459 results on '"Pérez-Maqueda, Luis Allan"'
Search Results
2. SOLID-STATE SPECTROSCOPIC, THERMOKINETICS AND THERMAL ANALYSIS OF ACECLOFENAC COORDINATION COMPLEXES WITH LANTHANUM AND GADOLINIUM
- Author
-
Melo, Laís, primary, Carvalho, Cláudio, additional, Sánchez Jiménez, Pedro Enrique, additional, Sequinel, Thiago, additional, Perejón, Antonio, additional, Pérez Maqueda, Luis Allan, additional, and Colman, Tiago, additional
- Published
- 2025
- Full Text
- View/download PDF
3. Determination of the activation energy under isothermal conditions: revisited
- Author
-
Arcenegui-Troya, Juan, Sánchez-Jiménez, Pedro Enrique, Perejón, Antonio, and Pérez-Maqueda, Luis Allan
- Published
- 2023
- Full Text
- View/download PDF
4. Steam-enhanced calcium-looping performance of limestone for thermochemical energy storage: The role of particle size
- Author
-
Arcenegui-Troya, Juan, Sánchez-Jiménez, Pedro Enrique, Perejón, Antonio, Valverde, José Manuel, and Pérez-Maqueda, Luis Allan
- Published
- 2022
- Full Text
- View/download PDF
5. New approaches on carbonate based thermochemical energy storage systems integrated with concentrated solar energy
- Author
-
Pérez Maqueda, Luis Allan, Sáchez Jiménez, Pedro Enrique, Universidad de Sevilla. Departamento de Química Inorgánica, Mohamed Amghar, Nabil, Pérez Maqueda, Luis Allan, Sáchez Jiménez, Pedro Enrique, Universidad de Sevilla. Departamento de Química Inorgánica, and Mohamed Amghar, Nabil
- Abstract
Uno de los principales retos sociales actuales es la reducción de las emisiones de CO2 a la atmósfera, derivadas de la quema de combustibles fósiles utilizados principalmente en centrales térmicas para producir energía. Las energías renovables han surgido como una alternativa limpia y viable para disminuir los gases de efecto invernadero y las emisiones de CO2, aunque su intermitencia es un obstáculo importante para su aplicación universal. La energía solar concentrada (CSP en inglés) mediante tecnología de torre consiste en la concentración de la radiación solar lo que permite alcanzar temperaturas altas. El mayor reto de la tecnología solar es la limitada duración de la radiación (aproximadamente, 8 horas). Este problema puede superarse en parte mediante almacenamiento de energía térmica, entre las cuales el almacenamiento termoquímico de energía (TCES en inglés) es la menos desarrollada, pero posee la mayor densidad energética. Esta tesis examina diferentes sistemas TCES como complemento a las centrales de torre CSP. El enfoque propuesto consiste en utilizar reacciones químicas en estado sólido para almacenar calor. Aunque existen numerosos sistemas TCES, la tecnología CaCO3/CaO ha sido ampliamente estudiado debido a su alta densidad energética, amplia disponibilidad y bajo coste. Además, las temperaturas implicadas son adecuadas para su integración en CSP. En concreto, esta tesis doctoral evalúa el impacto de las condiciones de CO2 en circuito cerrado en las aplicaciones de TCES. La temperatura de calcinación supera los 900 °C para lograr una rápida descomposición, aunque provoca una desactivación más fuerte debido a la sinterización. Aquí, proponemos el uso de una presión absoluta de CO2 reducida para igualar la temperatura óptima de la torre CSP. La calcinación en condiciones de vacío suave de CO2 (a 0,1 y 0,01 bar) es similar al uso de una atmósfera inerte (como N2, Ar y He) para la descomposición de la caliza sin alterar la atmósfera de reacción. También, se, The extensive rely on fossil fuel sources, although it is the primarily responsible for the technological advancements since the industrial revolution, it has also contributed to the acceleration of climate change era. Among the main current societal challenges is the reduction of CO2 emissions into the atmosphere, which is derived from the burning of fossil fuels used mainly in thermal plants to produce energy. Renewable energies have emerged as a clean and viable alternative to decreasing the rate of greenhouse gases (GHG) and CO2 emissions. The deployment of renewable energy sources worldwide is extensive, although their intermittency is a significant hindrance to their universal application. Solar radiation is considered one of the most promising sources for reducing emissions and its integration with current available technologies is relevant. The Concentrated Solar Power (CSP) tower technology involves the concentration of solar radiation by heliostats onto a receiver on the top of a tower, allowing for high temperatures to be achieved. The greatest challenge for solar technology is the limited duration of solar time during the day (roughly, 8 h). This issue can be partially overcome through Thermal Energy Storage (TES) solutions, among which, the thermochemical energy storage (TCES) is the least developed but holds the highest energy density. This thesis examines different TCES solutions as a complement to CSP tower plants. The proposed approach involves utilizing solid-state chemical reactions to store heat. While there are a numerous TCES systems available, natural carbonate materials are considered the most promising option. Of these, the CaCO3/CaO system has been amply studied due to its high energy density, wide availability and low-cost. Moreover, the involved temperatures are suitable for integration into CSP. Specifically, this doctoral thesis evaluates the impact of closed-loop CO2 conditions on TCES applications. The calcination temperature exceeds
- Published
- 2024
6. Influence of Atmosphere on the Formation of High-Entropy Oxides of the Co-Cu-Fe-Mg-Mn-Ni-O System by Reactive Flash Sintering
- Author
-
Manchón-Gordón, Alejandro F., primary, Lobo-Llamas, C., additional, Molina Molina, Sandra, additional, Perejón, Antonio, additional, Sánchez-Jiménez, Pedro Enrique, additional, and Pérez-Maqueda, Luis Allan, additional
- Published
- 2024
- Full Text
- View/download PDF
7. Touch-free reactive flash sintering of dense strontium hexaferrite permanent magnet
- Author
-
Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Física de la Materia Condensada, Universidad de Sevilla. TEP137: Máquinas y Motores Térmicos, Universidad de Sevilla. TEP110: Reactividad de Sólidos, European Union (UE), Junta de Andalucía, Office of Naval Research (ONR). United States, Association Fulbright, Jalali, Syed I.A., Manchón-Gordón, Alejandro F., Chacartegui, Ricardo, Sánchez Jiménez, Pedro Enrique, Blázquez Gámez, Javier Sebastián, Escamilla Perejón, Antonio, Raj, Rishi, Pérez-Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Física de la Materia Condensada, Universidad de Sevilla. TEP137: Máquinas y Motores Térmicos, Universidad de Sevilla. TEP110: Reactividad de Sólidos, European Union (UE), Junta de Andalucía, Office of Naval Research (ONR). United States, Association Fulbright, Jalali, Syed I.A., Manchón-Gordón, Alejandro F., Chacartegui, Ricardo, Sánchez Jiménez, Pedro Enrique, Blázquez Gámez, Javier Sebastián, Escamilla Perejón, Antonio, Raj, Rishi, and Pérez-Maqueda, Luis Allan
- Abstract
This work presents an extension of the touch-free flash sintering technique. In the proposed technique, chemical reaction and sintering occur in a single step, without the use of electrodes, in the presence of electric and magnetic fields.We show that a dense, single-phase strontium hexaferrite magnet can be produced from a mixture of commercial carbonate and oxide powders in a single step in a little more than a minute. This new technique implies significant reduction in energy and time consumption (primarily because of ultrafast processing) relative to conventional sintering.
- Published
- 2023
8. Determination of the Activation Energy Under Isothermal Conditions: Revisited
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, European Union (UE), Ministerio de Ciencia e Innovación (MICIN). España, Junta de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Arcenegui Troya, Juan, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, European Union (UE), Ministerio de Ciencia e Innovación (MICIN). España, Junta de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Arcenegui Troya, Juan, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, and Pérez Maqueda, Luis Allan
- Abstract
The kinetic analysis of solid-state processes aims at obtaining fundamental information that can be used for predicting the time evolution of a process within a wide range of conditions. It is an extended belief that the determination of the kinetic parameters from the analysis of curves recorded under isothermal conditions is strongly conditioned by the kinetic model used to fit the experimental data. Thus, much effort is devoted to finding the model that truly describes a process in order to calculate the kinetic parameters with accuracy. In this work, we demonstrate that the value of activation energy determined from kinetic analysis of isothermal curves is independent of the kinetic model used to fit the experimental data and, taking advantage of the underlying reason for this, a method for determining the activation energy with two isothermal curves is proposed.
- Published
- 2023
9. A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification
- Author
-
Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. TEP137: Máquinas y motores térmicos, Ministerio de Ciencia e Innovación (MICIN). España, Ministerio de Educación, Cultura y Deporte (MECD). España, Unión Europea - H2020, Lizana Moral, Francisco Jesús, Halloran, Claire E., Wheeler, Scot, Amghar, Nabil, Renaldi, Renaldi, Killendahl, Markus, Pérez Maqueda, Luis Allan, McCulloch, Malcolm, Chacartegui, Ricardo, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. TEP137: Máquinas y motores térmicos, Ministerio de Ciencia e Innovación (MICIN). España, Ministerio de Educación, Cultura y Deporte (MECD). España, Unión Europea - H2020, Lizana Moral, Francisco Jesús, Halloran, Claire E., Wheeler, Scot, Amghar, Nabil, Renaldi, Renaldi, Killendahl, Markus, Pérez Maqueda, Luis Allan, McCulloch, Malcolm, and Chacartegui, Ricardo
- Abstract
Heating decarbonisation through electrification is a difficult challenge due to the considerable increase in peak power demand. This research proposes a novel modelling approach that utilises easily accessible national-level data to identify the required heat storage volume in buildings to decrease peak power demand and maximises carbon reductions associated with electrified heating technologies through smart demand-side response. The approach assesses the optimal shifting of heat pump operation to meet thermal heating demand according to different heat storage capacities in buildings, which are defined in relation to the time (in hours) in which the heating demand can be provided directly from the heat battery, without heat pump operation. Ten scenarios (S) are analysed: two baselines (S1–S2) and eight load shifting strategies (S3–S10) based on hourly and daily demand-side responses. Moreover, they are compared with a reference scenario (S0), with heating currently based on fossil fuels. The approach was demonstrated in two different regions, Spain and the United Kingdom. The optimal heat storage capacity was found on the order of 12 and 24 h of heating demand in both countries, reducing additional power capacity by 30–37% and 40–46%, respectively. However, the environmental benefits of heat storage alternatives were similar to the baseline scenario due to higher energy consumption and marginal power generation based on fossil fuels. It was also found that load shifting capability below 4 h presents limited benefits, reducing additional power capacity by 10% at the national scale. The results highlight the importance of integrated heat storage technologies with the electrification of heat in highly gas-dependent regions. They can mitigate the need for an additional fossil-based dispatchable generation to meet high peak demand. The modelling approach provides a high-level strategy with regional specificity that, due to common datasets, can be easily replicated globa
- Published
- 2023
10. Magnesium Calcites for Co2 Capture and Thermochemical Energy Storage Using the Calcium-Looping Process
- Author
-
Arcenegui-Troya, Juan, primary, Perejón, Antonio, additional, Sánchez-Jiménez, Pedro Enrique, additional, Pérez-Maqueda, Luis Allan, additional, and Diánez, María Jesús, additional
- Published
- 2023
- Full Text
- View/download PDF
11. Low Temperature Magnetic Transition of BiFeO₃ Ceramics Sintered by Electric Field-Assisted Methods: Flash and Spark Plasma Sintering
- Author
-
Manchón Gordón, Alejandro F., Perejón Pazo, Antonio, Gil González, Eva, Kowalczyk, M., Sánchez Jiménez, Pedro Enrique, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Química, and Universidad de Sevilla. TEP-110 Reactividad de Sólidos
- Subjects
Bismuth ferrite ,Spark plasma sintering ,Magnetic properties ,Flash sintering ,Mechanosynthesis - Abstract
Low temperature magnetic properties of BiFeO₃ powders sintered by flash and spark plasma sintering were studied. An anomaly observed in the magnetic measurements at 250 K proves the clear existence of a phase transition. This transformation, which becomes less well-defined as the grain sizes are reduced to nanometer scale, was described with regard to a magneto-elastic coupling. Furthermore, the samples exhibited enhanced ferromagnetic properties as compared with those of a pellet prepared by the conventional solid-state technique, with both a higher coercivity field and remnant magnetization, reaching a maximum value of 1.17 kOe and 8.5 10₋₃ emu/g, respectively, for the specimen sintered by flash sintering, which possesses the smallest grains. The specimens also show more significant exchange bias, from 22 to 177 Oe for the specimen prepared by the solid-state method and flash sintering technique, respectively. The observed increase in this parameter is explained in terms of a stronger exchange interaction between ferromagnetic and antiferromagnetic grains in the case of the pellet sintered by flash sintering. MCIN/AEI/10.13039/501100011033 and ERDF A way of making Europe by the European Union CTQ2017-83602-C2-1-R Junta de Andalucía-Consejería de Conocimiento, Investigación y Universidad-Fondo Europeo de Desarrollo Regional Programa Operativo FEDER Andalucía 2014–2020 P18-FR-1087 INTRAMURAL-CSIC grant number 201960E092
- Published
- 2022
12. Determination of the activation energy under isothermal conditions: revisited
- Author
-
Arcenegui-Troya, Juan, primary, Sánchez-Jiménez, Pedro Enrique, additional, Perejón, Antonio, additional, and Pérez-Maqueda, Luis Allan, additional
- Published
- 2022
- Full Text
- View/download PDF
13. A novel Multi‐Phase Flash Sintering (MPFS) technique for 3D complex‐shaped ceramics
- Author
-
Molina-Molina, Sandra, Gil González, Eva, Durán Olivencia, Francisco José, Valverde Millán, José Manuel, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Universidad de Sevilla. FQM253: Electrohidrodinámica y Medios Granulares Cohesivos, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER project CTQ2017–83602-C2–1-R, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER project CTQ2017–83602-C2–2-R, Junta de Andalucía-Consejería de Conocimiento, Investigación y Universidad and FEDER project P18-FR-1087, and Junta de Andalucía-Consejería de Conocimiento, Investigación y Universidad and FEDER project US-1262507
- Subjects
Flash sintering ,Ceramic materials ,Alternating current ,Complex shape ,Yttria-stabilized zirconia ,Field-assisted sintering techniques - Abstract
This work demonstrates the first proof-of-concept of Multi-Phase Flash Sintering (MPFS). This novel tech- nique essentially consists of applying a rotating electric field to the sample by means of a multi-phase voltage source as furnace temperature increases. Several ceramic materials with different types of elec- trical conductivities are sintered within seconds at furnace temperatures much lower than those used for traditional DC flash sintering due to the higher power densities administered by a multi-phase power supply. Thus, ceramic materials are flashed at relatively lower applied voltages which minimizes un- desired phenomena such as localization and preferential current pathways. Furthermore, MPFS allows diverse electrode configurations to promote a more uniform electric field distribution, enhancing the sin- tering of 3D complex-shaped specimens. MPFS could be a true breakthrough in materials processing, as 3D complex-shaped specimens are homogeneously sintered at reduced temperatures, while keeping all the advantages of conventional flash sintering.
- Published
- 2022
14. Effect of Steam Injection during Carbonation on the Multicyclic Performance of Limestone (CaCO3) under Different Calcium Looping Conditions: A Comparative Study
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Ciencia, Innovación y Universidades (MICINN). España, Junta de Andalucía, Arcenegui Troya, Juan Jesús, Moreno García, Virginia, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Ciencia, Innovación y Universidades (MICINN). España, Junta de Andalucía, Arcenegui Troya, Juan Jesús, Moreno García, Virginia, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Valverde Millán, José Manuel, and Pérez Maqueda, Luis Allan
- Abstract
This study explores the effect of steam addition during carbonation on the multicyclic performance of limestone under calcium looping conditions compatible with (i) CO2 capture from postcombustion gases (CCS) and with (ii) thermochemical energy storage (TCES). Steam injection has been proposed to improve the CO2 uptake capacity of CaO-based sorbents when the calcination and carbonation loops are carried out in CCS conditions: at moderate carbonation temperatures (∼650 °C) under low CO2 concentration (typically ∼15% at atmospheric pressure). However, the recent proposal of calcium-looping as a TCES system for integration into concentrated solar power (CSP) plants has aroused interest in higher carbonation temperatures (∼800–850 °C) in pure CO2. Here, we show that steam benefits the multicyclic behavior in the milder conditions required for CCS. However, at the more aggressive conditions required in TCES, steam essentially has a neutral net effect as the CO2 uptake promoted by the reduced CO2 partial pressure but also is offset by the substantial steam-promoted mineralization in the high temperature range. Finally, we also demonstrate that the carbonation rate depends exclusively on the partial pressure of CO2, regardless of the diluting gas employed.
- Published
- 2022
15. The SrCO3/SrO system for thermochemical energy storage at ultra-high temperature
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economia, Industria y Competitividad (MINECO). España, Junta de Andalucía, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), European Union (UE). H2020, Amghar, Nabil, Ortiz Domínguez, Carlos, Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economia, Industria y Competitividad (MINECO). España, Junta de Andalucía, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), European Union (UE). H2020, Amghar, Nabil, Ortiz Domínguez, Carlos, Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, and Sánchez Jiménez, Pedro Enrique
- Abstract
Thermochemical energy storage (TCES) has attracted interest in the last years due to the possibility of attaining high energy densities, seasonal storage capacity and greater efficiencies than currently commercial thermal energy storage systems using molten salts. This work analyses the potential of an ultra-high temperature TCES system based on the SrCO3/SrO system. The process relies upon the reversible decomposition of SrCO3 into SrO and CO2. As proposed in previous works for the integration of the Ca-Looping process to store energy in CSP plants, both the calcination (endothermic) and carbonation (exothermic) reactions are carried out in a closed CO2 loop. At these conditions, the required temperature to attain full calcination in short residence times is around 1400 °C whereas carbonation takes place at about 1200 °C. Using this process, the energy density potentially achievable by the storage material is very high (around 2000 MJ/m3) while the ultra-high carbonation temperature would improve thermoelectric efficiency. The enhancement of the multicycle performance of the SrCO3/SrO system using refractory additives is also explored. Even though current commercial CSP plants with tower technology cannot yet operate at these ultra-high temperatures, recent advances in the development of high-temperature solar receivers could allow operation at 1400 °C in the medium term. Finally, a conceptual model of the integration of the SrCO3/SrO system in a CSP plant supports higher overall efficiency and energy density, but lower solar-to-electric efficiency due to thermal losses.
- Published
- 2022
16. Overlooked pitfalls in CaO carbonation kinetics studies nearby equilibrium: Instrumental effects on calculated kinetic rate constants
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Consejo Superior de Investigaciones Científicas (CSIC), Arcenegui Troya, Juan Jesús, Durán Martín, Jonatan D., Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Consejo Superior de Investigaciones Científicas (CSIC), Arcenegui Troya, Juan Jesús, Durán Martín, Jonatan D., Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, and Sánchez Jiménez, Pedro Enrique
- Abstract
Due to its technological applications, such as CO2 capture, CaO carbonation kinetics has been extensively studied using a wide array of methods and experimental conditions. A complete understanding of carbonation kinetics is key to optimizing the operating conditions as well as to correctly design the carbonation reactor. However, there is yet no consensus on the reaction model and kinetic parameters that can best describe the CaO carbonation reaction. For instance, the value of the activation energy proposed in different works can vary up to 300%. In this work, we demonstrate that the strong influence of the thermodynamic equilibrium on CaO carbonation kinetics demands careful control of the experimental conditions to obtain meaningful kinetic parameters. Specifically, we explore the influence of three experimental parameters on carbonation kinetics: the gas flow rate, the CO2 partial pressure and the time required to fill the reactor after a gas change. We demonstrate that disregarding these aspects may lead to bogus conclusions on reaction kinetics, which could partly explain the considerable discrepancies found in the literature. The conclusions of this work are not only applicable to the process and experimental setup studied here but also to any study that involves the use of gas flow to drive a reaction.
- Published
- 2022
17. Low Temperature Magnetic Transition of BiFeO₃ Ceramics Sintered by Electric Field-Assisted Methods: Flash and Spark Plasma Sintering
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Manchón Gordón, Alejandro F., Perejón Pazo, Antonio, Gil González, Eva, Kowalczyk, M., Sánchez Jiménez, Pedro Enrique, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Manchón Gordón, Alejandro F., Perejón Pazo, Antonio, Gil González, Eva, Kowalczyk, M., Sánchez Jiménez, Pedro Enrique, and Pérez Maqueda, Luis Allan
- Abstract
Low temperature magnetic properties of BiFeO₃ powders sintered by flash and spark plasma sintering were studied. An anomaly observed in the magnetic measurements at 250 K proves the clear existence of a phase transition. This transformation, which becomes less well-defined as the grain sizes are reduced to nanometer scale, was described with regard to a magneto-elastic coupling. Furthermore, the samples exhibited enhanced ferromagnetic properties as compared with those of a pellet prepared by the conventional solid-state technique, with both a higher coercivity field and remnant magnetization, reaching a maximum value of 1.17 kOe and 8.5 10₋₃ emu/g, respectively, for the specimen sintered by flash sintering, which possesses the smallest grains. The specimens also show more significant exchange bias, from 22 to 177 Oe for the specimen prepared by the solid-state method and flash sintering technique, respectively. The observed increase in this parameter is explained in terms of a stronger exchange interaction between ferromagnetic and antiferromagnetic grains in the case of the pellet sintered by flash sintering.
- Published
- 2022
18. A novel Multi‐Phase Flash Sintering (MPFS) technique for 3D complex‐shaped ceramics
- Author
-
Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Universidad de Sevilla. FQM253: Electrohidrodinámica y Medios Granulares Cohesivos, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER project CTQ2017–83602-C2–1-R, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER project CTQ2017–83602-C2–2-R, Junta de Andalucía-Consejería de Conocimiento, Investigación y Universidad and FEDER project P18-FR-1087, Junta de Andalucía-Consejería de Conocimiento, Investigación y Universidad and FEDER project US-1262507, Molina-Molina, Sandra, Gil González, Eva, Durán Olivencia, Francisco José, Valverde Millán, José Manuel, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Universidad de Sevilla. FQM253: Electrohidrodinámica y Medios Granulares Cohesivos, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER project CTQ2017–83602-C2–1-R, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER project CTQ2017–83602-C2–2-R, Junta de Andalucía-Consejería de Conocimiento, Investigación y Universidad and FEDER project P18-FR-1087, Junta de Andalucía-Consejería de Conocimiento, Investigación y Universidad and FEDER project US-1262507, Molina-Molina, Sandra, Gil González, Eva, Durán Olivencia, Francisco José, Valverde Millán, José Manuel, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, and Pérez Maqueda, Luis Allan
- Abstract
This work demonstrates the first proof-of-concept of Multi-Phase Flash Sintering (MPFS). This novel tech- nique essentially consists of applying a rotating electric field to the sample by means of a multi-phase voltage source as furnace temperature increases. Several ceramic materials with different types of elec- trical conductivities are sintered within seconds at furnace temperatures much lower than those used for traditional DC flash sintering due to the higher power densities administered by a multi-phase power supply. Thus, ceramic materials are flashed at relatively lower applied voltages which minimizes un- desired phenomena such as localization and preferential current pathways. Furthermore, MPFS allows diverse electrode configurations to promote a more uniform electric field distribution, enhancing the sin- tering of 3D complex-shaped specimens. MPFS could be a true breakthrough in materials processing, as 3D complex-shaped specimens are homogeneously sintered at reduced temperatures, while keeping all the advantages of conventional flash sintering.
- Published
- 2022
19. Albero: An alternative natural material for solar energy storage by the calcium-looping process
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. TEP110: Reactividad de sólidos, Universidad de Sevilla. TEP137: Máquinas y motores térmicos, Universidad de Sevilla. FQM253: Electrohidrodinámica y medios granulares cohesivos, Moreno, Virginia, Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Chacartegui, Ricardo, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. TEP110: Reactividad de sólidos, Universidad de Sevilla. TEP137: Máquinas y motores térmicos, Universidad de Sevilla. FQM253: Electrohidrodinámica y medios granulares cohesivos, Moreno, Virginia, Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Chacartegui, Ricardo, Valverde Millán, José Manuel, and Pérez Maqueda, Luis Allan
- Abstract
Large-scale thermochemical energy storage (TCES) is gaining relevance as an alternative to current thermal energy storage systems in Concentrated Solar Power plants. Among the different systems, the reversible reaction between CaO and CO2 stands out due to the wide availability and low cost of the raw material: limestone. Direct solar absorption of the storage media would improve the efficiency of solar-to-thermal energy storage due to reduced thermal transfer barriers, but the solar optical absorption of CaCO3 is poor. In this work, we propose the use of a Ca-rich calcarenite sedimentary rock so-called albero as an alternative to limestone. We demonstrate that this reddish material exhibits an average solar absorptance that is approximately ten times larger than limestone. Moreover, the multicycle carbonation/calcination performance under different experimental conditions has been studied by thermogravimetry, and similar values to those exhibited for limestone have been obtained. Besides, the material is cheap (6 €/ton), and simulations showed that the use of this material would significantly improve the overall CaL-CSP efficiency at the industrial level.
- Published
- 2022
20. Steam-enhanced calcium-looping performance of limestone for thermochemical energy storage: The role of particle size
- Author
-
Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Junta de Andalucía, Universidad de Sevilla, Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Junta de Andalucía, Universidad de Sevilla, Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Valverde Millán, José Manuel, and Pérez Maqueda, Luis Allan
- Abstract
Steam injection has been proposed to attenuate the decay of CaO reactivity during calcium looping (CaL) under operating conditions compatible with carbon capture and storage. However, it is yet unknown whether the perceived advantages granted by steam hold under the distinct operating conditions required for the integration of the CaL process as a thermochemical energy storage system in Concentrating Solar Power Plants (CaL-CSP). Here, we study the influence of steam in conditions compatible with a CaL-CSP scheme and assess its impact when injected only during one stage; either calcination or carbonation, and also when it is present throughout the entire loop. The results presented here demonstrate that steam boosts the CaO multicycle performance in a CO2 closed loop to attain residual conversion values similar to those achieved at moderate temperatures under inert gas. Moreover, it is found that the enhancement in multicycle activity is more pronounced for larger particles.
- Published
- 2022
21. Flash Sintering Research Perspective: A Bibliometric Analysis
- Author
-
Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER grant CTQ2017–83602-C2–1-R, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER grant CTQ2017–83602-C2–2-R, Junta de Andalucía-Consejería de Economía, Conocimiento, Empresas y Universidad grant P18-FR-1087, FEDER grant US-1262507, INTRAMURAL-CSIC grant 201960E092, INTRAMURAL-CSIC grant 202060I004, Gil González, Eva, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER grant CTQ2017–83602-C2–1-R, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER grant CTQ2017–83602-C2–2-R, Junta de Andalucía-Consejería de Economía, Conocimiento, Empresas y Universidad grant P18-FR-1087, FEDER grant US-1262507, INTRAMURAL-CSIC grant 201960E092, INTRAMURAL-CSIC grant 202060I004, Gil González, Eva, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, and Perejón Pazo, Antonio
- Abstract
Flash Sintering (FS), a relatively new Field-Assisted Sintering Technique (FAST) for ceramic processing, was proposed for the first time in 2010 by Prof. Rishi Raj’s group from the University of Colorado at Boulder. It quickly grabbed the attention of the scientific community and since then, the field has rapidly evolved, constituting a true milestone in materials processing with the number of publications growing year by year. Moreover, nowadays, there is already a scientific community devoted to FS. In this work, a general picture of the scientific landscape of FS is drawn by bibliometric analysis. The target sources, the most relevant documents, hot and trending topics as well as the social networking of FS are unveiled. A separate bibliometric analysis is also provided for Reaction or Reactive Flash Sintering (RFS), where not only the sintering, but also the synthesis is merged into a single step. To the best of our knowledge, this is the first study of this nature carried out in this field of research and it can constitute a useful tool for researchers to be quickly updated with FS as well as to strategize future research and publishing approaches.
- Published
- 2022
22. Reactive flash sintering of SrFe12O19 ceramic permanent magnets
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Física de la Materia Condensada, Ministerio de Ciencia e Innovación (MICIN). España, Junta de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Manchón Gordón, Alejandro F., Sánchez Jiménez, Pedro Enrique, Blázquez Gámez, Javier Sebastián, Perejón Pazo, Antonio, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Física de la Materia Condensada, Ministerio de Ciencia e Innovación (MICIN). España, Junta de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Manchón Gordón, Alejandro F., Sánchez Jiménez, Pedro Enrique, Blázquez Gámez, Javier Sebastián, Perejón Pazo, Antonio, and Pérez Maqueda, Luis Allan
- Abstract
Reactive flash-sintering technique has been used in order to obtain strontium ferrite magnets from a mixture of SrCO3 and Fe2O3 commercial powders. This technique allows preparing sintered SrFe12O19 at a furnace temperature of just 973 K during just 2 min by applying a modest field of 40 V cm-1, instead of the conventional sintering process employed in ferrite magnet manufacturing that demands high temperature and long dwell times. Analysis of structural and magnetic properties were performed as a function of time in which the flash event was held. Mössbauer spectra show the existence of five different kinds of local environments, confirming the formation of strontium hexaferrite. The resulting samples exhibit comparable magnetic properties to the state-of-the-art ferrite magnets. In particular, produced samples reach a coercivity of 0.4 T and a specific saturation magnetization of 70 Am2 kg-1.
- Published
- 2022
23. Influence of AC fields and electrical conduction mechanisms on the flash-onset temperature: Electronic (BiFeO3) vs. ionic conductors (8YSZ)
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Ciencia e Innovación (MICIN). España, Junta de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Molina Molina, Sandra, Perejón Pazo, Antonio, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Ciencia e Innovación (MICIN). España, Junta de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Molina Molina, Sandra, Perejón Pazo, Antonio, Pérez Maqueda, Luis Allan, and Sánchez Jiménez, Pedro Enrique
- Abstract
This work aims to clarify the influence of AC (up to 50 kHz) vs DC fields on the flash-onset temperature, emphasizing the role of the electrical conduction mechanism. BiFeO3 (BFO) is used as an example of electronic conductor while 8-mol % Yttria-stabilized zirconia (8YSZ) is used as an example of ionic conductor. For 8YSZ, a frequency dependence of the flash-onset temperature and flash-induced heating is observed. This is consistent with the different contributions found in the total electrical response of 8YSZ as characterized by impedance spectroscopy measurements. Estimations based on the blackbody radiation model suggest that 8YSZ samples attain higher temperatures under AC fields due to a more efficient heating. Moreover, a noticeable decrease in the activation energy for the electrical conduction after the flash is triggered is attributed to electronic conduction. Meanwhile, the lack of frequency response and insensitiveness to the type of electrical field found in the case of BFO can be attributed to its mainly electronic bulk conduction.
- Published
- 2022
24. Supercooled sodium acetate aqueous solution for long-term heat storage to support heating decarbonisation
- Author
-
Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP137: Máquinas y motores térmicos, Universidad de Sevilla. TEP110: Reactividad de sólidos, Ministerio de Ciencia e Innovación (MICIN). España, Ministerio de Economía y Competitividad (MINECO). España, Fondo Europeo de Desarrollo Regional (FEDER), INTRAMURAL-CSIC, Unión Europea - H2020, Lizana Moral, Francisco Jesús, Sánchez Jiménez, Pedro Enrique, Chacartegui, Ricardo, Becerra Villanueva, José Antonio, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP137: Máquinas y motores térmicos, Universidad de Sevilla. TEP110: Reactividad de sólidos, Ministerio de Ciencia e Innovación (MICIN). España, Ministerio de Economía y Competitividad (MINECO). España, Fondo Europeo de Desarrollo Regional (FEDER), INTRAMURAL-CSIC, Unión Europea - H2020, Lizana Moral, Francisco Jesús, Sánchez Jiménez, Pedro Enrique, Chacartegui, Ricardo, Becerra Villanueva, José Antonio, and Pérez Maqueda, Luis Allan
- Abstract
Heating decarbonisation through electrification requires the development of novel heat batteries. They should be suitable for the specific application and match the operation conditions of domestic renewable energy sources. Supercooled liquids, often considered a drawback of phase change materials, are among the most promising technologies supporting heating decarbonisation. Although some studies have shed light on stable supercooling, the fundamentals and stability remain open problems not always accompanied by relevant experimental investigations. This research critically analyses the physic and chemistry of sodium acetate (SA, NaCH3COO) aqueous solution, a low-cost, non-toxic, and abundant compound with stable supercooling for long-term heat storage. It has an appropriate phase change temperature for high-density heat storage using heat pumps or solar thermal technologies in residential applications. The existing discrepancies in literature are critically discussed through a systematic experimental evaluation, providing novel insights into efficient material design and appropriate boundary conditions for reliable material use in long-term heat batteries. Despite previous studies showing that the thermal reliability and stability of sodium acetate aqueous solution as a supercooled liquid for heat storage cannot be guaranteed, this study demonstrates that through an appropriate encapsulation and sealing method, the peritectic composition of sodium acetate solution (p-SA 58 wt%) can be used as a supercooled liquid for long-term heat storage with a stable melting temperature of 57 °C, appropriate for domestic heat technologies. It is demonstrated that energy storage efficiency can be maintained under cycling, with a constant latent heat storage capacity of 245 kJ/kg and a volumetric storage density of 314 MJ/m3. It was confirmed that the material should achieve a fully-melted state for stable supercooling. Finally, local cooling and retaining seed crystals through hi
- Published
- 2022
25. Overlooked pitfalls in CaO carbonation kinetics studies nearby equilibrium: Instrumental effects on calculated kinetic rate constants
- Author
-
Arcenegui Troya, Juan Jesús, Durán Martín, Jonatan D., Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), and Consejo Superior de Investigaciones Científicas (CSIC)
- Subjects
Power CO2 capture ,Kinetics Calcium Oxide ,Energy Storage ,Concentrated Solar ,Calcium-Looping - Abstract
Due to its technological applications, such as CO2 capture, CaO carbonation kinetics has been extensively studied using a wide array of methods and experimental conditions. A complete understanding of carbonation kinetics is key to optimizing the operating conditions as well as to correctly design the carbonation reactor. However, there is yet no consensus on the reaction model and kinetic parameters that can best describe the CaO carbonation reaction. For instance, the value of the activation energy proposed in different works can vary up to 300%. In this work, we demonstrate that the strong influence of the thermodynamic equilibrium on CaO carbonation kinetics demands careful control of the experimental conditions to obtain meaningful kinetic parameters. Specifically, we explore the influence of three experimental parameters on carbonation kinetics: the gas flow rate, the CO2 partial pressure and the time required to fill the reactor after a gas change. We demonstrate that disregarding these aspects may lead to bogus conclusions on reaction kinetics, which could partly explain the considerable discrepancies found in the literature. The conclusions of this work are not only applicable to the process and experimental setup studied here but also to any study that involves the use of gas flow to drive a reaction. España Ministerio de Economía y Competitividad and FEDER (projects CTQ2017-83602-C2-1-R and CTQ2017- 83602-C2-2-R) España Junta de Andalucía Consejería de Economía, Conocimiento, Empresas y Universidad and FEDER (projects P18-FR-1087 and US-1262507) España CSIC project 201960E092 (INTRAMURAL)
- Published
- 2022
26. The SrCO3/SrO system for thermochemical energy storage at ultra-high temperature
- Author
-
Amghar, Nabil, Ortiz Domínguez, Carlos, Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economia, Industria y Competitividad (MINECO). España, Junta de Andalucía, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), and European Union (UE). H2020
- Subjects
CSP ,Calcium looping ,Ultra-high temperature ,Thermochemical energy storage ,SrCO3 - Abstract
Thermochemical energy storage (TCES) has attracted interest in the last years due to the possibility of attaining high energy densities, seasonal storage capacity and greater efficiencies than currently commercial thermal energy storage systems using molten salts. This work analyses the potential of an ultra-high temperature TCES system based on the SrCO3/SrO system. The process relies upon the reversible decomposition of SrCO3 into SrO and CO2. As proposed in previous works for the integration of the Ca-Looping process to store energy in CSP plants, both the calcination (endothermic) and carbonation (exothermic) reactions are carried out in a closed CO2 loop. At these conditions, the required temperature to attain full calcination in short residence times is around 1400 °C whereas carbonation takes place at about 1200 °C. Using this process, the energy density potentially achievable by the storage material is very high (around 2000 MJ/m3) while the ultra-high carbonation temperature would improve thermoelectric efficiency. The enhancement of the multicycle performance of the SrCO3/SrO system using refractory additives is also explored. Even though current commercial CSP plants with tower technology cannot yet operate at these ultra-high temperatures, recent advances in the development of high-temperature solar receivers could allow operation at 1400 °C in the medium term. Finally, a conceptual model of the integration of the SrCO3/SrO system in a CSP plant supports higher overall efficiency and energy density, but lower solar-to-electric efficiency due to thermal losses. España Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigació and FEDER (contracts CTQ2017-83602- C2-1-R and -2- R) Junta de Andalucía Consejería de Conocimiento, Investigación y Universidad-Fondo Europeo de Desarrollo Regional (FEDER) (Programa Operativo FEDER Andalucía 2014–2020, projects P18-FR-1087 and US- 1262507) European Union’s Horizon 2020 research and innovation programme under grant agreement No. 727348, project SOCRATCES
- Published
- 2022
27. Influence of AC fields and electrical conduction mechanisms on the flash-onset temperature: Electronic (BiFeO3) vs. ionic conductors (8YSZ)
- Author
-
Molina Molina, Sandra, Perejón Pazo, Antonio, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Ciencia e Innovación (MICIN). España, Junta de Andalucía, and Consejo Superior de Investigaciones Científicas (CSIC)
- Subjects
YSZ ,BiFeO3 ,Flash sintering ,Alternating current - Abstract
This work aims to clarify the influence of AC (up to 50 kHz) vs DC fields on the flash-onset temperature, emphasizing the role of the electrical conduction mechanism. BiFeO3 (BFO) is used as an example of electronic conductor while 8-mol % Yttria-stabilized zirconia (8YSZ) is used as an example of ionic conductor. For 8YSZ, a frequency dependence of the flash-onset temperature and flash-induced heating is observed. This is consistent with the different contributions found in the total electrical response of 8YSZ as characterized by impedance spectroscopy measurements. Estimations based on the blackbody radiation model suggest that 8YSZ samples attain higher temperatures under AC fields due to a more efficient heating. Moreover, a noticeable decrease in the activation energy for the electrical conduction after the flash is triggered is attributed to electronic conduction. Meanwhile, the lack of frequency response and insensitiveness to the type of electrical field found in the case of BFO can be attributed to its mainly electronic bulk conduction. Ministerio de Ciencia e Innovación TQ2017-83602-C2-1-R Junta de Andalucía P18-FR-1087, US-1262507 Consejo Superior de Investigaciones Científicas (CSIC) 201960E092, 202060I004
- Published
- 2022
28. Flash Sintering Research Perspective: A Bibliometric Analysis
- Author
-
Gil González, Eva, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER grant CTQ2017–83602-C2–1-R, Spanish Government Agency Ministerio de Ciencia, Innovación y Universidades and FEDER grant CTQ2017–83602-C2–2-R, Junta de Andalucía-Consejería de Economía, Conocimiento, Empresas y Universidad grant P18-FR-1087, FEDER grant US-1262507, INTRAMURAL-CSIC grant 201960E092, and INTRAMURAL-CSIC grant 202060I004
- Subjects
Bibliometric analysis ,Knowledge structure ,Flash sintering ,Ceramic materials ,Field assisted sintering - Abstract
Flash Sintering (FS), a relatively new Field-Assisted Sintering Technique (FAST) for ceramic processing, was proposed for the first time in 2010 by Prof. Rishi Raj’s group from the University of Colorado at Boulder. It quickly grabbed the attention of the scientific community and since then, the field has rapidly evolved, constituting a true milestone in materials processing with the number of publications growing year by year. Moreover, nowadays, there is already a scientific community devoted to FS. In this work, a general picture of the scientific landscape of FS is drawn by bibliometric analysis. The target sources, the most relevant documents, hot and trending topics as well as the social networking of FS are unveiled. A separate bibliometric analysis is also provided for Reaction or Reactive Flash Sintering (RFS), where not only the sintering, but also the synthesis is merged into a single step. To the best of our knowledge, this is the first study of this nature carried out in this field of research and it can constitute a useful tool for researchers to be quickly updated with FS as well as to strategize future research and publishing approaches.
- Published
- 2022
29. Reactive flash sintering of SrFe12O19 ceramic permanent magnets
- Author
-
Manchón Gordón, Alejandro F., Sánchez Jiménez, Pedro Enrique, Blázquez Gámez, Javier Sebastián, Perejón Pazo, Antonio, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Física de la Materia Condensada, Ministerio de Ciencia e Innovación (MICIN). España, Junta de Andalucía, and Consejo Superior de Investigaciones Científicas (CSIC)
- Subjects
Strontium ferrite ,Permanent magnets ,Mössbauer spectroscopy ,Magnetic properties ,Reactive flash sintering - Abstract
Reactive flash-sintering technique has been used in order to obtain strontium ferrite magnets from a mixture of SrCO3 and Fe2O3 commercial powders. This technique allows preparing sintered SrFe12O19 at a furnace temperature of just 973 K during just 2 min by applying a modest field of 40 V cm-1, instead of the conventional sintering process employed in ferrite magnet manufacturing that demands high temperature and long dwell times. Analysis of structural and magnetic properties were performed as a function of time in which the flash event was held. Mössbauer spectra show the existence of five different kinds of local environments, confirming the formation of strontium hexaferrite. The resulting samples exhibit comparable magnetic properties to the state-of-the-art ferrite magnets. In particular, produced samples reach a coercivity of 0.4 T and a specific saturation magnetization of 70 Am2 kg-1. Ministerio de Ciencia e Innovación CTQ2017-83602- C2–1-R Junta de Andalucía P18-FR-1087, US- 1262507 Consejo Superior de Investigaciones Científicas (CSIC) 201960E092, 202060I004
- Published
- 2022
30. Steam-enhanced calcium-looping performance of limestone for thermochemical energy storage: The role of particle size
- Author
-
Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Junta de Andalucía, and Universidad de Sevilla
- Subjects
Calcium looping ,Thermochemical energy storage ,Limestone - Abstract
Steam injection has been proposed to attenuate the decay of CaO reactivity during calcium looping (CaL) under operating conditions compatible with carbon capture and storage. However, it is yet unknown whether the perceived advantages granted by steam hold under the distinct operating conditions required for the integration of the CaL process as a thermochemical energy storage system in Concentrating Solar Power Plants (CaL-CSP). Here, we study the influence of steam in conditions compatible with a CaL-CSP scheme and assess its impact when injected only during one stage; either calcination or carbonation, and also when it is present throughout the entire loop. The results presented here demonstrate that steam boosts the CaO multicycle performance in a CO2 closed loop to attain residual conversion values similar to those achieved at moderate temperatures under inert gas. Moreover, it is found that the enhancement in multicycle activity is more pronounced for larger particles. España Ministerio de Economía y Competitividad-FEDER (contracts CTQ2017- 83602-C2-1-R and -2-R) Junta de Andalucía and Universidad de Sevilla (Programa Operativo FEDER Andalucía 2014–2020, projects P18-FR-1087 and US-1262507)
- Published
- 2022
31. Scaling-up the calcium-looping process for co2 capture and energy storage
- Author
-
Ortiz, Carlos, Valverde Millán, José Manuel, Chacartegui, Ricardo, Pérez Maqueda, Luis Allan, Gimenez Gavarrell, Pau, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Ingeniería Energética, and European Research Council
- Subjects
Energy storage ,Calcium looping ,CSP ,Solar energy ,lcsh:Technology (General) ,lcsh:T1-995 ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,CO2 capture - Abstract
The Calcium-Looping (CaL) process has emerged in the last years as a promising technology to face two key challenges within the future energy scenario: energy storage in renewable energy-based plants and CO2 capture from fossil fuel combustion. Based on the multicycle calcination-carbonation reaction of CaCO3 for both thermochemical energy storage and post-combustion CO2 capture applications, the operating conditions for each application may involve remarkably different characteristics regarding kinetics, heat transfer and material multicycle activity performance. The novelty and urgency of developing these applications demand an important effort to overcome serious issues, most of them related to gas-solids reactions and material handling. This work reviews the latest results from international research projects including a critical assessment of the technology needed to scale up the process. A set of equipment and methods already proved as well as those requiring further demonstration are discussed. An emphasis is put on critical equipment such as gas-solids reactors for both calcination and carbonation, power block integration, gas and solids conveying systems and auxiliary equipment for both energy storage and CO2 capture CaL applications. European Union 727348 Ministerio de Economía y Competitividad CTQ2017- 83602-C2 -1-R, -2-R
- Published
- 2021
32. Kinetics and cyclability of limestone (CaCO3) in presence of steam during calcination in the CaL scheme for thermochemical energy storage
- Author
-
Arcenegui-Troya, Juan, primary, Sánchez-Jiménez, Pedro Enrique, additional, Perejón, Antonio, additional, Moreno, Virginia, additional, Valverde, José Manuel, additional, and Pérez-Maqueda, Luis Allan, additional
- Published
- 2021
- Full Text
- View/download PDF
33. Scaling-up the calcium-looping process for co2 capture and energy storage
- Author
-
Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Ingeniería Energética, Ortiz, Carlos, Valverde Millán, José Manuel, Chacartegui, Ricardo, Pérez Maqueda, Luis Allan, Gimenez Gavarrell, Pau, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Ingeniería Energética, Ortiz, Carlos, Valverde Millán, José Manuel, Chacartegui, Ricardo, Pérez Maqueda, Luis Allan, and Gimenez Gavarrell, Pau
- Abstract
The Calcium-Looping (CaL) process has emerged in the last years as a promising technology to face two key challenges within the future energy scenario: energy storage in renewable energy-based plants and CO2 capture from fossil fuel combustion. Based on the multicycle calcination-carbonation reaction of CaCO3 for both thermochemical energy storage and post-combustion CO2 capture applications, the operating conditions for each application may involve remarkably different characteristics regarding kinetics, heat transfer and material multicycle activity performance. The novelty and urgency of developing these applications demand an important effort to overcome serious issues, most of them related to gas-solids reactions and material handling. This work reviews the latest results from international research projects including a critical assessment of the technology needed to scale up the process. A set of equipment and methods already proved as well as those requiring further demonstration are discussed. An emphasis is put on critical equipment such as gas-solids reactors for both calcination and carbonation, power block integration, gas and solids conveying systems and auxiliary equipment for both energy storage and CO2 capture CaL applications.
- Published
- 2021
34. Kinetics and cyclability of limestone (CaCO3) in presence of steam during calcination in the CaL scheme for thermochemical energy storage
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad, Junta de Andalucía, European Union (UE). H2020, Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Moreno, Virginia, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad, Junta de Andalucía, European Union (UE). H2020, Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Moreno, Virginia, Valverde Millán, José Manuel, and Pérez Maqueda, Luis Allan
- Abstract
In the present work, we explore the use of steam in the CaCO3 calcination step of a calcium looping process devised for integration into a thermochemical energy storage process (CaL-TCES). Steam produces a double benefit: firstly, it fastens the calcination, allowing a reduction of the temperature needed to attain full calcination in short residence times, as those required in practice, resulting in energy savings. This behaviour is justified on the bases of kinetic study results, as obtained from a non-parametric kinetic analysis, which demonstrates that the presence of steam during calcination can reduce the apparent activation energy from 175 kJ/mol to 142 kJ/mol with a steam’s partial pressure of 29%. In addition, the results obtained for multicycle CaL-TCES tests show that steam alleviates the deactivation of the sorbent, which is one of the main limiting factors of this technology. This behaviour is explained in terms of the effect of steam on the microstructure of the resulting CaO. Importantly, the values of the residual conversion attained calcining in steam are higher than those without steam.
- Published
- 2021
35. Unveiling Mechanochemistry: kinematic-kinetic approach for the prediction of mechanically induced reactions
- Author
-
Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Gil González, Eva, Rodríguez-Laguna, María del Rocío, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Ingeniería Química, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. TEP-110 Reactividad de Sólidos, Gil González, Eva, Rodríguez-Laguna, María del Rocío, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, and Pérez Maqueda, Luis Allan
- Abstract
Mechanochemistry has attracted a lot of attention over the last few decades with a rapid growth in the number of publications due to its unique features. However, very little is known about how mechanical energy is converted into chemical energy. Most of the published works using mechanochemistry neglect the required attention to the experimental parameters and their effect over the resulting products, what makes extremely difficult to reproduce the results from lab to lab. Moreover, if it is taken into consideration the broad range of experimental conditions used in different studies, it is quite difficult to compare results and set optimum conditions. As a result, mechanochemistry is generally viewed as a “black box”. The aim of this work is to provide some insight into mechanochemistry. Thus, a simple kinematic-kinetic approach that allows the full parametrization of mechanically induced reactions is proposed. In an analogous way to thermally activated process, it is shown that kinetic modeling can serve to parametrize and model mechanically induced reactions as a function of the milling parameters with great reliability, thereby gaining prediction capability. As a way of example, this methodology has been applied for the first time to the mechanochemical reaction of Co and Sb to form CoSb3, a skutterudite-type thermoelectric material. Moreover, the universality of this methodology has also been validated with data from the literature. A key feature of the proposed kinematic-kinetic approach is that it can be extrapolated to other mechanically induced reactions, either inorganic or organic.
- Published
- 2021
36. Calcination under low CO2 pressure enhances the Calcium Looping performance of limestone for thermochemical energy storage
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, Junta de Andalucía, European Union (UE). H2020, Sarrión Aceytuno, Beatriz, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, Amghar, Nabil, Chacartegui, Ricardo, Valverde Millán, José Manuel, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, Junta de Andalucía, European Union (UE). H2020, Sarrión Aceytuno, Beatriz, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, Amghar, Nabil, Chacartegui, Ricardo, Valverde Millán, José Manuel, and Pérez Maqueda, Luis Allan
- Abstract
The Calcium Looping performance of limestone for thermochemical energy storage has been investigated under novel favorable conditions, which involve calcination at moderate temperatures under CO2 at low pressure (0.01 and 0.1 bar) and carbonation at high temperature under CO2 at atmospheric pressure. Calcining at low CO2 pressures allows to substantially reduce the temperature to achieve full calcination in short residence times. Moreover, it notably enhances CaO multicycle conversion. The highest values of conversion are obtained for limestone samples calcined under 0.01 bar CO2 at 765 °C. Under these conditions, the residual conversion is increased by a factor of 10 as compared to conditions involving calcination under CO2 at atmospheric pressure. The enhancement of CaO conversion is correlated to the microstructure of the CaO samples obtained after calcination. As seen from SEM, BET surface and XRD analysis, calcination under low CO2 pressure leads to a remarkable decrease of pore volume and CaO crystallite size. Consequently, CaO surface area available for carbonation in the fast reaction-controlled regime and therefore reactivity in short residence times is promoted.
- Published
- 2021
37. Relevance of particle size distribution to kinetic analysis: the case of thermal dehydroxylation of kaolinite
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Arcenegui Troya, Juan, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Arcenegui Troya, Juan, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, and Pérez Maqueda, Luis Allan
- Abstract
Kinetic models used for the kinetic analysis of solid-state reactions assume ideal conditions that are very rarely fulfilled by real processes. One of the assumptions of these ideal models is that all sample particles have an identical size, while most real samples have an inherent particle size distribution (PSD). In this study, the influence of particle size distribution, including bimodal PSD, in kinetic analysis is investigated. Thus, it is observed that PSD can mislead the identification of the kinetic model followed by the reaction and even induce complex thermoanalytical curves that could be misinterpreted in terms of complex kinetics or intermediate species. For instance, in the case of a bimodal PSD, kinetics is affected up to the point that the process resembles a reaction driven by a multi-step mechanism. A procedure for considering the PSD in the kinetic analysis is presented and evaluated experimentally by studying the thermal dehydroxylation of kaolinite. This process, which does not fit any of the common ideal kinetic models proposed in the literature, was analyzed considering PSD influence. However, when PSD is taken into account, the process can be successfully described by a 3-D diffusion model (Jander’s equation). Therefore, it is concluded that the deviations from ideal models for this dehydroxylation process could be explained in terms of PSD.
- Published
- 2021
38. Paving the Way to Establish Protocols: Modeling and Predicting Mechanochemical Reactions
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Química, Junta de Andalucía, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Gil González, Eva, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Ingeniería Química, Junta de Andalucía, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Gil González, Eva, Pérez Maqueda, Luis Allan, Sánchez Jiménez, Pedro Enrique, and Perejón Pazo, Antonio
- Abstract
Parametrization of mechanochemical reactions, or relating the evolution of the reaction progress to the supplied input power, is required both to establish protocols and to gain insight into mechanochemical reactions. Thus, results could be compared, replicated, or scaled up even under different milling conditions, enlarging the domains of application of mechanochemistry. Here, we propose a procedure that allows the parametrization of mechanochemical reactions as a function of the supplied input power from the direct analysis of the milling experiments in a model-free approach, where neither the kinetic model function nor the rate constant equation are previously assumed. This procedure has been successfully tested with the mechanochemical reaction of CH3NH3PbCl3, enabling the possibility to make predictions regardless of the milling device as well as gaining insight into the reaction dynamic. This methodology can work for any other mechanical reaction and definitely paves the way to establish mechanochemistry as a standard synthetic procedure
- Published
- 2021
39. Advanced parametrisation of phase change materials through kinetic approach
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Ciencia e Innovación (MICIN). España, Ministerio de Economia, Industria y Competitividad (MINECO). España, Consejo Superior de Investigaciones Científicas (CSIC), European Union (UE). H2020, Junta de Andalucía, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Lizana Moral, Francisco Jesús, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, Pérez-Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Ciencia e Innovación (MICIN). España, Ministerio de Economia, Industria y Competitividad (MINECO). España, Consejo Superior de Investigaciones Científicas (CSIC), European Union (UE). H2020, Junta de Andalucía, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Lizana Moral, Francisco Jesús, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, and Pérez-Maqueda, Luis Allan
- Abstract
Phase change materials (PCM) have been widely investigated for heat storage and transfer applications. Numerous numerical simulation approaches have been proposed for modelling their behaviour and predicting their performance in thermal applications. However, simulation approaches do not consider the kinetics of the phase transition processes, compromising the accuracy of their predictions. The phase change is a kinetically driven process in which both the reaction rate and the reaction progress depend on the heating schedule. This work evaluates and parametrises the influence of kinetics in the melting and crystallisation behaviour of a well-known PCM, PEG1500, and compares potential discrepancies with common phase change parametrisation alternatives. The kinetic dependence was experimentally evaluated through differential scanning calorimetry (DSC). The kinetic parameters required for modelling the kinetics of the processes were determined by both model-free and model-fitting procedures following ICTAC (International Confederation for Thermal Analysis and Calorimetry) recommendations. Then, the phase transition was parametrised through a kinetic model and compared with three conventional phase transition models: linear without hysteresis, non-linear without hysteresis, and non-linear with hysteresis. The statistical comparison between models demonstrates the higher accuracy of the kinetic approach to correctly represent the partial enthalpy distribution of latent heat storage materials during alternative phase change rates, obtaining a coefficient of determination (R2) of 0.80. On the other hand, the accuracy of kinetic-independent models is limited to the range from 0.40 to 0.61. The results highlight the high discrepancies of conventional models compared to the kinetic approach and provide criteria and guidelines for efficient kinetic modelling of phase change in heat transfer evaluations.
- Published
- 2021
40. Calcium-Looping Performance of Biomineralized CaCO3 for CO2 Capture and Thermochemical Energy Storage
- Author
-
Arcenegui-Troya, Juan, primary, Sánchez-Jiménez, Pedro Enrique, additional, Perejón, Antonio, additional, Valverde, José Manuel, additional, Chacartegui, Ricardo, additional, and Pérez-Maqueda, Luis Allan, additional
- Published
- 2020
- Full Text
- View/download PDF
41. Development of a high-pressure thermobalance working under constant rate thermal analysis
- Author
-
Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, Criado Luque, José Manuel, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, and Ministerio de Economía y Competitividad (MINECO). España
- Subjects
Thermal oxidation ,High pressure ,Nickel ,Thermogravimetry ,Constant rate thermal analysis - Abstract
A thermogravimetric instrument that works at high pressure of different gases has been designed and assembled. The instrument has been devised to work in a temperature range from room temperature to 1000 °C in various controlled pressures of selected gas up to 15 bar, and under conventional rising temperature and constant rate thermal analysis (CRTA) modes. CRTA method allows an intelligent control of the reaction temperature using a feedback system that monitors the mass gain or mass loss of the sample in such a way that the reaction rate is maintained constant all over the process at a preselected value. CRTA method provides a significant advantage for studying processes under high pressure as it reduces heat and mass transfer phenomena that are very relevant under these high-pressure experimental conditions. The thermal oxidation of Ni at 8 bar of pure oxygen has been used for testing the performance of the instrument under both linear heating rate and CRTA conditions. Ministerio de Economía y Competitividad CTQ2017-83602-C2-1-R
- Published
- 2020
42. Calcium-Looping Performance of Biomineralized CaCO3 for CO2 Capture and Thermochemical Energy Storage
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Ingeniería Energética, Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Valverde Millán, José Manuel, Chacartegui, Ricardo, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Ingeniería Energética, Arcenegui Troya, Juan Jesús, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Valverde Millán, José Manuel, Chacartegui, Ricardo, and Pérez Maqueda, Luis Allan
- Abstract
The commercial deployment of calcium-looping (CaL)-based technologies relies on the availability of nontoxic, widely available and cheap CaCO3 rich materials. Biomineralized CaCO3 from waste amply fulfills the aforementioned requirements. In the present work, we study the performance of eggshell and snail shell from food waste as CaO precursors for CaL applications. The results obtained suggest the feasible use of these waste materials. The multicyclic conversion exhibited by biomineralized CaCO3 was comparable to that demonstrated by limestone, which is a commonly proposed material for CaL applications. In addition, the temperature needed to completely calcine biomineralized CaCO3 in short residence times is lower than that required to fully calcine limestone. This would mitigate the energy cost of the technology.
- Published
- 2020
43. Development of a high-pressure thermobalance working under constant rate thermal analysis
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Economía y Competitividad (MINECO). España, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, Criado Luque, José Manuel, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Economía y Competitividad (MINECO). España, Perejón Pazo, Antonio, Sánchez Jiménez, Pedro Enrique, Criado Luque, José Manuel, and Pérez Maqueda, Luis Allan
- Abstract
A thermogravimetric instrument that works at high pressure of different gases has been designed and assembled. The instrument has been devised to work in a temperature range from room temperature to 1000 °C in various controlled pressures of selected gas up to 15 bar, and under conventional rising temperature and constant rate thermal analysis (CRTA) modes. CRTA method allows an intelligent control of the reaction temperature using a feedback system that monitors the mass gain or mass loss of the sample in such a way that the reaction rate is maintained constant all over the process at a preselected value. CRTA method provides a significant advantage for studying processes under high pressure as it reduces heat and mass transfer phenomena that are very relevant under these high-pressure experimental conditions. The thermal oxidation of Ni at 8 bar of pure oxygen has been used for testing the performance of the instrument under both linear heating rate and CRTA conditions.
- Published
- 2020
44. Influence of DSC thermal lag on evaluation of crystallization kinetics
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Czech Science Foundation, Svoboda, Roman, Pérez Maqueda, Luis Allan, Podzemná, Veronika, Perejón Pazo, Antonio, Svoboda, Ondřej, Universidad de Sevilla. Departamento de Química Inorgánica, Czech Science Foundation, Svoboda, Roman, Pérez Maqueda, Luis Allan, Podzemná, Veronika, Perejón Pazo, Antonio, and Svoboda, Ondřej
- Abstract
Influence of added thermal resistance on crystallization kinetics, as measured by differential scanning calorimetry (DSC), of the Se70Te30 glass was studied. The increase of thermal resistance was achieved by adding polytetrafluorethylene discs of different thicknesses (up to 0.5 mm) in-between the DSC platform and the pan with sample. Increase of the thermal resistance led to an apparent decrease (by more than 30%) in the crystallization enthalpy. Significant change of model-free kinetics occurred: apparent activation energy E of the crystallization process decreased (by more than 20%) due to the DSC data being progressively shifted to higher temperatures with increasing heating rate. The model-based kinetics was changed only slightly; the DSC peaks retained their asymmetry and the choice of the appropriate model was not influenced by the added thermal resistance. The temperature shift caused by added thermal lag was modeled for the low-to-moderate heating rates
- Published
- 2020
45. High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants
- Author
-
Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Benítez Guerrero, Mónica, Valverde Millán, José Manuel, Ortiz Domínguez, Carlos, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, and Ministerio de Economía y Competitividad (MINECO). España
- Subjects
Energy storage ,Calcium oxides ,Calcium-looping ,Calcium acetate ,CO2 capture ,Concentrated solar power - Abstract
High energy density, cycling stability, low cost and scalability are the main features required for thermochemical energy storage systems to achieve a feasible integration in Concentrating Solar Power plants (CSP). While no system has been found to fully satisfy all these requirements, the reversible CaO/CaCO3 carbonation reaction (CaL) is one of the most promising since CaO natural precursors are affordable and earth-abundant. However, CaO particles progressively deactivate due to sintering-induced morphological changes during repeated carbonation and calcinations cycles. In this work, we have prepared acicular calcium and magnesium acetate precursors using a simple, cost-effective and easily scalable technique that requires just the natural minerals and acetic acid, thereby avoiding expensive reactants and environmentally unfriendly solvents. Upon thermal decomposition, these precursors yield a stable porous structure comprised of well dispersed MgO nanoparticles coating the CaO/CaCO3 grains that is resistant to pore-plugging and sintering while at the same time exhibits high long term effective conversion. Process simulations show that the employment of these materials could significantly improve the overall CSP-CaL efficiency at the industrial level. Ministerio de Economía y Competitividad CTQ2014-52763-C2, CTQ2017-83602-C2
- Published
- 2019
46. Role of particle size on the multicycle calcium looping activity of limestone for thermochemical energy storage
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Durán Martín, Jonatan D., Sánchez Jiménez, Pedro Enrique, Valverde Millán, José Manuel, Perejón Pazo, Antonio, Arcenegui Troya, Juan Jesús, García Triñanes, Pablo, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Durán Martín, Jonatan D., Sánchez Jiménez, Pedro Enrique, Valverde Millán, José Manuel, Perejón Pazo, Antonio, Arcenegui Troya, Juan Jesús, García Triñanes, Pablo, and Pérez Maqueda, Luis Allan
- Abstract
The calcium looping process, based on the reversible reaction between CaCO3 and CaO, is recently attracting a great deal of interest as a promising thermochemical energy storage system to be integrated in Concentrated Solar Power plants (CaL-CSP). The main drawbacks of the system are the incomplete conversion of CaO and its sintering-induced deactivation. In this work, the influence of particle size in these deactivation mechanisms has been assessed by performing experimental multicycle tests using standard limestone particles of well-defined and narrow particle size distributions. The results indicate that CaO multicycle conversion benefits from the use of small particles mainly when the calcination is carried out in helium at low temperature. Yet, the enhancement is only significant for particles below 15 μm. On the other hand, the strong sintering induced by calcining in CO2 at high temperatures makes particle size much less relevant for the multicycle performance. Finally, SEM imaging reveals that the mechanism responsible for the loss of activity is mainly pore-plugging when calcination is performed in helium, whereas extensive loss of surface area due to sintering is responsible for the deactivation when calcination is carried out in CO2 at high temperature.
- Published
- 2019
47. The Calcium-Looping (CaCO3/CaO) Process for Thermochemical Energy Storage in Concentrating Solar Power Plants
- Author
-
Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. FQM253: Electrohidrodinamica y Medios Granulares Cohesivos, Universidad de Sevilla. TEP137: Maquinas y Motores Termicos, Ortiz Domínguez, Carlos, Valverde Millán, José Manuel, Chacartegui, Ricardo, Pérez-Maqueda, Luis Allan, Giménez Gavarrell, Pablo, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla. Departamento de Ingeniería Energética, Universidad de Sevilla. FQM253: Electrohidrodinamica y Medios Granulares Cohesivos, Universidad de Sevilla. TEP137: Maquinas y Motores Termicos, Ortiz Domínguez, Carlos, Valverde Millán, José Manuel, Chacartegui, Ricardo, Pérez-Maqueda, Luis Allan, and Giménez Gavarrell, Pablo
- Abstract
Energy storage based on thermochemical systems is gaining momentum as potential alternative to molten salts in Concentrating Solar Power (CSP) plants. This work is a detailed review about the promising integration of a CaCO3/CaO based system, the so-called Calcium-Looping (CaL) process, in CSP plants with tower technology. The CaL process relies on low cost, widely available and non-toxic natural materials (such as limestone or dolomite), which are necessary conditions for the commercial expansion of any energy storage technology at large scale. A comprehensive analysis of the advantages and challenges to be faced for the process to reach a commercial scale is carried out. The review includes a deep overview of reaction mechanisms and process integration schemes proposed in the recent literature. Enhancing the multicycle CaO conversion is a major challenge of the CaL process. Many lab-scale analyses carried out show that residual effective CaO conversion is highly dependent on the process conditions and CaO precursors used, reaching values as different as 0.07-0.82. The selection of the optimal operating conditions must be based on materials, process integration, technology and economics aspects. Global plant efficiencies over 45% (without considering solar-side losses) show the interest of the technology. Furthermore, the technological maturity and potential of the process is assessed. The direction towards which future works should be headed is discussed.
- Published
- 2019
48. Anisotropic lattice expansion determined during flash sintering of BiFeO3 by in-situ energy-dispersive X-ray diffraction
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Office of Naval Research (ONR). United States, Department of Energy. United States, Wassel, Mary Anne B., Pérez Maqueda, Luis Allan, Gil González, Eva, Charalambous, Harry, Perejón Pazo, Antonio, Jha, Shikhar K., Okasinski, John, Tsakalakos, Thomas, Universidad de Sevilla. Departamento de Química Inorgánica, Office of Naval Research (ONR). United States, Department of Energy. United States, Wassel, Mary Anne B., Pérez Maqueda, Luis Allan, Gil González, Eva, Charalambous, Harry, Perejón Pazo, Antonio, Jha, Shikhar K., Okasinski, John, and Tsakalakos, Thomas
- Abstract
BiFeO3 has a Curie temperature (TC) of 825 °C, making it difficult to sinter using conventional methods while maintaining the purity of the material, as unavoidably secondary phases appear at temperatures above Tc. Flash sintering is a relatively new technique that saves time and energy compared to other sintering methods. BiFeO3 was flash sintered at 500 °C to achieve 90% densification. In-situ energy dispersive X-ray diffraction (EDXRD) revealed that the material did not undergo any phase transformation, having been sintered well below the TC. Interestingly, anisotropic lattice expansion in the material was observed when the sample was exposed to the electric field.
- Published
- 2019
49. Electrical properties of bismuth ferrites: Bi2Fe4O9 and Bi25FeO39
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Perejón Pazo, Antonio, Gil González, Eva, Sánchez Jiménez, Pedro Enrique, West, Anthony R., Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Ministerio de Economía y Competitividad (MINECO). España, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER), Perejón Pazo, Antonio, Gil González, Eva, Sánchez Jiménez, Pedro Enrique, West, Anthony R., and Pérez Maqueda, Luis Allan
- Abstract
Bi2Fe4O9 was prepared by solid-state reaction and the electrical properties measured by impedance spectro- scopy. After annealing in O2 at 900 °C, Bi2Fe4O9 is an electrically-homogeneous insulator. Its high frequency permittivity is constant (∼14.1) over the temperature range 300–400 °C and shows no evidence of incipient ferroelectricity at lower temperatures. On annealing in N2 at 900 °C, the pellets gradually decompose. Bi25FeO39 was prepared by both solid-state reaction and mechanosynthesis. It showed a modest amount of mixed conduction of both oxide ions and holes. Impedance analysis showed a complex response that best fitted an equivalent circuit consisting of a parallel combination of long-range conduction and short range dielectric relaxation elements. The electrical conductivity of both Bi2Fe4O9 and Bi25FeO39 is less than that of BiFeO3 prepared by solid-state reaction, which indicates that any leakage conductivity of BiFeO3 is not due to the possible presence of small amounts of these secondary phases.
- Published
- 2019
50. High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants
- Author
-
Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Benítez Guerrero, Mónica, Valverde Millán, José Manuel, Ortiz Domínguez, Carlos, Pérez Maqueda, Luis Allan, Universidad de Sevilla. Departamento de Química Inorgánica, Universidad de Sevilla. Departamento de Electrónica y Electromagnetismo, Ministerio de Economía y Competitividad (MINECO). España, Sánchez Jiménez, Pedro Enrique, Perejón Pazo, Antonio, Benítez Guerrero, Mónica, Valverde Millán, José Manuel, Ortiz Domínguez, Carlos, and Pérez Maqueda, Luis Allan
- Abstract
High energy density, cycling stability, low cost and scalability are the main features required for thermochemical energy storage systems to achieve a feasible integration in Concentrating Solar Power plants (CSP). While no system has been found to fully satisfy all these requirements, the reversible CaO/CaCO3 carbonation reaction (CaL) is one of the most promising since CaO natural precursors are affordable and earth-abundant. However, CaO particles progressively deactivate due to sintering-induced morphological changes during repeated carbonation and calcinations cycles. In this work, we have prepared acicular calcium and magnesium acetate precursors using a simple, cost-effective and easily scalable technique that requires just the natural minerals and acetic acid, thereby avoiding expensive reactants and environmentally unfriendly solvents. Upon thermal decomposition, these precursors yield a stable porous structure comprised of well dispersed MgO nanoparticles coating the CaO/CaCO3 grains that is resistant to pore-plugging and sintering while at the same time exhibits high long term effective conversion. Process simulations show that the employment of these materials could significantly improve the overall CSP-CaL efficiency at the industrial level.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.