The industry of off-highway vehicles is one of the fields of major application of nodular cast irons, which guarantee the manufacture of complex geometries and ensure good mechanical properties. The present investigation deals with the fatigue design of off-highway axles made of EN-GJS-500-7. Typically, off-highway axles are weakened by stress risers which must be assessed against fatigue. In this investigation, laboratory specimens have been extracted from an off-highway axle to take into account the manufacturing process effects. Different specimens' geometries have been prepared, including plain, bluntly notched and sharply V-notched specimens, and constant amplitude, load-controlled axial fatigue tests were conducted using two nominal load ratios, namely push–pull and pulsating tension loading. As a result, both the notch and the mean stress effects on the fatigue behaviour of EN-GJS-500-7 have been experimentally investigated for the first time. A well-known local approach, which takes the strain energy density (SED) averaged over a properly defined structural volume as a fatigue damage parameter, has been applied both in the linear elastic and elastic plastic formulations. Since the SED correlated the geometrical notch effects of the specimens as well as the mean stress effects, a master curve based on the averaged SED has been defined for the first time, to the best of the authors' knowledge, for the fatigue design of off-highway axles made of EN-GJS-500-7. [ABSTRACT FROM AUTHOR]