., López, J. M., López-Razola, J., Lorenzini, R., Losada, U., Lovell, J. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukin, A., Luna, C., Lungaroni, M., Lungu, C. P., Lungu, M., Lunniss, A., Lupelli, I., Lyssoivan, A., Macdonald, N., Macheta, P., Maczewa, K., Magesh, B., Maget, P., Maggi, C., Maier, H., Mailloux, J., Makkonen, T., Makwana, R., Malaquias, A., Malizia, A., Manas, P., Manning, A., Manso, M. E., Mantica, P., Mantsinen, M., Manzanares, A., Maquet, Ph., Marandet, Y., Marcenko, N., Marchetto, C., Marchuk, O., Marinelli, M., Marinucci, M., Markovič, T., Marocco, D., Marot, L., Marren, C. A., Marshal, R., Martin, A., Martin, Y., Martín de Aguilera, A., Martínez, F. J., Martín-Solís, J. R., Martynova, Y., Maruyama, S., Masiello, A., Maslov, M., Matejcik, S., Mattei, M., Matthews, G. F., Maviglia, F., Mayer, M., Mayoral, M. L., May-Smith, T., Mazon, D., Mazzotta, C., Mcadams, R., Mccarthy, P. J., Mcclements, K. G., Mccormack, O., Mccullen, P. A., Mcdonald, D., Mcintosh, S., Mckean, R., Mckehon, J., Meadows, R. C., Meakins, A., Medina, F., Medland, M., Medley, S., Meigh, S., Meigs, A. G., Meisl, G., Meitner, S., Meneses, L., Menmuir, S., Mergia, K., Merrigan, I. R., Mertens, Ph., Meshchaninov, S., Messiaen, A., Meyer, H., Mianowski, S., Michling, R., Middleton-Gear, D., Miettunen, J., Militello, F., Militello-Asp, E., Miloshevsky, G., Mink, F., Minucci, S., Miyoshi, Y., Mlynář, J., Molina, D., Monakhov, I., Moneti, M., Mooney, R., Moradi, S., Mordijck, S., Moreira, L., Moreno, R., Moro, F., Morris, A. W., Morris, J., Moser, L., Mosher, S., Moulton, D., Murari, A., Muraro, A., Murphy, S., Asakura, N. N., Na, Y. S., Nabais, F., Naish, R., Nakano, T., Nardon, E., Naulin, V., Nave, M. F. F., Nedzelski, I., Nemtsev, G., Nespoli, F., Neto, A., Neu, R., Neverov, V. S., Newman, M., Nicholls, K. J., Nicolas, T., Nielsen, A. H., Nielsen, P., Nilsson, E., Nishijima, D., Noble, C., Nocente, M., Nodwell, D., Nordlund, K., Nordman, H., Nouailletas, R., Nunes, I., Oberkofler, M., Odupitan, T., Ogawa, M. T., O’Gorman, T., Okabayashi, M., Olney, R., Omolayo, O., O’Mullane, M., Ongena, J., Orsitto, F., Orszagh, J., Oswuigwe, B. I., Otin, R., Owen, A., Paccagnella, R., Pace, N., Pacella, D., Packer, L. W., Page, A., Pajuste, E., Palazzo, S., Pamela, S., Panja, S., Papp, P., Paprok, R., Parail, V., Park, M., Parra Diaz, F., Parsons, M., Pasqualotto, R., Patel, A., Pathak, S., Paton, D., Patten, H., Pau, A., Pawelec, E., Paz Soldan, C., Peackoc, A., Pearson, I. J., Pehkonen, S. -P., Peluso, E., Penot, C., Pereira, A., Pereira, R., Pereira Puglia, P. P., Perez von Thun, C., Peruzzo, S., Peschanyi, S., Peterka, M., Petersson, P., Petravich, G., Petre, A., Petrella, N., Petržilka, V., Peysson, Y., Pfefferlé, D., Philipps, V., Pillon, M., Pintsuk, G., Piovesan, P., Pires dos Reis, A., Piron, L., Pironti, A., Pisano, F., Pitts, R., Pizzo, F., Plyusnin, V., Pomaro, N., Pompilian, O. G., Pool, P. J., Popovichev, S., Porfiri, M. T., Porosnicu, C., Porton, M., Possnert, G., Potzel, S., Powell, T., Pozzi, J., Prajapati, V., Prakash, R., Prestopino, G., Price, D., Price, M., Price, R., Prior, P., Proudfoot, R., Pucella, G., Puglia, P., Puiatti, M. E., Pulley, D., Purahoo, K., Pütterich, Th., Rachlew, E., Rack, M., Ragona, R., Rainford, M. S. J., Rakha, A., Ramogida, G., Ranjan, S., Rapson, C. J., Rasmussen, J. J., Rathod, K., Rattá, G., Ratynskaia, S., Ravera, G., Rayner, C., Rebai, M., Reece, D., Reed, A., Réfy, D., Regan, B., Regaña, J., Reich, M., Reid, N., Reimold, F., Reinhart, M., Reinke, M., Reiser, D., Rendell, D., Reux, C., Reyes Cortes, S. D. A., Reynolds, S., Riccardo, V., Richardson, N., Riddle, K., Rigamonti, D., Rimini, F. G., Risner, J., Riva, M., Roach, C., Robins, R. J., Robinson, S. A., Robinson, T., Robson, D. W., Roccella, R., Rodionov, R., Rodrigues, P., Rodriguez, J., Rohde, V., Romanelli, F., Romanelli, M., Romanelli, S., Romazanov, J., Rowe, S., Rubel, M., Rubinacci, G., Rubino, G., Ruchko, L., Ruiz, M., Ruset, C., Rzadkiewicz, J., Saarelma, S., Sabot, R., Safi, E., Sagar, P., Saibene, G., Saint-Laurent, F., Salewski, M., Salmi, A., Salmon, R., Salzedas, F., Samaddar, D., Samm, U., Sandiford, D., Santa, P., Santala, M. I. K., Santos, B., Santucci, A., Sartori, F., Sartori, R., Sauter, O., Scannell, R., Schlummer, T., Schmid, K., Schmidt, V., Schmuck, S., Schneider, M., Schöpf, K., Schwörer, D., Scott, S. D., Sergienko, G., Sertoli, M., Shabbir, A., Sharapov, S. E., Shaw, A., Shaw, R., Sheikh, H., Shepherd, A., Shevelev, A., Shumack, A., Sias, G., Sibbald, M., Sieglin, B., Silburn, S., Silva, A., Silva, C., Simmons, P. A., Simpson, J., Simpson-Hutchinson, J., Sinha, A., Sipilä, S. K., Sips, A. C. C., Sirén, P., Sirinelli, A., Sjöstrand, H., Skiba, M., Skilton, R., Slabkowska, K., Slade, B., Smith, N., Smith, P. G., Smith, R., Smith, T. J., Smithies, M., Snoj, L., Soare, S., Solano, E. R., Somers, A., Sommariva, C., Sonato, P., Sopplesa, A., Sousa, J., Sozzi, C., Spagnolo, S., Spelzini, T., Spineanu, F., Stables, G., Stamatelatos, I., Stamp, M. F., Staniec, P., Stankūnas, G., Stan-Sion, C., Stead, M. J., Stefanikova, E., Stepanov, I., Stephen, A. V., Stephen, M., Stevens, A., Stevens, B. D., Strachan, J., Strand, P., Strauss, H. R., Ström, P., Stubbs, G., Studholme, W., Subba, F., Summers, H. P., Svensson, J., Świderski, Ł., Szabolics, T., Szawlowski, M., Szepesi, G., Suzuki, T. T., Tál, B., Tala, T., Talbot, A. R., Talebzadeh, S., Taliercio, C., Tamain, P., Tame, C., Tang, W., Tardocchi, M., Taroni, L., Taylor, D., Taylor, K. A., Tegnered, D., Telesca, G., Teplova, N., Terranova, D., Testa, D., Tholerus, E., Thomas, J., Thomas, J. D., Thomas, P., Thompson, A., Thompson, C. -A., Thompson, V. K., Thorne, L., Thornton, A., Thrysøe, A. S., Tigwell, P. A., Tipton, N., Tiseanu, I., Tojo, H., Tokitani, M., Tolias, P., Tomeš, M., Tonner, P., Towndrow, M., Trimble, P., Tripsky, M., Tsalas, M., Tsavalas, P., Tskhakaya jun, D., Turner, I., Turner, M. M., Turnyanskiy, M., Tvalashvili, G., Tyrrell, S. G. J., Uccello, A., Ul-Abidin, Z., Uljanovs, J., Ulyatt, D., Urano, H., Uytdenhouwen, I., Vadgama, A. P., Valcarcel, D., Valentinuzzi, M., Valisa, M., Vallejos Olivares, P., Valovic, M., Van De Mortel, M., Van Eester, D., Van Renterghem, W., van Rooij, G. J., Varje, J., Varoutis, S., Vartanian, S., Vasava, K., Vasilopoulou, T., Vega, J., Verdoolaege, G., Verhoeven, R., Verona, C., Verona Rinati, G., Veshchev, E., Vianello, N., Vicente, J., Viezzer, E., Villari, S., Villone, F., Vincenzi, P., Vinyar, I., Viola, B., Vitins, A., Vizvary, Z., Vlad, M., Voitsekhovitch, I., Vondráček, P., Vora, N., Vu, T., Pires de Sa, W. W., Wakeling, B., Waldon, C. W. F., Walkden, N., Walker, M., Walker, R., Walsh, M., Wang, E., Wang, N., Warder, S., Warren, R. J., Waterhouse, J., Watkins, N. W., Watts, C., Wauters, T., Weckmann, A., Weiland, J., Weisen, H., Weiszflog, M., Wellstood, C., West, A. T., Wheatley, M. R., Whetham, S., Whitehead, A. M., Whitehead, B. D., Widdowson, A. M., Wiesen, S., Wilkinson, J., Williams, J., Williams, M., Wilson, A. R., Wilson, D. J., Wilson, H. R., Wilson, J., Wischmeier, M., Withenshaw, G., Withycombe, A., Witts, D. M., Wood, D., Wood, R., Woodley, C., Wray, S., Wright, J., Wright, J. C., Wu, J., Wukitch, S., Wynn, A., Xu, T., Yadikin, D., Yanling, W., Yao, L., Yavorskij, V., Yoo, M. G., Young, C., Young, D., Young, I. D., Young, R., Zacks, J., Zagorski, R., Zaitsev, F. S., Zanino, R., Zarins, A., Zastrow, K. D., Zerbini, M., Zhang, W., Zhou, Y., Zilli, E., Zoita, V., Zoletnik, S., Zychor, I., Andersson Sundén, E., Baiã¡o, D., Belonohy, Ã. ., Bergsã¥ker, H., Bãlkovã¡, P., Bjã¶rkas, C., Bodnã¡r, G., Broså awski, A., Calabrã², G., Crombã©, K., De Castro, A., De La Cal, E., De La Luna, E., De Pablos, J. L., De Vries, P., Den Harder, N., D'Inca, R., Donnã©, T., Duckworth, P. h., Ä uran, I., Durodiã©, F., Eich, T. h., Fã©vrier, O., Gã¡l, K., Gaå azka, K., Galvã¡o, R., GarcÃa-Muñoz, M., Gardarein, J. -. L., Glã¶ggler, S., Goloborod'Ko, V., Goncalves, B., Guã©rard, C., Horã¡ä ek, J., Imrãå¡ek, M., Jã¤rvinen, A., Jednorã³g, S., Kã¶chl, F., Kã¶ppen, M., Kowalska-StrzÈ©ciwilk, E., Ksiaå¼ek, I., Å aszyå ska, E., Linsmeier, C. h., Lã¶nnroth, J., Lã³pez, J. M., López-Razola, J., Maquet, P. h., Markoviä , T., MartÃn De Aguilera, A., Martãnez, F. J., MartÃn-SolÃs, J. R., Mertens, P. h., Mlynã¡å , J., O'Gorman, T., O'Mullane, M., Pehkonen, S. -. P., Perez Von Thun, C., Petrå¾ilka, V., Pfefferlã©, D., Pires Dos Reis, A., Pã¼tterich, T. h., Rattã¡, G., Rã©fy, D., Regaã±a, J., Schã¶pf, K., Schwã¶rer, D., Sipilã¤, S. K., Sirã©n, P., Sjã¶strand, H., Stankå«nas, G., Strã¶m, P., Å widerski, Å. ., Tã¡l, B., Thompson, C. -. A., Thrysã¸e, A. S., Tomeå¡, M., Tskhakaya Jun, D., Van Rooij, G. J., Vondrã¡ä ek, P., Pires De Sa, W. W., Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Hôpital de Rangueil, CHU Toulouse [Toulouse]-CHU Toulouse [Toulouse], Laboratoire de microbiologie et génétique moléculaires (LMGM), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Energia [Milano] (DENG), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Research Centre Julich (FZJ), Institute for Plasma Research, Instituto Superior Tecnico Lisboa, Queen's University Belfast, University of Helsinki, CEA, Department of Applied Physics, School services, SCI, National Institutes for Quantum and Radiological Science and Technology, VTT, University of Naples Federico II, Universidad Nacional de Educacion a Distancia, CNR, Russian Research Centre Kurchatov Institute, Universita degli Studi di Napoli Parthenope, Ente Per Le Nuove Tecnologie L'energia e l'ambiente, Troitsk Institute for Innovation and Fusion Research, Uppsala University, National Institute for Cryogenics and Isotopic Technology, Max-Planck-Institut fur Plasmaphysik, University of Catania, Fusion for Energy Joint Undertaking, National Institutes of Natural Sciences - National Institute for Fusion Science, Massachusetts Institute of Technology, University of Latvia, Imperial College London, CIEMAT, University of Oxford, EUROfusion Programme Management Unit, Oak Ridge National Laboratory, Karlsruhe Institute of Technology KIT, University of York, Royal Institute of Technology, Maritime University of Szczecin, H. Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Czech Academy of Sciences, University of Trento, Ecole Polytechnique Federale de Lausanne (EPFL), Wigner Research Centre for Physics, Comenius University, University of Milan - Bicocca, National Institute for Optoelectronics, Fourth State Research, University of Texas at Austin, Belgian Nuclear Research Center, National Centre for Nuclear Research (NCBJ), Princeton University, CNRS, University of Cagliari, University of Warwick, Soltan Institute for Nuclear Studies, FOM Institute DIFFER, National Institute for Laser, Plasma and Radiation Physics, Ghent University, J. Stefan Institute, Universite de Lorraine, CAS - Institute of Plasma Physics, University of California at San Diego, Koninklijke Militaire School - Ecole Royale Militaire, Horia Hulubei National Institute of Physics and Nuclear Engineering, Chalmers University of Technology, School services, ELEC, Department of Signal Processing and Acoustics, Automaatio- ja systeemitekniik, Universidad Politecnica de Madrid, Second University of Naples, Warsaw University of Technology, Universita della Basilicata, Barcelona Supercomp. Center, Universidad de Sevilla, Centro Brasileiro de Pesquisas Fisicas, Department of Electrical Engineering and Automation, Sähkötekniikan laitos, University of Rome Tor Vergata, RAS - Ioffe Physico Technical Institute, General Atomics, University of Innsbruck, Fusion and Plasma Physics, University of Toyama, University of Strathclyde, National Technical University of Athens, Universita della Tuscia, Technical University of Denmark, Korea Advanced Institute of Science and Technology, Seoul National University, University College Cork, Vienna University of Technology, University of Opole, Daegu University, National Fusion Research Institute, Dublin City University, Universidad Politécnica de Madrid, PELIN LLC, Arizona State University, Universidad Complutense, University of Basel, Universidad Carlos III de Madrid, Consorzio CREATE, Demokritos National Centre for Scientific Research, Purdue University, Universite Libre de Bruxelles, School Services, ARTS, Department of Design, University of California Office of the President, Universidade de Sao Paulo, School Services, BIZ, Department of Information and Service Management, Lithuanian Energy Institute, HRS Fusion, Politecnico di Torino, University of Cassino, University of Electronic Science and Technology of China, Department of Electronics and Nanoengineering, Aalto-yliopisto, Aalto University, and Faculdade de Engenharia
- Subjects
Technology ,fusion ,Física [Ciências exactas e naturais] ,Tokamak ,Nuclear engineering ,DIAGNOSTICS ,01 natural sciences ,ILW ,010305 fluids & plasmas ,law.invention ,Ilw ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Plasma ,H-Mode Plasmas ,law ,ITER ,Disruption Prediction ,COLLISIONALITY ,EDGE LOCALIZED MODES ,Diagnostics ,Operation ,JET ,plasma ,Nuclear and High Energy Physics ,Condensed Matter Physics ,Physics ,Jet (fluid) ,JET, plasma, fusion, ITER ,Divertor ,Settore FIS/01 - Fisica Sperimentale ,Fusion, Plasma and Space Physics ,DENSITY PEAKING ,Carbon Wall ,H-MODE PLASMAS ,[ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Density Peaking ,Neutron transport ,Facing Components ,Collisionality ,114 Physical sciences ,Física, Física ,Nuclear physics ,Physical sciences [Natural sciences] ,Fusion, plasma och rymdfysik ,Pedestal ,0103 physical sciences ,Nuclear fusion ,ddc:530 ,Neutron ,010306 general physics ,Fusion ,Physics, Physical sciences ,Nuclear and High Energy Physic ,Edge Localized Modes ,QC717 ,Física [Àrees temàtiques de la UPC] ,Reactors de fusió ,Física ,FACING COMPONENTS ,Fusion reactors ,Jet ,CARBON WALL ,DISRUPTION PREDICTION ,OPERATION ,ddc:600 - Abstract
The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at ßN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No 633053. Peer Reviewed Article signat per 1.173 autors/es: X. Litaudon35, S. Abduallev39, M. Abhangi46, P. Abreu53, M. Afzal7, K.M. Aggarwal29, T. Ahlgren101, J.H. Ahn8, L. Aho-Mantila112, N. Aiba69, M. Airila112, R. Albanese105, V. Aldred7, D. Alegre93, E. Alessi45, P. Aleynikov55, A. Alfier12, A. Alkseev72, M. Allinson7, B. Alper7, E. Alves53, G. Ambrosino105, R. Ambrosino106, L. Amicucci90, V. Amosov88, E. Andersson Sundén22, M. Angelone90, M. Anghel85, C. Angioni62, L. Appel7, C. Appelbee7, P. Arena30, M. Ariola106, H. Arnichand8, S. Arshad41, A. Ash7, N. Ashikawa68, V. Aslanyan64, O. Asunta1, F. Auriemma12, Y. Austin7, L. Avotina103, M.D. Axton7, C. Ayres7, M. Bacharis24, A. Baciero57, D. Baião53, S. Bailey7, A. Baker7, I. Balboa7, M. Balden62, N. Balshaw7, R. Bament7, J.W. Banks7, Y.F. Baranov7, M.A. Barnard7, D. Barnes7, M. Barnes27, R. Barnsley55, A. Baron Wiechec7, L. Barrera Orte34, M. Baruzzo12, V. Basiuk8, M. Bassan55, R. Bastow7, A. Batista53, P. Batistoni90, R. Baughan7, B. Bauvir55, L. Baylor73, B. Bazylev56, J. Beal110, P.S. Beaumont7, M. Beckers39, B. Beckett7, A. Becoulet8, N. Bekris35, M. Beldishevski7, K. Bell7, F. Belli90, M. Bellinger7, É. Belonohy62, N. Ben Ayed7, N.A. Benterman7, H. Bergsåker42, J. Bernardo53, M. Bernert62, M. Berry7, L. Bertalot55, C. Besliu7, M. Beurskens63, B. Bieg61, J. Bielecki47, T. Biewer73, M. Bigi12, P. Bílková50, F. Binda22, A. Bisoffi31, J.P.S. Bizarro53, C. Björkas101, J. Blackburn7, K. Blackman7, T.R. Blackman7, P. Blanchard33, P. Blatchford7, V. Bobkov62, A. Boboc7, G. Bodnár113, O. Bogar18, I. Bolshakova60, T. Bolzonella12, N. Bonanomi97, F. Bonelli56, J. Boom62, J. Booth7, D. Borba35,53, D. Borodin39, I. Borodkina39, A. Botrugno90, C. Bottereau8, P. Boulting7, C. Bourdelle8, M. Bowden7, C. Bower7, C. Bowman110, T. Boyce7, C. Boyd7, H.J. Boyer7, J.M.A. Bradshaw7, V. Braic87, R. Bravanec40, B. Breizman107, S. Bremond8, P.D. Brennan7, S. Breton8, A. Brett7, S. Brezinsek39, M.D.J. Bright7, M. Brix7, W. Broeckx78, M. Brombin12, A. Brosławski65, D.P.D. Brown7, M. Brown7, E. Bruno55, J. Bucalossi8, J. Buch46, J. Buchanan7, M.A. Buckley7, R. Budny76, H. Bufferand8, M. Bulman7, N. Bulmer7, P. Bunting7, P. Buratti90, A. Burckhart62, A. Buscarino30, A. Busse7, N.K. Butler7, I. Bykov42, J. Byrne7, P. Cahyna50, G. Calabrò90, I. Calvo57, Y. Camenen4, P. Camp7, D.C. Campling7, J. Cane7, B. Cannas17, A.J. Capel7, P.J. Card7, A. Cardinali90, P. Carman7, M. Carr7, D. Carralero62, L. Carraro12, B.B. Carvalho53, I. Carvalho53, P. Carvalho53, F.J. Casson7, C. Castaldo90, N. Catarino53, J. Caumont7, F. Causa90, R. Cavazzana12, K. Cave-Ayland7, M. Cavinato12, M. Cecconello22, S. Ceccuzzi90, E. Cecil76, A. Cenedese12, R. Cesario90, C.D. Challis7, M. Chandler7, D. Chandra46, C.S. Chang76, A. Chankin62, I.T. Chapman7, S.C. Chapman28, M. Chernyshova49, G. Chitarin12, G. Ciraolo8, D. Ciric7, J. Citrin38, F. Clairet8, E. Clark7, M. Clark7, R. Clarkson7, D. Clatworthy7, C. Clements7, M. Cleverly7, J.P. Coad7, P.A. Coates7, A. Cobalt7, V. Coccorese105, V. Cocilovo90, S. Coda33, R. Coelho53, J.W. Coenen39, I. Coffey29, L. Colas8, S. Collins7, D. Conka103, S. Conroy22, N. Conway7, D. Coombs7, D. Cooper7, S.R. Cooper7, C. Corradino30, Y. Corre8, G. Corrigan7, S. Cortes53, D. Coster62, A.S. Couchman7, M.P. Cox7, T. Craciunescu86, S. Cramp7, R. Craven7, F. Crisanti90, G. Croci97, D. Croft7, K. Crombé15, R. Crowe7, N. Cruz53, G. Cseh113, A. Cufar81, A. Cullen7, M. Curuia85, A. Czarnecka49, H. Dabirikhah7, P. Dalgliesh7, S. Dalley7, J. Dankowski47, D. Darrow76, O. Davies7, W. Davis55,76, C. Day56, I.E. Day7, M. De Bock55, A. de Castro57, E. de la Cal57, E. de la Luna57, G. De Masi12, J. L. de Pablos57, G. De Temmerman55, G. De Tommasi105, P. de Vries55, K. Deakin7, J. Deane7, F. Degli Agostini12, R. Dejarnac50, E. Delabie73, N. den Harder38, R.O. Dendy7, J. Denis8, P. Denner39, S. Devaux62,104, P. Devynck8, F. Di Maio55, A. Di Siena62, C. Di Troia90, P. Dinca86, R. D’Inca62, B. Ding51, T. Dittmar39, H. Doerk62, R.P. Doerner9, T. Donné34, S.E. Dorling7, S. Dormido-Canto93, S. Doswon7, D. Douai8, P.T. Doyle7, A. Drenik62,81, P. Drewelow63, P. Drews39, Ph. Duckworth55, R. Dumont8, P. Dumortier58, D. Dunai113, M. Dunne62, I. Ďuran50, F. Durodié58, P. Dutta46, B. P. Duval33, R. Dux62, K. Dylst78, N. Dzysiuk22, P.V. Edappala46, J. Edmond7, A.M. Edwards7, J. Edwards7, Th. Eich62, A. Ekedahl8, R. El-Jorf7, C.G. Elsmore7, M. Enachescu84, G. Ericsson22, F. Eriksson16, J. Eriksson22, L.G. Eriksson36, B. Esposito90, S. Esquembri94, H.G. Esser39, D. Esteve8, B. Evans7, G.E. Evans7, G. Evison7, G.D. Ewart7, D. Fagan7, M. Faitsch62, D. Falie86, A. Fanni17, A. Fasoli33, J. M. Faustin33, N. Fawlk7, L. Fazendeiro53, N. Fedorczak8, R.C. Felton7, K. Fenton7, A. Fernades53, H. Fernandes53, J. Ferreira53, J.A. Fessey7, O. Février8, O. Ficker50, A. Field7, S. Fietz62, A. Figueiredo53, J. Figueiredo53,35, A. Fil8, P. Finburg7, M. Firdaouss8, U. Fischer56, L. Fittill7, M. Fitzgerald7, D. Flammini90, J. Flanagan7, C. Fleming7, K. Flinders7, N. Fonnesu90, J. M. Fontdecaba57, A. Formisano79, L. Forsythe7, L. Fortuna30, E. Fortuna-Zalesna19, M. Fortune7, S. Foster7, T. Franke34, T. Franklin7, M. Frasca30, L. Frassinetti42, M. Freisinger39, R. Fresa98, D. Frigione90, V. Fuchs50, D. Fuller35, S. Futatani6, J. Fyvie7, K. Gál34,62, D. Galassi2, K. Gałązka49, J. Galdon-Quiroga92, J. Gallagher7, D. Gallart6, R. Galvão10, X. Gao51, Y. Gao39, J. Garcia8, A. Garcia-Carrasco42, M. García-Muñoz92, J.-L. Gardarein3, L. Garzotti7, P. Gaudio95, E. Gauthier8, D.F. Gear7, S.J. Gee7, B. Geiger62, M. Gelfusa95, S. Gerasimov7, G. Gervasini45, M. Gethins7, Z. Ghani7, M. Ghate46, M. Gherendi86, J.C. Giacalone8, L. Giacomelli45, C.S. Gibson7, T. Giegerich56, C. Gil8, L. Gil53, S. Gilligan7, D. Gin54, E. Giovannozzi90, J.B. Girardo8, C. Giroud7, G. Giruzzi8, S. Glöggler62, J. Godwin7, J. Goff7, P. Gohil43, V. Goloborod’ko102, R. Gomes53, B. Gonçalves53, M. Goniche8, M. Goodliffe7, A. Goodyear7, G. Gorini97, M. Gosk65, R. Goulding76, A. Goussarov78, R. Gowland7, B. Graham7, M.E. Graham7, J. P. Graves33, N. Grazier7, P. Grazier7, N.R. Green7, H. Greuner62, B. Grierson76, F.S. Griph7, C. Grisolia8, D. Grist7, M. Groth1, R. Grove73, C.N. Grundy7, J. Grzonka19, D. Guard7, C. Guérard34, C. Guillemaut8,53, R. Guirlet8, C. Gurl7, H.H. Utoh69, L.J. Hackett7, S. Hacquin8,35, A. Hagar7, R. Hager76, A. Hakola112, M. Halitovs103, S.J. Hall7, S.P. Hallworth Cook7, C. Hamlyn-Harris7, K. Hammond7, C. Harrington7, J. Harrison7, D. Harting7, F. Hasenbeck39, Y. Hatano108, D.R. Hatch107, T.D.V. Haupt7, J. Hawes7, N.C. Hawkes7, J. Hawkins7, P. Hawkins7, P.W. Haydon7, N. Hayter7, S. Hazel7, P.J.L. Heesterman7, K. Heinola101, C. Hellesen22, T. Hellsten42, W. Helou8, O.N. Hemming7, T.C. Hender7, M. Henderson55, S.S. Henderson21, R. Henriques53, D. Hepple7, G. Hermon7, P. Hertout8, C. Hidalgo57, E.G. Highcock27, M. Hill7, J. Hillairet8, J. Hillesheim7, D. Hillis73, K. Hizanidis70, A. Hjalmarsson22, J. Hobirk62, E. Hodille8, C.H.A. Hogben7, G.M.D. Hogeweij38, A. Hollingsworth7, S. Hollis7, D.A. Homfray7, J. Horáček50, G. Hornung15, A.R. Horton7, L.D. Horton36, L. Horvath110, S.P. Hotchin7, M.R. Hough7, P.J. Howarth7, A. Hubbard64, A. Huber39, V. Huber39, T.M. Huddleston7, M. Hughes7, G.T.A. Huijsmans55, C.L. Hunter7, P. Huynh8, A.M. Hynes7, D. Iglesias7, N. Imazawa69, F. Imbeaux8, M. Imríšek50, M. Incelli109, P. Innocente12, M. Irishkin8, I. Ivanova-Stanik49, S. Jachmich58,35, A.S. Jacobsen83, P. Jacquet7, J. Jansons103, A. Jardin8, A. Järvinen1, F. Jaulmes38, S. Jednoróg49, I. Jenkins7, C. Jeong20, I. Jepu86, E. Joffrin8, R. Johnson7, T. Johnson42, Jane Johnston7, L. Joita7, G. Jones7, T.T.C. Jones7, K.K. Hoshino69, A. Kallenbach62, K. Kamiya69, J. Kaniewski7, A. Kantor7, A. Kappatou62, J. Karhunen1, D. Karkinsky7, I. Karnowska7, M. Kaufman73, G. Kaveney7, Y. Kazakov58, V. Kazantzidis70, D.L. Keeling7, T. Keenan7, J. Keep7, M. Kempenaars7, C. Kennedy7, D. Kenny7, J. Kent7, O.N. Kent7, E. Khilkevich54, H.T. Kim35, H.S. Kim80, A. Kinch7, C. king7, D. King7, R.F. King7, D.J. Kinna7, V. Kiptily7, A. Kirk7, K. Kirov7, A. Kirschner39, G. Kizane103, C. Klepper73, A. Klix56, P. Knight7, S.J. Knipe7, S. Knott96, T. Kobuchi69, F. Köchl111, G. Kocsis113, I. Kodeli81, L. Kogan7, D. Kogut8, S. Koivuranta112, Y. Kominis70, M. Köppen39, B. Kos81, T. Koskela1, H.R. Koslowski39, M. Koubiti4, M. Kovari7, E. Kowalska-Strzęciwilk49, A. Krasilnikov88, V. Krasilnikov88, N. Krawczyk49, M. Kresina8, K. Krieger62, A. Krivska58, U. Kruezi7, I. Książek48, A. Kukushkin72, A. Kundu46, T. Kurki-Suonio1, S. Kwak20, R. Kwiatkowski65, O.J. Kwon13, L. Laguardia45, A. Lahtinen101, A. Laing7, N. Lam7, H.T. Lambertz39, C. Lane7, P.T. Lang62, S. Lanthaler33, J. Lapins103, A. Lasa101, J.R. Last7, E. Łaszyńska49, R. Lawless7, A. Lawson7, K.D. Lawson7, A. Lazaros70, E. Lazzaro45, J. Leddy110, S. Lee66, X. Lefebvre7, H.J. Leggate32, J. Lehmann7, M. Lehnen55, D. Leichtle41, P. Leichuer7, F. Leipold55,83, I. Lengar81, M. Lennholm36, E. Lerche58, A. Lescinskis103, S. Lesnoj7, E. Letellier7, M. Leyland110, W. Leysen78, L. Li39, Y. Liang39, J. Likonen112, J. Linke39, Ch. Linsmeier39, B. Lipschultz110, G. Liu55, Y. Liu51, V.P. Lo Schiavo105, T. Loarer8, A. Loarte55, R.C. Lobel7, B. Lomanowski1, P.J. Lomas7, J. Lönnroth1,35, J. M. López94, J. López-Razola57, R. Lorenzini12, U. Losada57, J.J. Lovell7, A.B. Loving7, C. Lowry36, T. Luce43, R.M.A. Lucock7, A. Lukin74, C. Luna5, M. Lungaroni95, C.P. Lungu86, M. Lungu86, A. Lunniss110, I. Lupelli7, A. Lyssoivan58, N. Macdonald7, P. Macheta7, K. Maczewa7, B. Magesh46, P. Maget8, C. Maggi7, H. Maier62, J. Mailloux7, T. Makkonen1, R. Makwana46, A. Malaquias53, A. Malizia95, P. Manas4, A. Manning7, M.E. Manso53, P. Mantica45, M. Mantsinen6, A. Manzanares91, Ph. Maquet55, Y. Marandet4, N. Marcenko88, C. Marchetto45, O. Marchuk39, M. Marinelli95, M. Marinucci90, T. Markovič50, D. Marocco90, L. Marot26, C.A. Marren7, R. Marshal7, A. Martin7, Y. Martin33, A. Martín de Aguilera57, F.J. Martínez93, J. R. Martín-Solís14, Y. Martynova39, S. Maruyama55, A. Masiello12, M. Maslov7, S. Matejcik18, M. Mattei79, G.F. Matthews7, F. Maviglia11, M. Mayer62, M.L. Mayoral34, T. May-Smith7, D. Mazon8, C. Mazzotta90, R. McAdams7, P.J. McCarthy96, K.G. McClements7, O. McCormack12, P.A. McCullen7, D. McDonald34, S. McIntosh7, R. McKean7, J. McKehon7, R.C. Meadows7, A. Meakins7, F. Medina57, M. Medland7, S. Medley7, S. Meigh7, A.G. Meigs7, G. Meisl62, S. Meitner73, L. Meneses53, S. Menmuir7,42, K. Mergia71, I.R. Merrigan7, Ph. Mertens39, S. Meshchaninov88, A. Messiaen58, H. Meyer7, S. Mianowski65, R. Michling55, D. Middleton-Gear7, J. Miettunen1, F. Militello7, E. Militello-Asp7, G. Miloshevsky77, F. Mink62, S. Minucci105, Y. Miyoshi69, J. Mlynář50, D. Molina8, I. Monakhov7, M. Moneti109, R. Mooney7, S. Moradi37, S. Mordijck43, L. Moreira7, R. Moreno57, F. Moro90, A.W. Morris7, J. Morris7, L. Moser26, S. Mosher73, D. Moulton7,1, A. Murari12,35, A. Muraro45, S. Murphy7, N.N. Asakura69, Y.S. Na80, F. Nabais53, R. Naish7, T. Nakano69, E. Nardon8, V. Naulin83, M.F.F. Nave53, I. Nedzelski53, G. Nemtsev88, F. Nespoli33, A. Neto41, R. Neu62, V.S. Neverov72, M. Newman7, K.J. Nicholls7, T. Nicolas33, A.H. Nielsen83, P. Nielsen12, E. Nilsson8, D. Nishijima99, C. Noble7, M. Nocente97, D. Nodwell7, K. Nordlund101, H. Nordman16, R. Nouailletas8, I. Nunes53, M. Oberkofler62, T. Odupitan7, M.T. Ogawa69, T. O’Gorman7, M. Okabayashi76, R. Olney7, O. Omolayo7, M. O’Mullane21, J. Ongena58, F. Orsitto11, J. Orszagh18, B.I. Oswuigwe7, R. Otin7, A. Owen7, R. Paccagnella12, N. Pace7, D. Pacella90, L.W. Packer7, A. Page7, E. Pajuste103, S. Palazzo30, S. Pamela7, S. Panja46, P. Papp18, R. Paprok50, V. Parail7, M. Park66, F. Parra Diaz27, M. Parsons73, R. Pasqualotto12, A. Patel7, S. Pathak46, D. Paton7, H. Patten33, A. Pau17, E. Pawelec48, C. Paz Soldan43, A. Peackoc36, I.J. Pearson7, S.-P. Pehkonen112, E. Peluso95, C. Penot55, A. Pereira57, R. Pereira53, P.P. Pereira Puglia7, C. Perez von Thun35,39, S. Peruzzo12, S. Peschanyi56, M. Peterka50, P. Petersson42, G. Petravich113, A. Petre84, N. Petrella7, V. Petržilka50, Y. Peysson8, D. Pfefferlé33, V. Philipps39, M. Pillon90, G. Pintsuk39, P. Piovesan12, A. Pires dos Reis52, L. Piron7, A. Pironti105, F. Pisano17, R. Pitts55, F. Pizzo79, V. Plyusnin53, N. Pomaro12, O.G. Pompilian86, P.J. Pool7, S. Popovichev7, M.T. Porfiri90, C. Porosnicu86, M. Porton7, G. Possnert22, S. Potzel62, T. Powell7, J. Pozzi7, V. Prajapati46, R. Prakash46, G. Prestopino95, D. Price7, M. Price7, R. Price7, P. Prior7, R. Proudfoot7, G. Pucella90, P. Puglia52, M.E. Puiatti12, D. Pulley7, K. Purahoo7, Th. Pütterich62, E. Rachlew25, M. Rack39, R. Ragona58, M.S.J. Rainford7, A. Rakha6, G. Ramogida90, S. Ranjan46, C.J. Rapson62, J.J. Rasmussen83, K. Rathod46, G. Rattá57, S. Ratynskaia82, G. Ravera90, C. Rayner7, M. Rebai97, D. Reece7, A. Reed7, D. Réfy113, B. Regan7, J. Regaña34, M. Reich62, N. Reid7, F. Reimold39, M. Reinhart34, M. Reinke110,73, D. Reiser39, D. Rendell7, C. Reux8, S.D.A. Reyes Cortes53, S. Reynolds7, V. Riccardo7, N. Richardson7, K. Riddle7, D. Rigamonti97, F.G. Rimini7, J. Risner73, M. Riva90, C. Roach7, R.J. Robins7, S.A. Robinson7, T. Robinson7, D.W. Robson7, R. Roccella55, R. Rodionov88, P. Rodrigues53, J. Rodriguez7, V. Rohde62, F. Romanelli90, M. Romanelli7, S. Romanelli7, J. Romazanov39, S. Rowe7, M. Rubel42, G. Rubinacci105, G. Rubino12, L. Ruchko52, M. Ruiz94, C. Ruset86, J. Rzadkiewicz65, S. Saarelma7, R. Sabot8, E. Safi101, P. Sagar7, G. Saibene41, F. Saint-Laurent8, M. Salewski83, A. Salmi112, R. Salmon7, F. Salzedas53, D. Samaddar7, U. Samm39, D. Sandiford7, P. Santa46, M.I.K. Santala1, B. Santos53, A. Santucci90, F. Sartori41, R. Sartori41, O. Sauter33, R. Scannell7, T. Schlummer39, K. Schmid62, V. Schmidt12, S. Schmuck7, M. Schneider8, K. Schöpf102, D. Schwörer32, S.D. Scott76, G. Sergienko39, M. Sertoli62, A. Shabbir15, S.E. Sharapov7, A. Shaw7, R. Shaw7, H. Sheikh7, A. Shepherd7, A. Shevelev54, A. Shumack38, G. Sias17, M. Sibbald7, B. Sieglin62, S. Silburn7, A. Silva53, C. Silva53, P.A. Simmons7, J. Simpson7, J. Simpson-Hutchinson7, A. Sinha46, S.K. Sipilä1, A.C.C. Sips36, P. Sirén112, A. Sirinelli55, H. Sjöstrand22, M. Skiba22, R. Skilton7, K. Slabkowska49, B. Slade7, N. Smith7, P.G. Smith7, R. Smith7, T.J. Smith7, M. Smithies110, L. Snoj81, S. Soare85, E. R. Solano35,57, A. Somers32, C. Sommariva8, P. Sonato12, A. Sopplesa12, J. Sousa53, C. Sozzi45, S. Spagnolo12, T. Spelzini7, F. Spineanu86, G. Stables7, I. Stamatelatos71, M.F. Stamp7, P. Staniec7, G. Stankūnas59, C. Stan-Sion84, M.J. Stead7, E. Stefanikova42, I. Stepanov58, A.V. Stephen7, M. Stephen46, A. Stevens7, B.D. Stevens7, J. Strachan76, P. Strand16, H.R. Strauss44, P. Ström42, G. Stubbs7, W. Studholme7, F. Subba75, H.P. Summers21, J. Svensson63, Ł. Świderski65, T. Szabolics113, M. Szawlowski49, G. Szepesi7, T.T. Suzuki69, B. Tál113, T. Tala112, A.R. Talbot7, S. Talebzadeh95, C. Taliercio12, P. Tamain8, C. Tame7, W. Tang76, M. Tardocchi45, L. Taroni12, D. Taylor7, K.A. Taylor7, D. Tegnered16, G. Telesca15, N. Teplova54, D. Terranova12, D. Testa33, E. Tholerus42, J. Thomas7, J.D. Thomas7, P. Thomas55, A. Thompson7, C.-A. Thompson7, V.K. Thompson7, L. Thorne7, A. Thornton7, A.S. Thrysøe83, P.A. Tigwell7, N. Tipton7, I. Tiseanu86, H. Tojo69, M. Tokitani67, P. Tolias82, M. Tomeš50, P. Tonner7, M. Towndrow7, P. Trimble7, M. Tripsky58, M. Tsalas38, P. Tsavalas71, D. Tskhakaya jun102, I. Turner7, M.M. Turner32, M. Turnyanskiy34, G. Tvalashvili7, S.G.J. Tyrrell7, A. Uccello45, Z. Ul-Abidin7, J. Uljanovs1, D. Ulyatt7, H. Urano69, I. Uytdenhouwen78, A.P. Vadgama7, D. Valcarcel7, M. Valentinuzzi8, M. Valisa12, P. Vallejos Olivares42, M. Valovic7, M. Van De Mortel7, D. Van Eester58, W. Van Renterghem78, G.J. van Rooij38, J. Varje1, S. Varoutis56, S. Vartanian8, K. Vasava46, T. Vasilopoulou71, J. Vega57, G. Verdoolaege58, R. Verhoeven7, C. Verona95, G. Verona Rinati95, E. Veshchev55, N. Vianello45, J. Vicente53, E. Viezzer62,92, S. Villari90, F. Villone100, P. Vincenzi12, I. Vinyar74, B. Viola90, A. Vitins103, Z. Vizvary7, M. Vlad86, I. Voitsekhovitch34, P. Vondráček50, N. Vora7, T. Vu8, W.W. Pires de Sa52, B. Wakeling7, C.W.F. Waldon7, N. Walkden7, M. Walker7, R. Walker7, M. Walsh55, E. Wang39, N. Wang39, S. Warder7, R.J. Warren7, J. Waterhouse7, N.W. Watkins28, C. Watts55, T. Wauters58, A. Weckmann42, J. Weiland23, H. Weisen33, M. Weiszflog22, C. Wellstood7, A.T. West7, M.R. Wheatley7, S. Whetham7, A.M. Whitehead7, B.D. Whitehead7, A.M. Widdowson7, S. Wiesen39, J. Wilkinson7, J. Williams7, M. Williams7, A.R. Wilson7, D.J. Wilson7, H.R. Wilson110, J. Wilson7, M. Wischmeier62, G. Withenshaw7, A. Withycombe7, D.M. Witts7, D. Wood7, R. Wood7, C. Woodley7, S. Wray7, J. Wright7, J.C. Wright64, J. Wu89, S. Wukitch64, A. Wynn110, T. Xu7, D. Yadikin16, W. Yanling39, L. Yao89, V. Yavorskij102, M.G. Yoo80, C. Young7, D. Young7, I.D. Young7, R. Young7, J. Zacks7, R. Zagorski49, F.S. Zaitsev18, R. Zanino75, A. Zarins103, K.D. Zastrow7, M. Zerbini90, W. Zhang62, Y. Zhou42, E. Zilli12, V. Zoita86, S. Zoletnik113, I. Zychor65 and JET Contributorsa // EUROfusion Consortium JET, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom / 1 Aalto University, PO Box 14100, FIN-00076 Aalto, Finland / 2 Aix Marseille Université, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451, Marseille, France / 3 Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13013 Marseille, France / 4 Aix-Marseille Université, CNRS, PIIM, UMR 7345, 13013 Marseille, France / 5 Arizona State University, Tempe, AZ, United States of America / 6 Barcelona Supercomputing Center, Barcelona, Spain / 7 CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom / 8 CEA, IRFM, F-13108 Saint Paul Lez Durance, France / 9 Center for Energy Research, University of California at San Diego, La Jolla, CA 92093, United States of America / 10 Centro Brasileiro de Pesquisas Fisicas, Rua Xavier Sigaud, 160, Rio de Janeiro CEP 22290-180, Brazil / 11 Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 12 Consorzio RFX, corso Stati Uniti 4, 35127 Padova, Italy / 13 Daegu University, Jillyang, Gyeongsan, Gyeongbuk 712-174, Republic of Korea / 14 Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain / 15 Department of Applied Physics UG (Ghent University) St-Pietersnieuwstraat 41 B-9000 Ghent, Belgium / 16 Department of Earth and Space Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 17 Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d’Armi 09123, Cagliari, Italy / 18 Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics Comenius University Mlynska dolina F2, 84248 Bratislava, Slovakia / 19 Department of Materials Science, Warsaw University of Technology, PL-01-152 Warsaw, Poland / 20 Department of Nuclear and Quantum Engineering, KAIST, Daejeon 34141, Korea / 21 Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 ONG, United Kingdom / 22 Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden / 23 Department of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden / 24 Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom / 25 Department of Physics, SCI, KTH, SE-10691 Stockholm, Sweden / 26 Department of Physics, University of Basel, Basel, Switzerland / 27 Department of Physics, University of Oxford, Oxford, OX1 2JD, United Kingdom / 28 Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom / 29 Department of Pure and Applied Physics, Queens University, Belfast, BT7 1NN, United Kingdom / 30 Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, 95125 Catania, Italy / 31 Dipartimento di Ingegneria Industriale, University of Trento, Trento, Italy / 32 Dublin City University (DCU), Dublin, Ireland / 33 Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland / 34 EUROfusion Programme Management Unit, Boltzmannstr. 2, 85748 Garching, Germany / 35 EUROfusion Programme Management Unit, Culham Science Centre, Culham, OX14 3DB, United Kingdom / 36 European Commission, B-1049 Brussels, Belgium / 37 Fluid and Plasma Dynamics, ULB—Campus Plaine—CP 231 Boulevard du Triomphe, 1050 Bruxelles, Belgium / 38 FOM Institute DIFFER, Eindhoven, Netherlands / 39 Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany / 40 Fourth State Research, 503 Lockhart Dr, Austin, TX, United States of America / 41 Fusion for Energy Joint Undertaking, Josep Pl. 2, Torres Diagonal Litoral B3, 08019, Barcelona, Spain / 42 Fusion Plasma Physics, EES, KTH, SE-10044 Stockholm, Sweden / 43 General Atomics, PO Box 85608, San Diego, CA 92186-5608, United States of America / 44 HRS Fusion, West Orange, NJ, United States of America / 45 IFP-CNR, via R. Cozzi 53, 20125 Milano, Italy / 46 Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat State, India / 47 Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland / 48 Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland / 49 Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland / 50 Institute of Plasma Physics AS CR, Za Slovankou 1782/3, 182 00 Praha 8, Czechia / 51 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China / 52 Instituto de Física, Universidade de São Paulo, Rua do Matão Travessa R Nr.187 CEP 05508-090 Cidade Universitária, São Paulo, Brasil / 53 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal / 54 Ioffe Physico-Technical Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation / 55 ITER Organization, Route de Vinon, CS 90 046, 13067 Saint Paul Lez Durance, France / 56 Karlsruhe Institute of Technology, PO Box 3640, D-76021 Karlsruhe, Germany / 57 Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain / 58 Laboratory for Plasma Physics Koninklijke Militaire School—Ecole Royale Militaire, Renaissancelaan 30 Avenue de la Renaissance B-1000, Brussels, Belgium / 59 Lithuanian energy institute, Breslaujos g. 3, LT-44403, Kaunas, Lithuania / 60 Magnetic Sensor Laboratory, Lviv Polytechnic National University, Lviv, Ukraine / 61 Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin, Poland / 62 Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany / 63 Max-Planck-Institut für Plasmaphysik, Teilinsitut Greifswald, D-17491 Greifswald, Germany / 64 MIT Plasma Science and Fusion Centre, Cambridge, MA 02139, United States of America / 65 National Centre for Nuclear Research (NCBJ), 05-400 Otwock-Świerk, Poland / 66 National Fusion Research Institute (NFRI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea / 67 National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan / 68 National Institute for Fusion Science, Toki, 509-5292, Japan / 69 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan / 70 National Technical University of Athens, Iroon Politechniou 9, 157 73 Zografou, Athens, Greece / 71 NCSR ‘Demokritos’, 153 10, Agia Paraskevi Attikis, Greece / 72 NRC Kurchatov Institute, 1 Kurchatov Square, Moscow 123182, Russian Federation / 73 Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, United States of America / 74 PELIN LLC, 27a, Gzhatskaya Ulitsa, Saint Petersburg, 195220, Russian Federation / 75 Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy / 76 Princeton Plasma Physics Laboratory, James Forrestal Campus, Princeton, NJ 08543, United States of America / 77 Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, United States of America / 78 SCK-CEN, Nuclear Research Centre, 2400 Mol, Belgium / 79 Second University of Napoli, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 80 Seoul National University, Shilim-Dong, Gwanak-Gu, Republic of Korea / 81 Slovenian Fusion Association (SFA), Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia / 82 Space and Plasma Physics, EES, KTH SE-100 44 Stockholm, Sweden / 83 Technical University of Denmark, Department of Physics, Bldg 309, DK-2800 Kgs Lyngby, Denmark / 84 The ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, Magurele-Bucharest, Romania / 85 The National Institute for Cryogenics and Isotopic Technology, Ramnicu Valcea, Romania / 86 The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania / 87 The National Institute for Optoelectronics, Magurele-Bucharest, Romania / 88 Troitsk Insitute of Innovating and Thermonuclear Research (TRINITI), Troitsk 142190, Moscow Region, Russian Federation / 89 University of Electronic Science and Technology of China, Chengdu, People’s Republic of China / 90 Unità Tecnica Fusione, ENEA C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy / 91 Universidad Complutense de Madrid, Madrid, Spain / 92 Universidad de Sevilla, Sevilla, Spain / 93 Universidad Nacional de Educación a Distancia, Madrid, Spain / 94 Universidad Politécnica de Madrid, Grupo I2A2, Madrid, Spain / 95 Università di Roma Tor Vergata, Via del Politecnico 1, Roma, Italy / 96 University College Cork (UCC), Ireland / 97 University Milano-Bicocca, piazza della Scienza 3, 20126 Milano, Italy / 98 University of Basilicata, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 99 University of California, 1111 Franklin St., Oakland, CA 94607, United States of America / 100 University of Cassino, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 101 University of Helsinki, PO Box 43, FI-00014 University of Helsinki, Finland / 102 University of Innsbruck, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Innsbruck, Austria / 103 University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia / 104 University of Lorraine, CNRS, UMR7198, YIJL, Nancy, France / 105 University of Napoli ‘Federico II’, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 106 University of Napoli Parthenope, Consorzio CREATE, Via Claudio 21, 80125 Napoli, Italy / 107 University of Texas at Austin, Institute for Fusion Studies, Austin, TX 78712, United States of America / 108 University of Toyama, Toyama, 930-8555, Japan / 109 University of Tuscia, DEIM, Via del Paradiso 47, 01100 Viterbo, Italy / 110 University of York, Heslington, York YO10 5DD, United Kingdom / 111 Vienna University of Technology, Fusion@Österreichische Akademie der Wissenschaften (ÖAW), Austria / 112 VTT Technical Research Centre of Finland, PO Box 1000, FIN-02044 VTT, Finland / 113 Wigner Research Centre for Physics, PO Box 49, H-1525 Budapest, Hungary
- Published
- 2017
- Full Text
- View/download PDF
15. Investigation of sustainable high-β scenarios in the JT-60SA C-wall
- Author
-
D. Harting, L. Garzotti, Patrick Maget, M. Wischmeier, Hajime Urano, E. de la Luna, L. Pigatto, R. Zagórski, P. Aresta-Belo, J. Garcia, M. Romanelli, N. Hayashi, Tommaso Bolzonella, T. Nakano, S. Saarelma, S. Wiesen, G. Corrigan, Maiko Yoshida, F. Koechl, and Shunsuke Ide
- Subjects
Nuclear and High Energy Physics ,Materials science ,high beta ,integrated modeling ,JT-60SA ,Condensed Matter Physics ,7. Clean energy ,01 natural sciences ,advanced scenario ,confinement ,steady state ,transport ,010305 fluids & plasmas ,0103 physical sciences ,010306 general physics - Published
- 2017
16. Extended magneto-hydro-dynamic model for neoclassical tearing mode computations
- Author
-
Jean-François Luciani, A. Marx, Patrick Maget, Xavier Garbet, Hinrich Lütjens, Olivier Février, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Toroid ,Computation ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Bootstrap current ,Physics::Fluid Dynamics ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Tearing ,Diamagnetism ,Magnetic Prandtl number ,010306 general physics ,Saturation (chemistry) ,ComputingMilieux_MISCELLANEOUS - Abstract
A self-consistent fluid model for describing neoclassical tearing modes in global magneto-hydro-dynamic simulations is presented. It is illustrated by its application to a simple toroidal configuration unstable to the (2, 1) tearing mode. The island saturation is verified to increase with the bootstrap current fraction. New features that are specific to this model are evidenced, like the unsteady saturated state of the island, and its deformation to a droplet shape, when the magnetic Prandtl number is not too high. Synthetic diagnostics demonstrate that diamagnetic and neoclassical effects should have in this case a measurable impact on the signature of magnetic islands.
- Published
- 2016
- Full Text
- View/download PDF
17. First principles fluid modelling of magnetic island stabilization by electron cyclotron current drive (ECCD)
- Author
-
E. Lazzaro, Patrick Maget, S. Nowak, G. Giruzzi, Hinrich Lütjens, Peter Beyer, J. Decker, Olivier Février, M. Reich, Jean-François Luciani, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Plasma physics (IPP-MPG), Max-Planck-Gesellschaft, Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Istituto di Fisica del Plasma [Milano] (IFP), Consiglio Nazionale delle Ricerche [Milano] (CNR), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and ASDEX Upgrade Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Tokamak ,MHD ,Cyclotron ,Electron ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,numerical simulations ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Nuclear magnetic resonance ,law ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Toroid ,Rational surface ,Current source ,Condensed Matter Physics ,Computational physics ,Nuclear Energy and Engineering ,tearing modes ,magnetic islands ,ECCD ,Magnetohydrodynamics ,Current (fluid) ,control - Abstract
Tearing modes are MagnetoHydroDynamics (MHD) instabilities that reduce the performance of fusion devices. They can however be controlled and suppressed using electron cyclotron current drive (ECCD) as demonstrated in various tokamaks. In this work, simulations of island stabilization by ECCD-driven current have been carried out using the toroidal nonlinear 3D full MHD code XTOR-2F, in which a current source term modeling the ECCD has been implemented. The efficiency parameter, eta(RF), has been computed and its variations with respect to source width and location were also computed. The influence of parameters such as current intensity, source width and position with respect to the island was evaluated and compared to the modified Rutherford equation. We retrieved a good agreement between the simulations and the analytical predictions concerning the variations of control efficiency with source width and position. We also show that the 3D nature of the current source term can lead to the onset of an island if the source term is precisely applied on a rational surface. We report the observation of a flip phenomenon in which the O- and X-points of the island rapidly switch their position in order for the island to take advantage of the current drive to grow.
- Published
- 2016
- Full Text
- View/download PDF
18. Bifurcation of magnetic island saturation controlled by plasma viscosity
- Author
-
Jean-François Luciani, Patrick Maget, Hinrich Lütjens, Xavier Garbet, Olivier Février, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE32-0004,AMICI,Modélisation avancée du contrôle des îlots pour ITER(2014), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Physics ,Phase transition ,Mechanics ,Condensed Matter Physics ,Curvature ,01 natural sciences ,Instability ,010305 fluids & plasmas ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Nonlinear system ,Classical mechanics ,Nuclear Energy and Engineering ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Magnetic Prandtl number ,Magnetohydrodynamics ,010306 general physics ,Saturation (magnetic) ,Bifurcation ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Two nonlinear regimes, depending on the magnetic Prandtl number Prm, are identified for magnetic islands described by resistive MHD equations. The frontier between these two regimes is sharp, and has the characteristics of a phase transition controlled by plasma viscosity. In the low Prm regime, a new form of the so-called flip instability, consisting of a sudden change of the island phase, is identified. Already known in the context of a forcing by external magnetic perturbations and localized current drive, it occurs spontaneously at low Prm. The main characteristics of this new structural instability are described. The low Prm regime is well described by the slab visco-resistive model in the linear phase, and is characterized by both a large saturation of the island and strong nonlinearly driven zonal flows (that do not impact significantly the island dynamics however), while curvature physics strongly impacts the viscous regime.
- Published
- 2016
- Full Text
- View/download PDF
19. Non-linear dynamics of compound sawteeth in tokamaks
- Author
-
R. Guirlet, A. Marx, J.-H. Ahn, T. Nicolas, Jean-François Luciani, Patrick Maget, Roland Sabot, Olivier Février, Xavier Garbet, and Hinrich Lütjens
- Subjects
Physics ,Tokamak ,Plasma ,Sawtooth wave ,Radius ,Condensed Matter Physics ,Critical value ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,law ,Beta (plasma physics) ,0103 physical sciences ,Diamagnetism ,Magnetohydrodynamic drive ,Atomic physics ,010306 general physics - Abstract
Compound sawteeth is studied with the XTOR-2F code. Non-linear full 3D magnetohydrodynamic simulations show that the plasma hot core is radially displaced and rotates during the partial crash, but is not fully expelled out of the q = 1 surface. Partial crashes occur when the radius of the q = 1 surface exceeds a critical value, at fixed poloidal beta. This critical value depends on the plasma elongation. The partial crash time is larger than the collapse time of an ordinary sawtooth, likely due to a weaker diamagnetic stabilization. This suggests that partial crashes result from a competition between destabilizing effects such as the q = 1 radius and diamagnetic stabilization. Published by AIP Publishing.
- Published
- 2016
- Full Text
- View/download PDF
20. Feasibility study of an actively cooled tungsten divertor in Tore Supra for ITER technology testing
- Author
-
F. Faisse, S. Hacquin, X. Courtois, P. Monier-Garbet, J. Garcia, Patrick Maget, A. Argouarch, Yannick Marandet, T. Loarer, R. Magne, R.A. Pitts, M. Jouve, O. Baulaigue, Yann Corre, Marina Becoulet, Sylvain Brémond, L. Gargiulo, Ph. Cara, A. Martinez, Eric Nardon, B. Pégourié, P. Bayetti, P. Hertout, A. Ekedahl, V. Basiuk, Bernard Bertrand, Roland Sabot, G. T. A. Huysmans, James Paul Gunn, C. Grisolia, P. Moreau, Marc Missirlian, M. Chantant, M. Joanny, O. Meyer, M. Richou, G. Jiolat, Didier Mazon, S. Lisgo, L. Jourd’heuil, Frederic Imbeaux, Jérôme Bucalossi, M. Lipa, A. Saille, E. Tsitrone, A. Simonin, A.S. Kukushkin, F. Samaille, C. Portafaix, S. Panayotis, F. Saint-Laurent, M. Firdaouss, L. Doceul, and C. Gil
- Subjects
Materials science ,Tokamak ,Mechanical Engineering ,Divertor ,Nuclear engineering ,chemistry.chemical_element ,Blanket ,Tore Supra ,Tungsten ,Heat sink ,law.invention ,Nuclear Energy and Engineering ,Heat flux ,chemistry ,law ,Limiter ,General Materials Science ,Civil and Structural Engineering - Abstract
In order to reduce the risks for ITER Plasma Facing Components (PFCs), it is proposed to equip Tore Supra with a full tungsten divertor, benefitting from the unique long pulse capabilities, the high installed RF power and the long experience with actively cooled high heat flux components of the Tore Supra platform. The transformation from the current circular limiter geometry to the required X-point configuration will be achieved by installing a set of copper poloidal coils inside the vacuum vessel. The new configuration will allow for H-mode access, providing relevant plasma conditions for PFC technology validation. Furthermore, attractive steady-state regimes are expected to be achievable. The lower divertor target design will be closely based on that currently envisaged for ITER (W monoblocks), while the upper divertor region will be used to qualify the main first wall heat sink technology adopted for the ITER blanket modules (CuCrZr copper/stainless steel) with a tungsten coating (in place of the Be tiles which ITER will use). Extended plasma exposure will provide access to ITER critical issues such as PFC lifetime (melting, cracking, etc.), tokamak operation on damaged metallic surfaces, real time heat flux control through PFC monitoring, fuel retention and dust production.
- Published
- 2011
- Full Text
- View/download PDF
21. Physics of Discharges with Vanishing Loop Voltage
- Author
-
C. Bourdelle, G. Giruzzi, Patrick Maget, G. T. Hoang, X. Litaudon, Frederic Imbeaux, and Y. Peysson
- Subjects
Physics ,Nuclear and High Energy Physics ,Steady state ,020209 energy ,Mechanical Engineering ,Physics beyond the Standard Model ,Magnetic confinement fusion ,02 engineering and technology ,Tore Supra ,01 natural sciences ,010305 fluids & plasmas ,Nuclear physics ,Loop (topology) ,Nuclear Energy and Engineering ,Quantum electrodynamics ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,General Materials Science ,Diffusion (business) ,Current (fluid) ,Civil and Structural Engineering ,Voltage - Abstract
Performing high-power long-duration discharges on Tore Supra has allowed us to investigate new physics at evanescent loop voltage in the situation where the current diffusion has fully taken place....
- Published
- 2009
- Full Text
- View/download PDF
22. Identification of Fast Particle Triggered Modes by Means of Correlation Electron Cyclotron Emission on Tore Supra
- Author
-
D. Molina, J. L. Segui, Francesca Turco, Ph. Lotte, F. Imbeaux, V. S. Udintsev, M. Goniche, Patrick Maget, Jean-Francois Artaud, G. Giruzzi, G. T. A. Huysmans, and Didier Mazon
- Subjects
Physics ,Nuclear and High Energy Physics ,Web of science ,020209 energy ,Mechanical Engineering ,Cyclotron ,02 engineering and technology ,Electron ,Tore Supra ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Nuclear physics ,Identification (information) ,Nuclear Energy and Engineering ,law ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Particle ,General Materials Science ,Civil and Structural Engineering - Abstract
Reference CRPP-CONF-2009-047View record in Web of Science Record created on 2009-02-26, modified on 2017-05-12
- Published
- 2008
- Full Text
- View/download PDF
23. Integrated plasma controls for steady state scenarios
- Author
-
M. Goniche, A. Ekedahl, Francesca Turco, Patrick Maget, Jérôme Bucalossi, F. Clairet, L. Laborde, Sylvain Brémond, Didier Mazon, Clarisse Bourdelle, F. Kazarian, J.F. Artaud, V. Basiuk, Oliviero Barana, G. Giruzzi, Frederic Imbeaux, Y. Peysson, F.G. Rimini, Yann Corre, P. Monier-Garbet, Brigitte Pegourie, P. Moreau, R. J. Dumont, L. Colas, E. Tsitrone, F. Saint-Laurent, and E. Joffrin
- Subjects
Physics ,Nuclear and High Energy Physics ,Steady state ,Nuclear magnetic resonance ,Control theory ,Limiter ,Magnetic confinement fusion ,Solenoid ,Tore Supra ,Condensed Matter Physics ,Actuator ,Power (physics) ,Voltage - Abstract
In recent campaigns, Tore Supra has focused its efforts on the physics optimisation and operation of stationary scenarios with high input power (up to 8 MW), duration of more than 60 s and vanishing loop voltage (up to 80% of non-inductive current). For physics integration, Tore Supra has been equipped with a large number of new real time sensors. The control of the lower hybrid (LH) wave deposition profile width measured by the hard x-ray camera has been achieved with the parallel refractive index n|| varying from 1.7 to 2.3 and the LH-wave power using different types of control techniques. In addition, the control of the current profile with the parallel refractive index of the LH-launched spectrum has also been combined with loop voltage control using the central solenoid voltage as actuator. The effect of electron cyclotron heating as an actuator has been examined for control of temperature bifurcation phenomena such as internal transport barrier. On the basis of the experimental power flux analyses, the seven infrared cameras monitoring the five antennas and the toroidal pumped limiter have been used for implementing new power load limit avoidance control schemes which have been successfully combined with the LH-deposition profile and loop voltage control.
- Published
- 2007
- Full Text
- View/download PDF
24. MHD stability of (2,1) tearing mode: an issue for the preforming phase of Tore Supra non-inductive discharges
- Author
-
B. Schunke, Jean-François Luciani, Patrick Maget, Ph. Moreau, Hinrich Lütjens, G. T. A. Huysmans, E. Joffrin, Xavier Garbet, J. L. Segui, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Steady state ,Tokamak ,Safety factor ,Magnetic confinement fusion ,Mechanics ,Tore Supra ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Nuclear magnetic resonance ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,law ,0103 physical sciences ,Tearing ,Lundquist number ,Magnetohydrodynamics ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
The early phase of a tokamak plasma discharge can have a dramatic impact on the main heating phase. This has been a persistent problem for the development of the steady state, fully non-inductive scenario using lower hybrid current drive (LHCD) on Tore Supra. The present paper reports on recent experimental and numerical investigations showing that a tearing mode coupled to the internal kink grows on q = 2 in the ohmic phase when the total current is too low, due to the weakening of field line curvature stabilization. Then, the application of LHCD drives the island to a larger size and undermines the development of the non-inductive phase. Decreasing the edge safety factor or increasing the Lundquist number S is found to be beneficial in both the linear and non-linear MHD analyses. The experimental database, which allows covering the edge safety factor dependence, supports this interpretation.
- Published
- 2007
- Full Text
- View/download PDF
25. WEST Physics Basis
- Author
-
Marc Missirlian, Pascale Hennequin, M. Yoshida, T. Loarer, A. Ekedahl, J. Decker, Patrick Maget, M. Firdaouss, Sylvain Brémond, Irena Ivanova-Stanik, E. Tsitrone, C. Grisolia, Lena Delpech, Marina Becoulet, C. Gil, X. Courtois, A. Kallenbach, Philippe Ghendrih, R. Zagórski, L. Colas, C. Fenzi, J.F. Artaud, T. Hoang, Roland Sabot, Guido Ciraolo, James Paul Gunn, Julien Hillairet, Frederic Imbeaux, P. Lotte, G. Giruzzi, P. Devynck, J. Garcia, P. Moreau, Patrick Mollard, Laure Vermare, M. Goniche, O. Meyer, Eric Nardon, Jérôme Bucalossi, B. Pégourié, R. J. Dumont, M. Schneider, P. Monier-Garbet, D. Douai, S. Vartanian, Yannick Marandet, Jochen Linke, Y. Peysson, Jet Contributors, J.-M. Travere, Clarisse Bourdelle, D. Guilhem, Hugo Bufferand, V. Basiuk, Yann Corre, R.P. Doerner, Guilhem Dif-Pradalier, F. Saint-Laurent, M.-L. Mayoral, Nicolas Fedorczak, A. Grosman, R. Guirlet, E. Joffrin, Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), IRFM-CEA, École Polytechnique Fedérale de Lausanne, VTT Technical Research Centre of Finland, Department of Applied Physics, Princeton University, Culham Science Centre, Uppsala University, European Commission, Chinese Academy of Sciences, National Fusion Research Institute, ITER, Universidad Politécnica de Madrid, School services,SCI, Sorbonne Université, Institute for Plasma Research, Universidade de Lisboa, Research Center Julich, University of Electronic Science and Technology of China, Aalto-yliopisto, Aalto University, and JET Contributors
- Subjects
Nuclear and High Energy Physics ,Long pulse ,Tokamak ,Nuclear engineering ,TOKAMAKS ,POWER ,Tore Supra ,PROFILE ,7. Clean energy ,law.invention ,Plasma physics ,Pedestal ,Divertor ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,divertor ,User Facility ,ddc:530 ,tokamak ,LOSSES ,Plasma facing components ,Physics ,TUNGSTEN ,plasma physics ,EXTRAPOLATION ,Plasma ,Condensed Matter Physics ,plasma facing components ,DENSITY PEAKING ,TRANSPORT ,Heat flux ,BEHAVIOR - Abstract
International audience; With WEST (Tungsten Environment in Steady State Tokamak) (Bucalossi et al 2014 Fusion Eng. Des. 89 [http://dx.doi.org/10.1016/j.fusengdes.2014.01.062] 907?12 ), the Tore Supra facility and team expertise (Dumont et al 2014 Plasma Phys. Control. Fusion 56 [http://dx.doi.org/10.1088/0741-3335/56/7/075020] 075020 ) is used to pave the way towards ITER divertor procurement and operation. It consists in implementing a divertor configuration and installing ITER-like actively cooled tungsten monoblocks in the Tore Supra tokamak, taking full benefit of its unique long-pulse capability. WEST is a user facility platform, open to all ITER partners. This paper describes the physics basis of WEST: the estimated heat flux on the divertor target, the planned heating schemes, the expected behaviour of the L?H threshold and of the pedestal and the potential W sources. A series of operating scenarios has been modelled, showing that ITER-relevant heat fluxes on the divertor can be achieved in WEST long pulse H-mode plasmas.
- Published
- 2015
- Full Text
- View/download PDF
26. Finding the Elusive E × B Staircase in Magnetized Plasmas
- Author
-
Patrick Maget, Patrick Diamond, Guilhem Dif-Pradalier, J. Abiteboul, Yusuke Kosuga, Virginie Grandgirard, Philippe Ghendrih, P. Morel, C. Ehrlacher, Xavier Garbet, Grégoire Hornung, F. Clairet, Yanick Sarazin, Özgür D. Gürcan, A. Storelli, T. Cartier-Michaud, C. Norscini, Daniel Esteve, Roland Sabot, Pascale Hennequin, Laure Vermare, Guillaume Latu, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Universiteit Gent = Ghent University [Belgium] (UGENT), Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Kyushu University [Fukuoka], Funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No WP14-ER-01. HPC resources from GENCI-IDRIS (Grant No. 2014-056884) and from IFERC-CSC.National Science Foundation under Grant No. NSF PHY11-25915., Universiteit Gent = Ghent University (UGENT), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Kyushu University
- Subjects
General Physics ,Tokamak ,Plasma parameters ,Mesoscale meteorology ,General Physics and Astronomy ,Tore Supra ,01 natural sciences ,Mathematical Sciences ,010305 fluids & plasmas ,law.invention ,Engineering ,GYROKINETIC SIMULATIONS ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Gyrokinetics ,[NLIN]Nonlinear Sciences [physics] ,010306 general physics ,Reflectometry ,Physics ,BARRIERS ,Condensed matter physics ,Turbulence ,Plasma ,TRANSPORT ,Physics and Astronomy ,Quantum electrodynamics ,Physical Sciences ,PACS numbers: 52.30.Gz, 52.35.Mw, 52.35.Ra, 52.65.Tt - Abstract
© 2015 American Physical Society. Turbulence in hot magnetized plasmas is shown to generate permeable localized transport barriers that globally organize into the so-called "ExB staircase" [G. Dif-Pradalier et al., Phys. Rev. E, 82, 025401(R) (2010)]. Its domain of existence and dependence with key plasma parameters is discussed theoretically. Based on these predictions, staircases are observed experimentally in the Tore Supra tokamak by means of high-resolution fast-sweeping X-mode reflectometry. This observation strongly emphasizes the critical role of mesoscale self-organization in plasma turbulence and may have far-reaching consequences for turbulent transport models and their validation.
- Published
- 2015
- Full Text
- View/download PDF
27. MHD activity triggered by monster sawtooth crashes on Tore Supra
- Author
-
Jean-Francois Artaud, Patrick Maget, L.-G. Eriksson, G. T. A. Huysmans, M. Ottaviani, A. Lazaros, J. L. Segui, Ph. Moreau, and W. Zwingmann
- Subjects
Physics ,Current sheet ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,Magnetic confinement fusion ,Electron temperature ,Sawtooth wave ,Tore Supra ,Atomic physics ,Magnetohydrodynamics ,Condensed Matter Physics ,Instability ,Ion cyclotron resonance - Abstract
The crash of monster sawteeth in Tore Supra ion cyclotron resonance heated plasmas is observed to trigger long-lived magneto hydrodynamic (MHD) activity, dominated by a (m = 3, n = 2) magnetic perturbation at the edge. This phenomenon is reminiscent of the triggering of neoclassical tearing modes, although in Tore Supra the MHD activity decays and eventually vanishes. It can be explained by the linear destabilization of the (3, 2) mode as the current sheet developed in the non-linear stage of the internal kink relaxation gets closer to q = 3/2. However, the lifetime of the (3, 2) island is longer than the period of linear instability. We find that the neoclassical drive is essential for explaining the observed lifetime and width of the island, although the overall dynamics is controlled by the relaxation of the current profile on a resistive time scale.
- Published
- 2005
- Full Text
- View/download PDF
28. MHD stability with strongly reversed magnetic shear in JET
- Author
-
G. T. A. Huysmans, A. Pochelon, contributors to Efda-Jet workprogramme, Torbjörn Hellsten, S. E. Sharapov, T. C. Hender, B. Alper, M. F. F. Nave, J Manickam, D. F. Howell, E. Joffrin, Patrick Maget, and Pascale Hennequin
- Subjects
Physics ,Tokamak ,Magnetic confinement fusion ,Plasma ,Mechanics ,Condensed Matter Physics ,law.invention ,Nuclear Energy and Engineering ,Shear (geology) ,Physics::Plasma Physics ,law ,Normal mode ,Electron temperature ,Magnetohydrodynamic drive ,Atomic physics ,Magnetohydrodynamics - Abstract
Recent operation of JET with centrally strongly reversed magnetic shear, produced with the help of lower hybrid current drive, has extended the domain in which internal transport barriers (ITBs) can be formed in JET. Performance is frequently limited by magnetohydrodynamic (MHD) instabilities in these reversed shear regimes. The most severe limit is a pressure driven kink mode which leads to a disruption. This disruptive limit is essentially the same in ITB plasmas with low or strongly reversed shear. Unique to the reversed shear regime is a dominantly n = 1 mode, which has multiple harmonics. This mode is a seemingly common limit to performance, in the highest performance plasmas. Also unique to the reversed shear regime are q > 1 sawteeth events, which can in turn trigger n = 1 post-cursor oscillations. In general, these post-cursor oscillations are benign but do provide valuable information on the q-profile. Other instabilities, including 'snakes' at the outer q = 3 surface, are also observed to limit the performance of reversed magnetic shear ITB regimes.
- Published
- 2002
- Full Text
- View/download PDF
29. An international database for the study of the formation of ITBs in tokamaks
- Author
-
J. E. Kinsey, X. Litaudon, D. Hogeweij, T. Hoang, Martin Greenwald, A. C. C. Sips, N. Kirneva, Shunsuke Ide, T. Suzuki, Hiroshi Shirai, P. Buratti, T. Fukuda, Patrick Maget, A. G. Peeters, Yoshiteru Sakamoto, Xavier Garbet, E. Barbato, Giovanni Bracco, C. M. Greenfield, F. Imbeaux, B. Esposito, N. V. Ivanov, T. Aniel, P. Gohil, Tomonori Takizuka, Torbjörn Hellsten, Takaaki Fujita, T.S. Hahm, L.-G. Eriksson, A. Becoulet, E. J. Synakowski, Robert Wolf, F. Ryter, Y. Baranov, Yu. V. Esipchuk, Yutaka Kamada, E. J. Doyle, and K. A. Razumova
- Subjects
Physics ,Electron density ,Tokamak ,Toroid ,Magnetic confinement fusion ,Plasma ,Radius ,Condensed Matter Physics ,law.invention ,Magnetic field ,Ion ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,law ,Atomic physics - Abstract
For the first time, data from eight different tokamaks have been combined in an international database for internal transport barriers (ITBs). An analysis of the data for the formation of an ITB with dominant ion heating shows a clear dependence of the threshold power on the minor radius and line-averaged electron density for the formation of ion ITBs. The dependence of ITB formation on the toroidal magnetic field is weak. For the formation of ITBs with dominant electron heating, the database is smaller, but for the threshold power a strong increase with plasma size and a weak toroidal field dependence could also be identified. Based on these results, an expression for the power required to form an ITB is given using global variables only. These results give a basis for the analysis of the database using local values (like magnetic shear) and a detailed comparison with theory-based models.
- Published
- 2002
- Full Text
- View/download PDF
30. Bi-fluid and neoclassical effect on a Double-Tearing mode in Tore Supra
- Author
-
Xavier Garbet, Jean-François Luciani, Hinrich Lütjens, Patrick Maget, Olivier Février, Jean-Luc Ségui, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Tokamak ,Condensed matter physics ,Plasma ,Mechanics ,Tore Supra ,Condensed Matter Physics ,law.invention ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Physics::Plasma Physics ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Tearing ,Diamagnetism ,Electric current ,Magnetohydrodynamics ,Scaling ,ComputingMilieux_MISCELLANEOUS - Abstract
Tearing modes associated to hollow current profiles are prone to grow in moderate performance plasmas and often constrain the realization of non-inductive discharges in the Tore Supra tokamak, where long pulse duration is performed using Lower Hybrid waves for providing most of the plasma current. The prediction of MHD boundaries in such scenarios is complicated by the importance of diamagnetic effects, combined with curvature stabilization, which determine the stability of these modes. We show that diamagnetic effects, as well as neoclassical forces, are playing a key role in the linear and nonlinear regimes of Double-Tearing Modes on q = 5/3 and q = 2 in these experimental conditions. Detailed comparison with experimental measurements, combined with a scaling in plasma resistivity, give constraints about the experimental equilibrium. Resistive-Interchange Modes destabilized by diamagnetic rotation could also play a role in degrading the energy confinement in the negative magnetic shear region.
- Published
- 2014
- Full Text
- View/download PDF
31. Nonlinear dynamics of the tearing mode with two-fluid and curvature effects in tokamaks
- Author
-
Patrick Maget, Hinrich Lütjens, Peter Beyer, Dmytro Meshcheriakov, Xavier Garbet, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Physics ,Tokamak ,Toroid ,Mechanics ,Tore Supra ,Condensed Matter Physics ,Curvature ,law.invention ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Nonlinear system ,Physics::Plasma Physics ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Tearing ,Diamagnetism ,Atomic physics ,Magnetohydrodynamics ,ComputingMilieux_MISCELLANEOUS - Abstract
Curvature and diamagnetic effects are both known to have an influence on tearing mode dynamics. In this paper, we investigate the impact of these effects on the nonlinear stability and saturation of a (2, 1) island using non-linear two-fluid MHD simulations and we apply our results to Tore Supra experiments, where its behavior is not well understood from the single fluid MHD model. Simulations show that a metastable state induced by diamagnetic effect exists for this mode and that it also produces a reduction of the saturated island size, in presence of toroidal curvature. The mode is found to be nonlinearly destabilized by a seed island and it saturates at a macroscopic level causing a significant confinement degradation. The interpretation of dual states, with either no island on q = 2 or a large one, observed on discharges with high non inductive current source on Tore Supra, is revisited.
- Published
- 2014
- Full Text
- View/download PDF
32. Global simulations of ion turbulence with magnetic shear reversal
- Author
-
P. Beyer, Sadruddin Benkadda, C. Figarella, I. Voitsekovitch, Olivier Agullo, G. T. Hoang, Patrick Maget, Nicolas Bian, Xavier Garbet, and Clarisse Bourdelle
- Subjects
Physics ,Safety factor ,Tokamak ,Toroid ,Turbulence ,K-epsilon turbulence model ,Mechanics ,Condensed Matter Physics ,Velocity shear ,law.invention ,Ion ,Physics::Fluid Dynamics ,Classical mechanics ,Shear (geology) ,Physics::Plasma Physics ,law - Abstract
This paper presents the results of three-dimensional fluid global simulations of electrostatic ion turbulence in tokamaks with reversed magnetic shear. It is found that a transport barrier appears at the location of magnetic shear reversal. This is due to a rarefaction of resonant surfaces in this region. For the same reason, the barrier is more pronounced when the minimum of the safety factor is a simple rational number. The barrier is broadened by velocity shear effects. It is also found that large-scale transport events hardly cross a transport barrier. Finally, a significant amount of toroidal rotation is generated by the turbulence. This rotation changes its sign at the position of magnetic shear reversal, as expected from a quasi-linear estimate of the Reynolds stresstensor.
- Published
- 2001
- Full Text
- View/download PDF
33. Drift wave stability of PEP discharges in Tore Supra
- Author
-
E. Joffrin, A. Geraud, Xavier Garbet, and Patrick Maget
- Subjects
Physics::Fluid Dynamics ,Condensed Matter::Soft Condensed Matter ,Nuclear physics ,Nuclear and High Energy Physics ,Materials science ,Shear (geology) ,Physics::Plasma Physics ,Mechanics ,Tore Supra ,Condensed Matter Physics - Abstract
The drift wave stability of pellet enhanced performance modes in Tore Supra has been investigated. It is found that these discharges are characterized by a combination of three different stabilizing mechanisms: density peaking, E × B shear and magnetic shear. Drift wave stability appears to be very sensitive to magnetic shear, with the most favourable configuration corresponding to a slightly negative magnetic shear. The conclusions are compatible with the results from JET and TFTR.
- Published
- 1999
- Full Text
- View/download PDF
34. Curvature effect on tearing modes in presence of neoclassical friction
- Author
-
Nicolas Mellet, Xavier Garbet, Patrick Maget, Hinrich Lütjens, Dmytro Meshcheriakov, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Tokamak ,Condensed matter physics ,Field line ,Mechanics ,Plasma ,Condensed Matter Physics ,Curvature ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Magnetic field ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Physics::Plasma Physics ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Tearing ,Electric current ,Magnetohydrodynamics ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
Neoclassical physics (here associated to the poloidal variation of the magnetic field strength along field lines in a tokamak) is well known for driving self-generated plasma current and nonlinear magnetic islands associated to it in high performance, ITER relevant plasma discharges. It is demonstrated that the neoclassical friction between a magnetic perturbation and plasma flow already impacts magnetic islands in the linear regime, by inducing a weakening of curvature stabilization for tearing modes. This conclusion holds in particular for regimes where convection is influencing the pressure dynamics, as shown using a simple analytical model and confirmed in full Magneto-Hydro-Dynamics simulations.
- Published
- 2013
- Full Text
- View/download PDF
35. Neoclassical viscous stress tensor for non-linear MHD simulations with XTOR-2F
- Author
-
D. Meshcheriakov, N. Mellet, Hinrich Lütjens, Patrick Maget, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Physics ,Nuclear and High Energy Physics ,Tore Supra ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Bootstrap current ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Nonlinear system ,Classical mechanics ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Tearing ,Viscous stress tensor ,Magnetohydrodynamics ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
The neoclassical viscous stress tensor is implemented in the non-linear MHD code XTOR-2F (Lutjens and Luciani 2010 J. Comput. Phys. 229 8130–43), allowing consistent bi-fluid simulations of MHD modes, including the metastable branch of neoclassical tearing modes (NTMs) (Carrera et al 1986 Phys. Fluids 29 899–902). Equilibrium flows and bootstrap current from the neoclassical theory are formally recovered in this Chew–Goldberger–Low formulation. The non-linear behaviour of the new model is verified on a test case coming from a Tore Supra non-inductive discharge. A NTM threshold that is larger than with the previous model is obtained. This is due to the fact that the velocity is now part of the bootstrap current and that it differs from the theoretical neoclassical value.
- Published
- 2013
- Full Text
- View/download PDF
36. Linear stability of the tearing mode with two-fluid and curvature effects in tokamaks
- Author
-
Peter Beyer, Hinrich Lütjens, Dmytro Meshcheriakov, Xavier Garbet, Patrick Maget, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Physique des interactions ioniques et moléculaires (PIIM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Mechanics ,Tore Supra ,Condensed Matter Physics ,Curvature ,01 natural sciences ,Stability (probability) ,010305 fluids & plasmas ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Classical mechanics ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Tearing ,Diamagnetism ,Magnetohydrodynamics ,010306 general physics ,Plasma stability ,ComputingMilieux_MISCELLANEOUS ,Linear stability - Abstract
Curvature and diamagnetic effects are both recognized to have a stabilizing influence on tearing modes in the linear regime. In this paper, we investigate the impact of these effects on the linear stability of a (2, 1) magnetic island using non-linear two-fluid MHD simulations and we apply our results to Tore Supra experiments where its stability is not well understood from the single fluid MHD model. Simulations show an initial increase of the linear growth rate and then its reduction until full stability as diamagnetic frequency increases. This mechanism is therefore a plausible explanation for experimental observations where the (2, 1) mode was not observed although the single fluid model predicted its growth. Our simulations also show the importance of curvature for an efficient stabilization. A simple analytical model is derived to support the numerical results.
- Published
- 2012
- Full Text
- View/download PDF
37. Modelling of (2,1) NTM dynamics with flow in JET advanced scenarios
- Author
-
M. Brix, F. Halpern, J. Mailloux, N. C. Hawkes, R. Coelho, D. Meshcheriakov, Patrick Maget, I. Jenkins, N. Mellet, C. Giroud, C. D. Challis, Jet-Efda Contributors, R. J. Buttery, Hinrich Lütjens, X. Litaudon, P. Buratti, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Culham Centre for Fusion Energy (CCFE), Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), General Atomics [San Diego], Instituto de Plasmas e Fusão Nuclear [Lisboa] (IPFN), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,Tokamak ,Flow (psychology) ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Physics::Fluid Dynamics ,Shear (sheet metal) ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Classical mechanics ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Lundquist number ,Magnetic Prandtl number ,Magnetohydrodynamics ,010306 general physics ,Scaling ,ComputingMilieux_MISCELLANEOUS - Abstract
Experimental observations show that the βN threshold for (2,1) NTM excitation is increased by flow shear, but the physical explanation for this trend is still unclear. In this work, we investigate this issue by performing numerical experiments addressing the dependence of the critical island width on toroidal plasma rotation with the full MHD toroidal code XTOR (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), on the basis of a typical JET advanced tokamak case. We find that for situations where the Lundquist number is increased towards the experimental value, the (2,1) NTM is weakly destabilized by flow shear at low magnetic Prandtl number Prm, while the threshold remains nearly insensitive to the flow at high Prm. This weak effect of rotation shear also holds close to the linear regime, where an equivalent of the Δ′ concept adapted to nonlinear simulations does not indicate any significant variation with flow shear. The experimental trend is therefore not recovered, and possible explanations for this disagreement are discussed. A simple model of anisotropic viscous tensor shows that the high toroidal viscosity does not influence the value of the threshold, but comparison with experimental measurements suggests that the effective Prm seen by the mode is, however, larger than its small collisional value. Finally, the scaling of dimensionless parameters to ITER range is discussed.
- Published
- 2011
- Full Text
- View/download PDF
38. Modelling of (2,1) NTM threshold in JET advanced scenarios
- Author
-
R. Coelho, E. de la Luna, Patrick Maget, C. D. Challis, X. Litaudon, Jet-Efda Contributors, J. Mailloux, R.J. Buttery, M. Brix, P. Buratti, B. Alper, I. Jenkins, N. C. Hawkes, Hinrich Lütjens, C. Giroud, M. Ottaviani, G. T. A. Huysmans, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Instituto de Plasmas e Fusão Nuclear [Lisboa] (IPFN), Instituto Superior Técnico, Universidade Técnica de Lisboa (IST), Culham Centre for Fusion Energy (CCFE), Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Laboratorio Nacional de Fusión [Madrid], Asociación Euratom-CIEMAT, and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Nuclear and High Energy Physics ,Jet (fluid) ,Mode (statistics) ,Mechanics ,Condensed Matter Physics ,Curvature ,01 natural sciences ,010305 fluids & plasmas ,Bootstrap current ,Shear (sheet metal) ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Limit (music) ,Tearing ,Magnetohydrodynamics ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
The limit to high performances advanced scenario discharges with qmin above unity is generally set by the (2,1) magneto-hydro-dynamic (MHD) mode in JET. We investigate here the possibility that this mode is a (2,1) neoclassical tearing mode (NTM) by computing the critical island width at which such mode would be unstable, using a non-linear MHD code where the relevant bootstrap current physics is accounted for. We show that the triggering of a (2,1) NTM is consistent with a lowering of the critical island width as the plasma current diffuses towards the centre. This is explained partly by the increase in the magnetic shear at the resonant surface, which weakens the curvature stabilization term, as found in the analytical framework of a generalized Rutherford equation. A comparison with experiment is made in the non-linear regime, showing encouraging results on the dynamics of the confinement degradation and mode structure.
- Published
- 2010
- Full Text
- View/download PDF
39. Non-linear modeling of core MHD in tokamaks
- Author
-
Jean-François Luciani, Patrick Maget, Hinrich Lütjens, F. Halpern, D. Leblond, Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Resistive touchscreen ,Tokamak ,Physical model ,Numerical analysis ,Mechanics ,Electron ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Ion ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Diamagnetism ,Statistical physics ,Magnetohydrodynamics ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
The fully implicit 3D two-fluid MHD code XTOR-2F has been developed to allow an easy implementation of physical models beyond MHD. The numerical method of solution used in XTOR-2F is presented briefly. The code is then applied to the investigation of the long time dynamics of internal kinks, first within the framework of resistive MHD including thermal transport and next adding more refined effects such as ion and electron diamagnetic rotations and separate density and pressure evolutions.
- Published
- 2009
- Full Text
- View/download PDF
40. Investigation of steady-state tokamak issues by long pulse experiments on Tore Supra
- Author
-
Nicolas Crouseilles, R. Guirlet, J. Hourtoule, W. Xiao, J. L. Gardarein, Frédéric Schwander, E. Delchambre, A. Martinez, F. Bouquey, D. Boilson, M. Richou, L. Allegretti, V. Lamaison, T. Loarer, B. Lacroix, A. Vatry, W. Zwingmann, D. Ciazynski, J. Decker, P. Hertout, A. Bécoulet, R. Abgrall, M. Chatelier, B. Guillerminet, J. Lasalle, Yannick Marandet, M. Lipa, S. Nicollet, C. Reux, F. Benoit, E. Delmas, P. Reynaud, J. Y. Journeaux, F. Jullien, H. Bottollier-Curtet, Y. Buranvand, M. Schneider, D. Moreau, Karl Vulliez, M. Tena, P. Pastor, C. Le Niliot, S. Balme, G. Falchetto, V. Martin, L. Svensson, S. H. Hong, C. Laviron, M. Houry, J. M. Theis, S. Madeleine, T. Hutter, T. Salmon, L. Manenc, C. Bouchand, M. Davi, S. Rosanvallon, N. Dolgetta, Pascale Roubin, Eric Nardon, L.-G. Eriksson, B. Pégourié, D. Douai, O. Chaibi, Patrick Mollard, Didier Mazon, J. P. Gunn, Marie Farge, M. Prou, M. Thonnat, L. Begrambekov, J. Garcia, Philippe Ghendrih, L. Colas, Jacques Blum, J. Clary, P. Spuig, C. Gil, M. Kocan, Ph. Lotte, Paolo Angelino, B. Saoutic, M. Ottaviani, P. Devynck, X. Courtois, L. Doceul, Gilles Berger-By, Patrick Tamain, Marc Missirlian, K. Schneider, Yanick Sarazin, Lena Delpech, J.M. Ané, Pascale Hennequin, A. Durocher, Patrick Maget, P. Huynh, David Henry, P. Decool, Marc Goniche, F. Clairet, Julien Hillairet, A. Geraud, J. Signoret, Stéphane Heuraux, P. Bayetti, T. Gerbaud, X. L. Zou, Y. Peysson, H. Parrat, L. Million, Jérôme Bucalossi, S. Hacquin, Clarisse Bourdelle, F. Samaille, Bernard Bertrand, E. Sonnendruker, G. Chevet, A. Simonin, Ph. Cara, J. L. Maréchal, J. Johner, M. S. Benkadda, J. C. Hatchressian, R. Magne, J. Schlosser, A. Grosman, F. Brémond, R. Masset, Estelle Gauthier, S. Song, G. Giruzzi, M. Nannini, Caroline Hernandez, H.P.L. de Esch, P. Garibaldi, R. J. Dumont, Stanislas Pamela, M. Geynet, C. Nguyen, L. Zani, A. Casati, Cyrille Honoré, G. Gros, Fabrice Rigollet, A. Argouarch, Yann Corre, A. Marcor, H. Dougnac, E. Tsitrone, C. Grisolia, D. Pacella, Guillaume Latu, Céline Martin, T. Aniel, G. Darmet, R. Daviot, J.P. Martins, J. L. Farjon, P. Magaud, A. Ekedahl, Francesca Turco, D. Elbeze, P. Beyer, S. Carpentier, Roger Reichle, F. Faisse, X. Litaudon, R. Guigon, F.G. Rimini, F. Linez, L. Gargiulo, C. Fenzi-Bonizec, G. Marbach, Alexandre Torre, P. Monier-Garbet, N. Ravenel, Laure Vermare, J.-M. Travere, Xavier Garbet, R. Mitteau, H. Roche, C. Desgranges, V. Moncada, F. Villecroze, Jean-François Luciani, G. Ciraolo, F. Kazarian, J. Roth, C. Brosset, F. Saint-Laurent, H. Nehme, T. Parisot, Nicolas Fedorczak, F. Escourbiac, D. Guilhem, J. L. Duchateau, P. Moreau, O. Meyer, D. Yu, A. L. Pecquet, V. Petrzilka, E. Trier, Roland Sabot, G. T. A. Huysmans, G. T. Hoang, E. Joffrin, L. Meunier, P. Chantant, C. Portafaix, D. Voyer, J. C. Vallet, S. Salasca, J. L. Segui, A. Santagiustina, J.F. Artaud, G. Dunand, M. Lennholm, Frederic Imbeaux, V. Grandgirard, A. Escarguel, F. Leroux, Y. Lausenaz, P. Chappuis, V. Basiuk, F. Lott, Hinrich Lütjens, Sylvain Brémond, D. Villegas, Marina Becoulet, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Association EURATOM-CEA (CEA/DSM/DRFC), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,fusion ,Tokamak ,MHD ,Nuclear engineering ,Cyclotron ,Ultra-high vacuum ,Electron ,Tore Supra ,01 natural sciences ,7. Clean energy ,010305 fluids & plasmas ,law.invention ,Nuclear physics ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,52.35 ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Magnetic confinement fusion ,plasma heating ,Plasma ,Condensed Matter Physics ,Magnetohydrodynamics - Abstract
The main results of the Tore Supra experimental programme in the years 2007–2008 are reported. They document significant progress achieved in the domain of steady-state tokamak research, as well as in more general issues relevant for ITER and for fusion physics research. Three areas are covered: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. Results presented in this paper include test and validation of a new, load-resilient concept of ion cycotron resonance heating antenna and of an inspection robot operated under ultra-high vacuum and high temperature conditions; an extensive experimental campaign (5 h of plasma) aiming at deuterium inventory and carbon migration studies; real-time control of sawteeth by electron cyclotron current drive in the presence of fast ion tails; ECRH-assisted plasma start-up studies; dimensionless scalings of transport and turbulence; transport experiments using active perturbation methods; resistive and fast-particle driven MHD studies. The potential role of Tore Supra in the worldwide fusion programme before the start of ITER operation is also discussed.
- Published
- 2009
- Full Text
- View/download PDF
41. Excitation of beta Alfvén eigenmodes in Tore-Supra
- Author
-
A. Macor, M. Goniche, V. Basiuk, Xavier Garbet, D. Elbèze, Patrick Maget, M. Schneider, J. L. Segui, C. Nguyen, J. Decker, Roland Sabot, G. T. A. Huysmans, L.-G. Eriksson, and Electrical Energy Systems
- Subjects
Physics ,Cyclotron ,Tore Supra ,Condensed Matter Physics ,Magnetic field ,law.invention ,Ion ,Nuclear Energy and Engineering ,law ,Physics::Plasma Physics ,Quantum electrodynamics ,Beta (plasma physics) ,Dispersion relation ,Landau damping ,Atomic physics ,Excitation - Abstract
Modes oscillating at the acoustic frequency and identified as beta Alfvén eigenmodes (BAEs) have been observed in Tore-Supra under ion cyclotron resonant heating. In this paper, the linear excitation threshold of these modes, thought to be driven by suprathermal ions, is calculated and compared with Tore-Supra observations. Similar studies of the linear excitation threshold of energetic particles driven modes were carried out previously for toroidal Alfvén eigenmodes or fishbones. In the case of BAEs, the main point is to understand whether the energetic particle drive is able to exceed ion Landau damping, which is expected to be important in the acoustic frequency range. For this, the BAE dispersion relation is computed and simplified in order to derive a tractable excitation criterion suitable for comparison with experiments. The observation of BAEs in Tore-Supra is found to be in agreement with the calculated criterion and confirms the possibility to trigger these modes in the presence of ion Landau damping. Moreover, the conducted analysis clearly puts forward the role of the global tunable parameters which play a role in the BAE excitation (the magnetic field, the density etc), as well as the role of some plasma profiles. In particular, the outcome of a modification of the shear or of the heating localization is found to be non-negligible and it is discussed in the paper.
- Published
- 2009
42. From MHD regime to quiescent non-inductive discharges in Tore Supra: experimental observations and MHD modelling
- Author
-
G. T. A. Huysmans, Patrick Maget, Hinrich Lütjens, M. Ottaviani, Ph. Moreau, J. L. Segui, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Physics ,Fluid mechanics ,Electron ,Plasma ,Mechanics ,Tore Supra ,Condensed Matter Physics ,01 natural sciences ,Instability ,010305 fluids & plasmas ,Amplitude ,Nuclear magnetic resonance ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,0103 physical sciences ,Diamagnetism ,Magnetohydrodynamics ,010306 general physics ,ComputingMilieux_MISCELLANEOUS - Abstract
Attempts to run non-inductive plasma discharges on Tore Supra sometimes fail due to the triggering of magneto-hydro-dynamic (MHD) instabilities that saturate at a large amplitude, producing degraded confinement and loss of wave driven fast electrons (the so-called MHD regime (Maget et al 2005 Nucl. Fusion 45 69–80)). In this paper we investigate the transition to this soft (in the sense of non-disruptive) MHD limit from experimental observations, and compare it with non-linear code predictions. Such a comparison suggests that different non-linear regimes, with periodic relaxations or saturation, are correctly understood. However, successful non-inductive discharges without detectable magnetic island at q = 2 cannot be reproduced if realistic transport coefficients are used in the computation. Additional physics seems mandatory for explaining these discharges, such as diamagnetic effects, that could also justify cases of abrupt transition to the MHD regime.
- Published
- 2009
- Full Text
- View/download PDF
43. Redistribution of suprathermal electrons due to fishbone frequency jumps
- Author
-
G. T. Hoang, J. Decker, G. Giruzzi, D. Elbèze, Y. Peysson, Jean-Francois Artaud, Patrick Maget, Roland Sabot, C. Nguyen, Didier Mazon, Xavier Garbet, M. Goniche, D. Molina, J. L. Segui, and A. Macor
- Subjects
Physics ,Tokamak ,General Physics and Astronomy ,Electron ,Tore Supra ,law.invention ,Physics::Plasma Physics ,law ,Electron temperature ,Redistribution (chemistry) ,Electromagnetic electron wave ,Magnetohydrodynamics ,Atomic physics ,Electron confinement - Abstract
MHD instabilities driven by fast electrons identified as fishbonelike modes have been detected on Tore Supra during lower hybrid current drive discharges. Direct experimental evidence is reported of a novel feature: the regular redistribution of suprathermal electrons toward external tokamak regions which are correlated to periodic mode frequency jumps. Sharp drops of the electron temperature time trace are factually linked to the cyclical deterioration of the fast electron confinement.
- Published
- 2008
44. Nonlinear magnetohydrodynamic simulation of Tore Supra hollow current profile discharges
- Author
-
Jean-François Luciani, Patrick Maget, M. Ottaviani, Xavier Garbet, Hinrich Lütjens, G. T. A. Huysmans, Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Tokamak ,Magnetic reconnection ,Electron ,Mechanics ,Plasma ,Tore Supra ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph] ,Physics::Plasma Physics ,law ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Space Physics ,0103 physical sciences ,Magnetohydrodynamic drive ,Magnetohydrodynamics ,Atomic physics ,010306 general physics ,Current density ,ComputingMilieux_MISCELLANEOUS - Abstract
Magnetohydrodynamic (MHD) activity often undermines the realization of fully noninductive plasma discharges in the Tore Supra tokamak [J. Jacquinot, Nucl. Fusion 45, S118 (2005)], by producing large degradation of electron energy confinement in the plasma core and the bifurcation to a regime with permanent MHD activity. The nonlinear evolution of MHD modes in these hollow current density profile discharges is studied with the full-scale three-dimensional MHD code XTOR [K. Lerbinger and J.-F. Luciani, J. Comput. Phys. 97, 444 (1991)] and compared with experimental features. Large confinement degradation is predicted when q(0) is close to 2. This derives either from the full reconnection of an unstable double-tearing mode, or from the coupling between a single tearing mode and adjacent stable modes in a region with reduced magnetic shear.
- Published
- 2007
- Full Text
- View/download PDF
45. Advances in the physics basis for the European DEMO design
- Author
-
Patrick Maget, E. Fable, Emanuele Poli, Massimiliano Mattei, H. Zohm, Raffaele Albanese, C. Reux, C. Angioni, G. Ramogida, Ambrogio Fasoli, M. Bernert, G. Federici, J.F. Artaud, G. Giruzzi, J. Aubert, Fabio Villone, Roberto Ambrosino, Leena Aho-Mantila, M. Wischmeier, Ronald Wenninger, J. Garcia, Frederik Arbeiter, M. Schneider, B. Sieglin, Frank Jenko, F. Maviglia, CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), VTT Technical Research Centre of Finland (VTT), Assoc. Euratom-ENEA-CREATE, Universita Mediterranea of Reggio Calabria [Reggio Calabria], Max-Planck-Institut für Plasmaphysik [Garching] (IPP), Association EURATOM-CEA (CEA/DSM/DRFC), Università degli studi di Napoli Federico II, Laboratoire de Physique des Plasmas (LPP), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École polytechnique (X)-Sorbonne Université-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), European Project: 633053,H2020,EURATOM-Adhoc-2014-20,EUROfusion(2014), EUROfusion, Karlsruher Institut für Technologie (KIT), Institut de Physique du Globe de Paris (IPGP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Universita degli studi di Napoli 'Parthenope' [Napoli], Centre de Recherches en Physique des Plasmas (CRPP), Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut de Recherche sur la Fusion par confinement Magnétique (IRFM), Institut de Génétique Moléculaire de Montpellier (IGMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Italian National agency for new technologies, Energy and sustainable economic development [Frascati] (ENEA), Università degli studi di Cassino e del Lazio Meridionale (UNICAS), Wenninger, R., Arbeiter, F., Aubert, J., Aho Mantila, L., Albanese, R., Ambrosino, R., Angioni, C., Artaud, J. F., Bernert, M., Fable, E., Fasoli, A., Federici, G., Garcia, J., Giruzzi, G., Jenko, F., Maget, P., Mattei, Massimiliano, Maviglia, F., Poli, E., Ramogida, G., Reux, C., Schneider, M., Sieglin, B., Villone, F., Wischmeier, M., Zohm, H., Laboratoire Technologie d'Assemblage (LTA), Service d'Etudes Mécaniques et Thermiques (SEMT), Département de Modélisation des Systèmes et Structures (DM2S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département de Modélisation des Systèmes et Structures (DM2S), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, University of Naples Federico II = Università degli studi di Napoli Federico II, Università degli Studi di Napoli 'Parthenope' = University of Naples (PARTHENOPE), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Aho-Mantila, L., Artaud, J. -F., and Mattei, M.
- Subjects
Nuclear and High Energy Physics ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Basis (linear algebra) ,MHD ,Condensed Matter Physic ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Fusion power ,Condensed Matter Physics ,7. Clean energy ,disruption ,scenario ,fast particle ,fast particles ,Conceptual design ,[SDU]Sciences of the Universe [physics] ,Iter ,transport ,Systems engineering ,ddc:620 ,Current (fluid) ,DEMO ,PWI ,Engineering & allied operations - Abstract
International audience; in the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.
- Published
- 2015
- Full Text
- View/download PDF
46. Long Pulse Operation on Tore-Supra: Towards Steady State
- Author
-
B. Schunke, A. Géraud, L. Colas, B. Pégourié, P. Monier-Garbet, Patrick Maget, F. Saint-Laurent, E. Dufour, T. Loarer, C. Brosset, James Paul Gunn, V. Basiuk, S. Bremond, R. Mitteau, J.C. Vallet, M. Chantant, G.T. Hoang, P. Hertout, F. Kazarian, J. Bucalossi, D. Mazon, E. Tsitrone, R. Guirlet, Nicolas Jc Commaux, and P. Moreau
- Subjects
Physics ,Steady state (electronics) ,business.industry ,Oscillation ,Nuclear engineering ,Electrical engineering ,Plasma ,Tore Supra ,Physics::Plasma Physics ,Pinch ,Electron temperature ,Plasma diagnostics ,Magnetohydrodynamics ,business - Abstract
The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long‐duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non‐inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non‐inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.
- Published
- 2006
- Full Text
- View/download PDF
47. Giant oscillations of electron temperature during steady-state operation on Tore Supra
- Author
-
E. Joffrin, G. Giruzzi, F. Imbeaux, A. Sirinelli, J. L. Segui, Jean-Francois Artaud, Patrick Maget, D. Elbèze, V. S. Udintsev, Roland Sabot, G. T. A. Huysmans, and Didier Mazon
- Subjects
Physics ,Tokamak ,Steady state ,General Physics and Astronomy ,Plasma ,Tore Supra ,law.invention ,Amplitude ,Physics::Plasma Physics ,law ,Electron temperature ,Plasma diagnostics ,Atomic physics ,Magnetohydrodynamics - Abstract
During fully noninductively driven discharges in the Tore Supra tokamak, large spontaneous oscillations of the core electron temperature (DeltaTe/Te>50%) have been observed for the first time. They occurred during the standard O regime, which is itself characterized by periodic oscillations of much smaller amplitude. The "giant" oscillations appear to involve distinct mechanisms with respect to the O regime and provide a spectacular example of the complex nonlinear interactions between energy confinement, noninductive current sources, and MHD that may occur in a tokamak plasma during steady-state operation.
- Published
- 2005
48. Synergy of Electron-Cyclotron and Lower-Hybrid Current Drive in Steady-State Plasmas
- Author
-
G. T. Hoang, Gustavo Granucci, J. L. Segui, R. J. Dumont, F. Imbeaux, Patrick Maget, Gilles Berger-By, Alessandro Bruschi, F. Bouquey, R. Magne, M. Lennholm, G. Giruzzi, Ph. Bibet, J. Clary, C. Darbos, A. Ekedahl, and Jean-Francois Artaud
- Subjects
Physics ,Steady state ,Tokamak ,General Physics and Astronomy ,Magnetic confinement fusion ,Plasma ,Electron ,Tore Supra ,Electron cyclotron resonance ,law.invention ,___ ,Physics::Plasma Physics ,law ,Atomic physics ,Current (fluid) - Abstract
Improvement (up to a factor of approximately 4) of the electron-cyclotron (EC) current drive efficiency in plasmas sustained by lower-hybrid (LH) current drive has been demonstrated in stationary conditions on the Tore Supra tokamak. This was made possible by feedback controlled discharges at zero loop voltage, constant plasma current, and constant density. This effect, predicted by kinetic theory, results from a favorable interplay of the velocity space diffusions induced by the two waves: the EC wave pulling low-energy electrons out of the Maxwellian bulk, and the LH wave driving them to high parallel velocities.
- Published
- 2004
- Full Text
- View/download PDF
49. Progress in the theory of magnetic reconnection phenomena
- Author
-
W. Zwingmann, Francesco Porcelli, Dominique Escande, Fulvio Militello, N. Arcis, Patrick Maget, Daniela Grasso, and M. Ottaviani
- Subjects
Ohm's law ,Physics ,Magnetic line ,Computer simulation ,Plasma confinement ,Magnetic confinement fusion ,Magnetic reconnection ,Mechanics ,Condensed Matter Physics ,Nuclear physics ,symbols.namesake ,Nuclear Energy and Engineering ,Physics::Plasma Physics ,Plasma instability ,Physics::Space Physics ,symbols ,Mhd instability - Abstract
Recent theoretical work on magnetic reconnection in hot plasma confinement devices is reviewed. The presentation highlights the common aspects of reconnection phenomena, and current research trends are emphasized. Progress in understanding the dynamics of slowly evolving modes of the tearing family, based on advanced analytic techniques and numerical simulation, as well as of faster modes that lead to internal disruptions, is reported.
- Published
- 2004
50. New tokamak plasma regime with stationary temperature oscillations
- Author
-
Patrick Maget, Jean-Francois Artaud, F. Imbeaux, G. Giruzzi, A. Becoulet, X. Litaudon, J. L. Segui, G. T. Hoang, B. Saoutic, Xavier Garbet, and G. T. A. Huysmans
- Subjects
Physics ,Tokamak ,General Physics and Astronomy ,Plasma ,Tore Supra ,Instability ,law.invention ,Physics::Plasma Physics ,law ,Heat transfer ,Electron temperature ,Magnetohydrodynamics ,Atomic physics ,Diffusion (business) - Abstract
During noninductively driven discharges in the Tore Supra tokamak, steady sinusoidal oscillations of the central electron temperature, lasting as long as 2 min, have been observed for the first time. Having no helical structure, they cannot be ascribed to any known MHD instability. The most plausible explanation of this new phenomenon is that the plasma current density and the electron temperature evolve as a nonlinearly coupled predator-prey system. This interpretation is supported by the numerical solution of coupled resistive current diffusion and heat transport equations.
- Published
- 2003
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.