6 results on '"Pérez-Simbor, Sofia"'
Search Results
2. UWB Path Loss Models for Ingestible Devices
- Author
-
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Ministerio de Economía y Empresa, Universitat Politècnica de València, European Commission, Pérez-Simbor, Sofia, Andreu-Estellés, Carlos, Garcia-Pardo, Concepcion, Frasson, Matteo, Cardona Marcet, Narciso, Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Ministerio de Economía y Empresa, Universitat Politècnica de València, European Commission, Pérez-Simbor, Sofia, Andreu-Estellés, Carlos, Garcia-Pardo, Concepcion, Frasson, Matteo, and Cardona Marcet, Narciso
- Abstract
[EN] Currently, some medical devices such as the Wireless Capsule Endoscopy (WCE) are used for data transmission from inside to outside the body. Nevertheless, for certain applications such as WCE, the data rates offered by current medical frequency bands can result insufficient. Ultra Wideband (UWB) frequency band has become an interesting solution for this. However, to date, there is not a formal channel path loss model for the UWB frequency band in the gastrointestinal (GI) scenario due to the huge differences between the proposed studies. There are three main methodologies to characterize the propagation channel, software simulations and experimental measurements either in phantom or in in vivo animals. Previous works do not compare all the methodologies or present some disagreements with the literature. In this paper, a dedicated study of the path loss using the three methodologies aforementioned (simulations, phantoms and in vivo measurements) and a comparison with previous researches in the literature is performed. Moreover, numerical values for a path loss model which agrees with the three methodologies and the literature are proposed. This paper aims at being the starting point for a formal path loss model in the UWB frequency band for WBANs in the GI scenario
- Published
- 2019
3. Initial Delay Domain UWB Channel Characterization for In-body Area Networks
- Author
-
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Commission, Pérez-Simbor, Sofia, Garcia-Pardo, Concepcion, Cardona Marcet, Narciso, Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Commission, Pérez-Simbor, Sofia, Garcia-Pardo, Concepcion, and Cardona Marcet, Narciso
- Abstract
Wireless Body Area Networks (WBANs) have increased the attention of the research community for the next generation wireless medical devices. Among others, Wireless Capsule Endoscopy (WCE) aims to transmit better quality images. For this, the Ultra Wideband (UWB) frequency band is becoming a good alternative to currently allocated frequencies for in-body networks, allowing higher data rate and having a low power transmission. Common channel characterization in WBANs are performed in frequency domain, i.e., analyzing the received power as a function of frequency. Nevertheless, indepth studies in delay domain analyzing the impulse response of the channel are barely considered in current literature. In this paper, an initial study in delay domain, i.e., the Power Delay Profile (PDP) characteristics, is performed. Moreover, a comparison between the channel response in frequency and delay domain is performed. This work gives an insightful view of the impulse response of the channel for in-body to on-body communications. For that, an extensive campaign of phantom measurements and software simulations are conducted.
- Published
- 2019
4. Analysis of the Localization Error for Capsule Endoscopy Applications at UWB Frequencies
- Author
-
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Barbi, Martina, Pérez-Simbor, Sofia, Garcia-Pardo, Concepcion, Cardona Marcet, Narciso, Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Barbi, Martina, Pérez-Simbor, Sofia, Garcia-Pardo, Concepcion, and Cardona Marcet, Narciso
- Abstract
Localization for Wireless Capsule Endoscopy (WCE) in the Ultra-Wideband frequency band is a very active field of investigation due to its potential advantages in future endoscopy applications. Received Signal Strength (RSS) based localization is commonly preferred due to its simplicity. Previous studies on Ultra-Wideband (UWB) RSS-based localization showed that the localization accuracy depends on the average ranging error related to the selected combination of receivers, which not always is the one experiencing the highest level of received power. In this paper the tendency of the localization error is further investigated through supplementary software simulations and previously conducted laboratory measurements. Two-dimensional (2D) and three-dimensional (3D) positioning are performed and the trend of the localization error compared in both cases. Results shows that the distribution of the selected path loss values, corresponding to the receivers used for localization, around the in-body position to estimate also affects the localization accuracy.
- Published
- 2019
5. Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis
- Author
-
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Universitat Politècnica de València, Ministerio de Economía y Competitividad, European Commission, European Regional Development Fund, Garcia-Pardo, Concepcion, Andreu-Estellés, Carlos, Fornés Leal, Alejandro, Castelló-Palacios, Sergio, Pérez-Simbor, Sofia, Barbi, Martina, Vallés Lluch, Ana, Cardona Marcet, Narciso, Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada, Universitat Politècnica de València, Ministerio de Economía y Competitividad, European Commission, European Regional Development Fund, Garcia-Pardo, Concepcion, Andreu-Estellés, Carlos, Fornés Leal, Alejandro, Castelló-Palacios, Sergio, Pérez-Simbor, Sofia, Barbi, Martina, Vallés Lluch, Ana, and Cardona Marcet, Narciso
- Abstract
[EN] An in-body sensor network is that in which at least one of the sensors is located inside the human body. Such wireless in-body sensors are used mainly in medical applications, collecting and monitoring important parameters for health and disease treatment. IEEE Standard 802.15.6-2012 for wireless body area networks (WBANs) considers in-body communications in the Medical Implant Communications Service (MICS) band. Nevertheless, high-data-rate communications are not feasible at the MICS band because of its narrow occupied bandwidth. In this framework, ultrawideband (UWB) systems have emerged as a potential solution for in-body highdata-rate communications because of their miniaturization capabilities and low power consumption.
- Published
- 2018
6. Initial UWB in-body channel characterization using a novel multilayer phantom measurement setup
- Author
-
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, European Commission, Ministerio de Economía y Competitividad, Universitat Politècnica de València, Pérez-Simbor, Sofia, Barbi, Martina, Garcia-Pardo, Concepcion, Castelló-Palacios, Sergio, Cardona Marcet, Narciso, Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, European Commission, Ministerio de Economía y Competitividad, Universitat Politècnica de València, Pérez-Simbor, Sofia, Barbi, Martina, Garcia-Pardo, Concepcion, Castelló-Palacios, Sergio, and Cardona Marcet, Narciso
- Abstract
[EN] Wireless Body Area Networks (WBANs) are a promising technology for medical purposes. Currently the WBAN are classified into: implanted (in-), surface (on-) or outside (off-) body communications regarding the location of the devices with reference to the human body. The Ultra Wide-Band (UWB) frequency band is growing as a band of interest for implanted communications because of its high data rate and low power consumption among other benefits. Software simulations, in-vivo measurements and experimental phantom measurements are common methods to properly characterize the propagation channel. Nevertheless, up to now, experimental phantoms measurements presented in the literature show some inconveniences, i.e., the accuracy of the phantoms compared with the real human tissues or the testbed used for the measurements. This paper aims at overcoming these issues using accurate phantoms designed for the purpose of implanted communications in the UWB frequency band. In addition, a multilayer phantom container was developed. This container has capacity for two different phantoms, emulating a heterogeneous propagation medium for in-body measurements. Moreover, a novel setup was built for in-body phantom measurements. As a result, an experimental path loss model is presented from the measurements obtained with phantoms. Besides, software simulations mimicking the experimental setup are performed in order to validate the previous results obtained
- Published
- 2018
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.