33 results on '"Perez-Cruz, L."'
Search Results
2. Seismic stratigraphic evidence of a pre-impact basin in the Yucatán Platform: morphology of the Chicxulub crater and K/Pg boundary deposits
- Author
-
Guzmán-Hidalgo, E., Grajales-Nishimura, J.M., Eberli, G.P., Aguayo-Camargo, J.E., Urrutia-Fucugauchi, J., and Pérez-Cruz, L.
- Published
- 2021
- Full Text
- View/download PDF
3. Synthesis, RL and OSL characterization of thulium doped NaMgF3 neighborite
- Author
-
Camargo, L., Pérez Cruz, L., Cruz-Zaragoza, E., Chávez García, M.L., Santiago, M., and Marcazzó, J.
- Published
- 2021
- Full Text
- View/download PDF
4. Site M0077: Upper Peak Ring
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
5. Site M0077: Post-Impact Sedimentary Rocks
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
6. Expedition 364 summary
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
7. Site M0077: microbiology
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
8. Site M0077: Open Hole
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
9. Site M0077: Lower Peak Ring
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
10. Site M0077: introduction
- Author
-
Gulick, S., primary, Morgan, J., additional, Mellett, C.L., additional, Green, S.L., additional, Bralower, T., additional, Chenot, E., additional, Christeson, G., additional, Claeys, P., additional, Cockell, C., additional, Coolen, M.J.L., additional, Ferrière, L., additional, Gebhardt, C., additional, Goto, K., additional, Jones, H., additional, Kring, D., additional, Lofi, J., additional, Lowery, C., additional, Ocampo-Torres, R., additional, Perez-Cruz, L., additional, Pickersgill, A.E., additional, Poelchau, M., additional, Rae, A., additional, Rasmussen, C., additional, Rebolledo-Vieyra, M., additional, Riller, U., additional, Sato, H., additional, Smit, J., additional, Tikoo, S., additional, Tomioka, N., additional, Urrutia-Fucugauchi, J., additional, Whalen, M., additional, Wittmann, A., additional, Yamaguchi, K., additional, Xiao, L., additional, and Zylberman, W., additional
- Published
- 2017
- Full Text
- View/download PDF
11. Determination of kinetics parameters of the main glow peaks for KMgF3:Lu and LiF:Mg phosphors after long-term high temperature storage
- Author
-
González, P.R., Furetta, C., Marcazzó, J., Cruz-Zaragoza, E., and Pérez Cruz, L.
- Published
- 2013
- Full Text
- View/download PDF
12. High-resolution microstructural and compositional analyses of shock deformed apatite from the peak ring of the Chicxulub impact crater
- Author
-
Cox, Morgan A., Erickson, Timmons M., Schmieder, Martin, Christoffersen, Roy, Ross, Daniel K., Cavosie, Aaron J., Bland, Phil A., Kring, David A., Gulick, Sean, Morgan, Joanna V., Carter, G., Chenot, E., Christeson, Gail, Claeys, Ph, Cockell, C., Coolen, M. J.L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Lofi, J., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, Jan, Tikoo, S., Tomioka, N., Whalen, M., Wittmann, A., Urrutia-Fucugauchi, J., Yamaguchi, K. E., Analytical, Environmental & Geo-Chemistry, Earth System Sciences, Chemistry, RC Academic Unit, Geology and Geochemistry, Imperial College London, Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,geophysics ,High resolution ,Mineralogy ,010502 geochemistry & geophysics ,Ring (chemistry) ,01 natural sciences ,Apatite ,Shock (mechanics) ,Impact crater ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,visual_art ,visual_art.visual_art_medium ,ComputingMilieux_MISCELLANEOUS ,Geology ,0105 earth and related environmental sciences - Abstract
The mineral apatite, Ca5(PO4)3(F,Cl,OH), is a ubiquitous accessory mineral, with its volatile content and isotopic compositions used to interpret the evolution of H2O on planetary bodies. During hypervelocity impact, extreme pressures shock target rocks resulting in deformation of minerals; however, relatively few microstructural studies of apatite have been undertaken. Given its widespread distribution in the solar system, it is important to understand how apatite responds to progressive shock metamorphism. Here, we present detailed microstructural analyses of shock deformation in ~560 apatite grains throughout ~550 m of shocked granitoid rock from the peak ring of the Chicxulub impact structure, Mexico. A combination of high-resolution backscattered electron (BSE) imaging, electron backscatter diffraction mapping, transmission Kikuchi diffraction mapping, and transmission electron microscopy is used to characterize deformation within apatite grains. Systematic, crystallographically controlled deformation bands are present within apatite, consistent with tilt boundaries that contain the 'c' (axis) and result from slip in ' (Formula presented.) ' (direction) on (Formula presented.) (plane) during shock deformation. Deformation bands contain complex subgrain domains, isolated dislocations, and low-angle boundaries of ~1° to 2°. Planar fractures within apatite form conjugate sets that are oriented within either { (Formula presented.), { (Formula presented.), { (Formula presented.), or (Formula presented.). Complementary electron microprobe analyses (EPMA) of a subset of recrystallized and partially recrystallized apatite grains show that there is an apparent change in MgO content in shock-recrystallized apatite compositions. This study shows that the response of apatite to shock deformation can be highly variable, and that application of a combined microstructural and chemical analysis workflow can reveal complex deformation histories in apatite grains, some of which result in changes to crystal structure and composition, which are important for understanding the genesis of apatite in both terrestrial and extraterrestrial environments.
- Published
- 2020
- Full Text
- View/download PDF
13. A steeply-inclined trajectory for the Chicxulub impact
- Author
-
Collins, G. S., Patel, N., Davison, T. M., Rae, A. S. P., Morgan, J. V., Gulick, S. P. S., Christeson, G. L., Chenot, E., Claeys, P., Cockell, C. S., Coolen, M. J. L., Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Lofi, J., Lowery, C. M., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A. E., Poelchau, M. H., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tikoo, S. M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M. T., Wittmann, A., Xiao, L., Yamaguchi, K. E., Artemieva, N., Bralower, T. J., Geology and Geochemistry, Department of Earth Science and Engineering [Imperial College London], Imperial College London, Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Science and Technology Facilities Council (STFC), and Natural Environment Research Council (NERC)
- Subjects
010504 meteorology & atmospheric sciences ,Science ,Impact angle ,General Physics and Astronomy ,010502 geochemistry & geophysics ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,Impact crater ,EMPLACEMENT ,DEFORMATION ,CRATER ,10. No inequality ,lcsh:Science ,0105 earth and related environmental sciences ,Multidisciplinary ,Science & Technology ,Plane (geometry) ,ORIGIN ,METEORITE ,General Chemistry ,ANGLE ,Multidisciplinary Sciences ,BOUNDARY ,SIZE ,Meteorite ,PEAK-RING FORMATION ,13. Climate action ,Asteroid ,[SDU]Sciences of the Universe [physics] ,ASYMMETRY ,Trajectory ,Science & Technology - Other Topics ,lcsh:Q ,Third-Party Scientists ,IODP-ICDP Expedition 364 Science Party ,Asteroids, comets and Kuiper belt ,Seismology ,Geology - Abstract
The environmental severity of large impacts on Earth is influenced by their impact trajectory. Impact direction and angle to the target plane affect the volume and depth of origin of vaporized target, as well as the trajectories of ejected material. The asteroid impact that formed the 66 Ma Chicxulub crater had a profound and catastrophic effect on Earth’s environment, but the impact trajectory is debated. Here we show that impact angle and direction can be diagnosed by asymmetries in the subsurface structure of the Chicxulub crater. Comparison of 3D numerical simulations of Chicxulub-scale impacts with geophysical observations suggests that the Chicxulub crater was formed by a steeply-inclined (45–60° to horizontal) impact from the northeast; several lines of evidence rule out a low angle (, The authors here present a 3D model that simulates the formation of the Chicxulub impact crater. Based on asymmetries in the subsurface structure of the Chicxulub crater, the authors diagnose impact angle and direction and suggest a steeply inclined (60° to horizontal) impact from the northeast.
- Published
- 2020
- Full Text
- View/download PDF
14. Expedition 385 Preliminary Report: Guaymas Basin Tectonics and Biosphere
- Author
-
Teske, A. P., Lizarralde, D., Höfig, T. W., Aiello, I. W., Ash, J. L., Bojanova, D. P., Buatier, M. D., Edgcomb, V. P., Galerne, Christophe, Gontharet, S., Heuer, V. B., Jiang, S., Kars, M. A. C., Kim, J., Koorneef, L. M. T., Marsaglia, K. M., Meyer, N. R., Morono, Y., Neumann, F., Negrete-Aranda, R., Pastor, L. C., Penas-Salinas, M. E., Perez Cruz, L. L., Ran, L., Riboulleau, A., Sarao, J. A., Schubert, F., Khogernkumar Singh, S., Stock, J. M., Toffin, L. M. A. A., Xie, W., Yamanaka, T., and Zhuang, G.
- Abstract
International Ocean Discovery Program (IODP) Expedition 385 drilled organic-rich sediments with sill intrusions on the flanking regions and in the northern axial graben in Guaymas Basin, a young marginal rift basin in the Gulf of California. Guaymas Basin is characterized by a widely distributed, intense heat flow and widespread off-axis magmatism expressed by a dense network of sill intrusions across the flanking regions, which is in contrast to classical mid-ocean ridge spreading centers. The numerous off-axis sills provide multiple transient heat sources that mobilize buried sedimentary carbon, in part as methane and other hydrocarbons, and drive hydrothermal circulation. The resulting thermal and geochemical gradients shape abundance, composition, and activity of the deep subsurface biosphere of the basin. Drill sites extend over the flanking regions of Guaymas Basin, covering a distance of ~81 km from the from the northwest to the southeast. Adjacent Sites U1545 and U1546 recovered the oldest and thickest sediment successions (to ~540 meters below seafloor [mbsf]; equivalent to the core depth below seafloor, Method A [CSF-A] scale), one with a thin sill (a few meters in thickness) near the drilled bottom (Site U1545), and one with a massive, deeply buried sill (~356–430 mbsf) that chemically and physically affects the surrounding sediments (Site U1546). Sites U1547 and U1548, located in the central part of the northern Guaymas Basin segment, were drilled to investigate a 600 m wide circular mound (bathymetric high) and its periphery. The dome-like structure is outlined by a ring of active vent sites called Ringvent. It is underlain by a remarkably thick sill at shallow depth (Site U1547). Hydrothermal gradients steepen at the Ringvent periphery (Holes U1548A–U1548C), which in turn shifts the zones of authigenic carbonate precipitation and of highest microbial cell abundance toward shallower depths. The Ringvent sill was drilled several times and yielded remarkably diverse igneous rock textures, sediment–sill interfaces, and hydrothermal alteration, reflected by various secondary minerals in veins and vesicles. Thus, the Ringvent sill became the target of an integrated sampling and interdisciplinary research effort that included geological, geochemical, and microbiological specialties. The thermal, lithologic, geochemical, and microbiological contrasts between the two deep northwestern sites (U1545 and U1546) and the Ringvent sites (U1547 and U1548) form the scientific centerpiece of the expedition. These observations are supplemented by results from sites that represent attenuated cold seepage conditions in the central basin (Site U1549), complex and disturbed sediments overlying sills in the northern axial trough (Site U1550), terrigenous sedimentation events on the southeastern flanking regions (Site U1551), and hydrate occurrence in shallow sediments proximal to the Sonora margin (Site U1552). The scientific outcomes of Expedition 385 will (1) revise long-held assumptions about the role of sill emplacement in subsurface carbon mobilization versus carbon retention, (2) comprehensively examine the subsurface biosphere of Guaymas Basin and its responses and adaptations to hydrothermal conditions, (3) redefine hydrothermal controls of authigenic mineral formation in sediments, and (4) yield new insights into many geochemical and geophysical aspects of both architecture and sill–sediment interaction in a nascent spreading center. The generally high quality and high degree of completeness of the shipboard datasets present opportunities for interdisciplinary and multidisciplinary collaborations during shore-based studies. In comparison to Deep Sea Drilling Project Leg 64 to Guaymas Basin in 1979, sophisticated drilling strategies (for example, the advanced piston corer [APC] and half-length APC systems) and numerous analytical innovations have greatly improved sample recovery and scientific yield, particularly in the areas of organic geochemistry and microbiology. For example, microbial genomics did not exist 40 y ago. However, these technical refinements do not change the fact that Expedition 385 will in many respects build on the foundations laid by Leg 64 for understanding Guaymas Basin, regardless of whether adjustments are required in the near future.
- Published
- 2020
15. Concentrations of elements and metals in sediments of the southeastern Gulf of Mexico
- Author
-
Vazquez, F., Sharma, V., and Perez-Cruz, L.
- Published
- 2002
- Full Text
- View/download PDF
16. New shock microstructures in titanite (CaTiSiO5) from the peak ring of the Chicxulub impact structure, Mexico
- Author
-
Timms, NE, Pearce, MA, Erickson, TM, Cavosie, AJ, Rae, ASP, Wheeler, J, Wittmann, A, Ferriere, L, Poelchau, MH, Tomioka, N, Collins, GS, Gulick, SPS, Rasmussen, C, Morgan, JV, Chenot, E, Christeson, GL, Claeys, P, Cockell, CS, Coolen, MJL, Gebhardt, C, Goto, K, Green, S, Jones, H, Kring, DA, Lofi, J, Lowery, CM, Ocampo-Torres, R, Perez-Cruz, L, Pickersgill, AE, Rebolledo-Vieyra, M, Riller, U, Sato, H, Smit, J, Tikoo, SM, Urrutia-Fucugauchi, J, Whalen, MT, Xiao, L, Yamaguchi, KE, Curtin University [Perth], Planning and Transport Research Centre (PATREC), Australian Resources Research Centre, Kensington, NASA Johnson Space Center (JSC), NASA, Department of Earth Science and Technology [Imperial College London], Imperial College London, University of Liverpool, Arizona State University [Tempe] (ASU), Natural History Museum [Vienna] (NHM), Albert-Ludwigs-Universität Freiburg, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Department of Earth Science and Engineering [Imperial College London], University of Texas at Austin [Austin], Géosciences Montpellier, Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)-Université de Montpellier (UM)-Institut national des sciences de l'Univers (INSU - CNRS), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Earth and Ocean Sciences, LeRoy Eyring Center for Solid State Science, Department of Geology, University of Freiburg [Freiburg], DGS, Jackson School of Geosciences, Institute of Geophysics [Austin] (IG), Analytical, Environmental & Geo-Chemistry, Earth System Sciences, Chemistry, and Natural Environment Research Council (NERC)
- Subjects
Geochemistry & Geophysics ,PLASTIC-DEFORMATION ,010504 meteorology & atmospheric sciences ,EBSD ,Shock metamorphism ,Metamorphism ,Titanite ,U-PB ,Titanite, Shock metamorphism, Mechanical twinning, Dislocation slip system, Meteorite impact, EBSD ,Mechanical twinning ,Slip (materials science) ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,Geochemistry and Petrology ,ELECTRON-BACKSCATTER DIFFRACTION ,HIGH-PRESSURE ,Meteorite impact ,Planar deformation features ,0402 Geochemistry ,[CHIM]Chemical Sciences ,Petrology ,ZIRCON ,0105 earth and related environmental sciences ,Science & Technology ,Energy ,Mineralogy ,Dislocation slip system ,Baddeleyite ,MONAZITE ,Geophysics ,0403 Geology ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Physical Sciences ,[SDE]Environmental Sciences ,PHASE-TRANSITION ,REIDITE ,engineering ,VREDEFORT ,Deformation bands ,ORIENTATION ,Geology ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy ,Zircon - Abstract
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Accessory mineral geochronometers such as apatite, baddeleyite, monazite, xenotime and zircon are increasingly being recognized for their ability to preserve diagnostic microstructural evidence of hypervelocity-impact processes. To date, little is known about the response of titanite to shock metamorphism, even though it is a widespread accessory phase and a U–Pb geochronometer. Here we report two new mechanical twin modes in titanite within shocked granitoid from the Chicxulub impact structure, Mexico. Titanite grains in the newly acquired core from the International Ocean Discovery Program Hole M0077A preserve multiple sets of polysynthetic twins, most commonly with composition planes (K 1 ) = ~ { 1 ¯ 11 } , and shear direction (η 1 ) = < 110 > , and less commonly with the mode K 1 = {130}, η 1 = ~ . In some grains, {130} deformation bands have formed concurrently with the deformation twins, indicating dislocation slip with Burgers vector b = < 341 > can be active during impact metamorphism. Titanite twins in the modes described here have not been reported from endogenically deformed rocks; we, therefore, propose this newly identified twin form as a result of shock deformation. Formation conditions of the twins have not been experimentally calibrated, and are here empirically constrained by the presence of planar deformation features in quartz (12 ± 5 and ~ 17 ± 5 GPa) and the absence of shock twins in zircon (< 20 GPa). While the lower threshold of titanite twin formation remains poorly constrained, identification of these twins highlight the utility of titanite as a shock indicator over the pressure range between 12 and 17 GPa. Given the challenges to find diagnostic indicators of shock metamorphism to identify both ancient and recent impact evidence on Earth, microstructural analysis of titanite is here demonstrated to provide a new tool for recognizing impact deformation in rocks where other impact evidence may be erased, altered, or did not manifest due to generally low (< 20 GPa) shock pressure.
- Published
- 2019
- Full Text
- View/download PDF
17. Stress‐Strain Evolution During Peak‐Ring Formation: A Case Study of the Chicxulub Impact Structure
- Author
-
Rae, Auriol, Collins, Gareth, Poelchau, Michael, Riller, Ulrich, Davison, Thomas, Grieve, Richard, Osinski, Gordon, Morgan, Joanna, Gulick, S. P. S., Chenot, Elise, Christeson, G. L., Claeys, P., Cockell, C. S., Coolen, M. J. L., Ferrière, L., Gebhardt, C., Goto, K., Green, S., Jones, H., Kring, D. A., Lofi, Johanna, Lowery, C. M., Ocampo‐Torres, R., Perez‐Cruz, L., Pickersgill, A. E., Rasmussen, C., Rae, A.S.P., Rebolledo‐Vieyra, M., Sato, H., Smit, J., Tikoo, S. M., Tomioka, N., Urrutia‐Fucugauchi, J., Whalen, M. T., Wittmann, A., Xiao, L., Yamaguchi, K. E., Department of Earth Science and Engineering [Imperial College London], Imperial College London, University of Freiburg [Freiburg], Universität Hamburg (UHH), Centre for Planetary Science and Exploration [London, ON] (CPSX), University of Western Ontario (UWO), Géosciences Montpellier, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Science and Technology Facilities Council (STFC), and Natural Environment Research Council (NERC)
- Subjects
Geochemistry & Geophysics ,010504 meteorology & atmospheric sciences ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,01 natural sciences ,stress ,strain ,Impact crater ,DEFORMATION ,FLUIDIZATION ,Geochemistry and Petrology ,impact cratering ,CRATER ,Earth and Planetary Sciences (miscellaneous) ,Fluidization ,Impact structure ,Petrology ,0105 earth and related environmental sciences ,Science & Technology ,ORIGIN ,Scientific drilling ,Stress–strain curve ,deformation ,Drilling ,International Ocean Discovery Program ,peak ring ,Geophysics ,Chicxulub ,Shear (geology) ,13. Climate action ,Space and Planetary Science ,Physical Sciences ,ASYMMETRY ,MOON ,Geology ,HYDROCODE SIMULATIONS - Abstract
Deformation is a ubiquitous process that occurs to rocks during impact cratering; thus, quantifying the deformation of those rocks can provide first-order constraints on the process of impact cratering. Until now, specific quantification of the conditions of stress and strain within models of impact cratering has not been compared to structural observations. This paper describes a methodology to analyze stress and strain within numerical impact models. This method is then used to predict deformation and its cause during peak-ring formation: a complex process that is not fully understood, requiring remarkable transient weakening and causing a significant redistribution of crustal rocks. The presented results are timely due to the recent Joint International Ocean Discovery Program and International Continental Scientific Drilling Program drilling of the peak ring within the Chicxulub crater, permitting direct comparison between the deformation history within numerical models and the structural history of rocks from a peak ring. The modeled results are remarkably consistent with observed deformation within the Chicxulub peak ring, constraining the following: (1) the orientation of rocks relative to their preimpact orientation; (2) total strain, strain rates, and the type of shear during each stage of cratering; and (3) the orientation and magnitude of principal stresses during each stage of cratering. The methodology and analysis used to generate these predictions is general and, therefore, allows numerical impact models to be constrained by structural observations of impact craters and for those models to produce quantitative predictions.Plain Language Summary During impact cratering events, extreme forces act on rocks beneath the crater to produce deformation. Computer simulations of large impact cratering events are particularly important because the conditions of those events can never be simultaneously produced by laboratory experiments. In this study, we describe a method by which the forces and deformations that occur during cratering can be measured in computer simulations of impact cratering events. Combining this analysis with geological observations from impact structures allows us to improve our understanding of impact crater formation. Here, we use this method to study the Chicxulub impact structure, Mexico, to understand the formation of peak rings, rings of hills found internal to the rim of large impact craters. Our analysis provides estimates of the sequence of forces and deformation during peak-ring formation. As deformation produces fractures, our analysis has important implications for how fluids flow through rocks in craters.
- Published
- 2019
- Full Text
- View/download PDF
18. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
- Author
-
Christeson, G.L., Gulick, S.P.S., Morgan, J.V., Gebhardt, C., Kring, D.A., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A.S.P., Rebolledo-Vieyra, M., Riller, U., Schmitt, D.R., Wittmann, A., Bralower, T.J., Chenot, E., Claeys, P., Cockell, C.S., Coolen, M.J.L., Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C.M., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A.E., Rasmussen, C., Sato, H., Smit, J., Tikoo, S.M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M.T., Xiao, L., and Yamaguchi, K.E.
- Published
- 2018
- Full Text
- View/download PDF
19. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
- Author
-
Christeson, G. L., Gulick, S. P.S., Morgan, J. V., Gebhardt, C., Kring, D. A., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A. S.P., Rebolledo-Vieyra, M., Riller, U., Schmitt, D. R., Wittmann, A., Bralower, T. J., Chenot, E., Claeys, P., Cockell, C. S., Coolen, M. J.L., Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C. M., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A. E., Rasmussen, C., Sato, H., Smit, J., Tikoo, S. M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M. T., Xiao, L., Yamaguchi, K. E., Christeson, G. L., Gulick, S. P.S., Morgan, J. V., Gebhardt, C., Kring, D. A., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A. S.P., Rebolledo-Vieyra, M., Riller, U., Schmitt, D. R., Wittmann, A., Bralower, T. J., Chenot, E., Claeys, P., Cockell, C. S., Coolen, M. J.L., Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C. M., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A. E., Rasmussen, C., Sato, H., Smit, J., Tikoo, S. M., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M. T., Xiao, L., and Yamaguchi, K. E.
- Abstract
Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the top of the peak ring but 200 m in the c
- Published
- 2018
- Full Text
- View/download PDF
20. Erratum to: Rock fluidization during peak-ring formation of large impact structures (Nature, (2018), 562, 7728, (511-518), 10.1038/s41586-018-0607-z)
- Author
-
Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Jan, S., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., Bralower, T., Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Jan, S., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., and Bralower, T.
- Abstract
In this Article, the middle initial of author Kosei E. Yamaguchi (of the IODP–ICDP Expedition 364 Science Party) was missing and his affiliation is to Toho University (not Tohu University). These errors have been corrected online.
- Published
- 2018
21. Rock fluidization during peak-ring formation of large impact structures
- Author
-
Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Smit, J., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., Bralower, T., Riller, U., Poelchau, M., Rae, A., Schulte, F., Collins, G., Melosh, H., Grieve, R., Morgan, J., Gulick, S., Lofi, J., Diaw, A., McCall, N., Kring, D., Green, S., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Xiao, L., Lowery, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Rebolledo-Vieyra, M., Sato, H., Smit, J., Tikoo-Schantz, S., Tomioka, N., Whalen, M., Wittmann, A., Yamaguchi, K., Fucugauchi, J., and Bralower, T.
- Abstract
Large meteorite impact structures on the terrestrial bodies of the Solar System contain pronounced topographic rings, which emerged from uplifted target (crustal) rocks within minutes of impact. To flow rapidly over large distances, these target rocks must have weakened drastically, but they subsequently regained sufficient strength to build and sustain topographic rings. The mechanisms of rock deformation that accomplish such extreme change in mechanical behaviour during cratering are largely unknown and have been debated for decades. Recent drilling of the approximately 200-km-diameter Chicxulub impact structure in Mexico has produced a record of brittle and viscous deformation within its peak-ring rocks. Here we show how catastrophic rock weakening upon impact is followed by an increase in rock strength that culminated in the formation of the peak ring during cratering. The observations point to quasi-continuous rock flow and hence acoustic fluidization as the dominant physical process controlling initial cratering, followed by increasingly localized faulting.
- Published
- 2018
22. Drilling-induced and logging-related features illustrated from IODP-ICDP Expedition 364 downhole logs and borehole imaging tools
- Author
-
Lofi, J., Smith, D., Delahunty, C., Le Ber, E., Brun, L., Henry, G., Paris, J., Tikoo, S., Zylberman, W., Pezard, P., Célérier, B., Schmitt, D., Nixon, C., Gulick, S., Morgan, J., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Green, S., Jones, H., Kring, D., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Xiao, L., Yamaguchi, K., Bralower, T., Lofi, J., Smith, D., Delahunty, C., Le Ber, E., Brun, L., Henry, G., Paris, J., Tikoo, S., Zylberman, W., Pezard, P., Célérier, B., Schmitt, D., Nixon, C., Gulick, S., Morgan, J., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Green, S., Jones, H., Kring, D., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Xiao, L., Yamaguchi, K., and Bralower, T.
- Abstract
Expedition 364 was a joint IODP and ICDP mission-specific platform (MSP) expedition to explore the Chicxulub impact crater buried below the surface of the Yucatán continental shelf seafloor. In April and May 2016, this expedition drilled a single borehole at Site M0077 into the crater's peak ring. Excellent quality cores were recovered from ~ 505 to ~1335m below seafloor (m b.s.f.), and high-resolution open hole logs were acquired between the surface and total drill depth. Downhole logs are used to image the borehole wall, measure the physical properties of rocks that surround the borehole, and assess borehole quality during drilling and coring operations. When making geological interpretations of downhole logs, it is essential to be able to distinguish between features that are geological and those that are operation-related. During Expedition 364 some drilling-induced and logging-related features were observed and include the following: effects caused by the presence of casing and metal debris in the hole, logging-tool eccentering, drilling-induced corkscrew shape of the hole, possible re-magnetization of low-coercivity grains within sedimentary rocks, markings on the borehole wall, and drilling-induced changes in the borehole diameter and trajectory.
- Published
- 2018
23. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction
- Author
-
Lowery, C., Bralower, T., Owens, J., Rodríguez-Tovar, F., Jones, H., Smit, J., Whalen, M., Claeys, P., Farley, K., Gulick, S., Morgan, J., Green, S., Chenot, E., Christeson, G., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Kring, D., Lofi, J., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Vellekoop, J., Wittmann, A., Xiao, L., Yamaguchi, K., Zylberman, W., Lowery, C., Bralower, T., Owens, J., Rodríguez-Tovar, F., Jones, H., Smit, J., Whalen, M., Claeys, P., Farley, K., Gulick, S., Morgan, J., Green, S., Chenot, E., Christeson, G., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Kring, D., Lofi, J., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Vellekoop, J., Wittmann, A., Xiao, L., Yamaguchi, K., and Zylberman, W.
- Abstract
The Cretaceous/Palaeogene mass extinction eradicated 76% of species on Earth1,2. It was caused by the impact of an asteroid3,4on the Yucatán carbonate platform in the southern Gulf of Mexico 66 million years ago5, forming the Chicxulub impact crater6,7. After the mass extinction, the recovery of the global marine ecosystem - measured as primary productivity - was geographically heterogeneous8; export production in the Gulf of Mexico and North Atlantic-western Tethys was slower than in most other regions8-11, taking 300 thousand years (kyr) to return to levels similar to those of the Late Cretaceous period. Delayed recovery of marine productivity closer to the crater implies an impact-related environmental control, such as toxic metal poisoning12, on recovery times. If no such geographic pattern exists, the best explanation for the observed heterogeneity is a combination of ecological factors - trophic interactions13, species incumbency and competitive exclusion by opportunists14- and 'chance'8,15,16. The question of whether the post-impact recovery of marine productivity was delayed closer to the crater has a bearing on the predictability of future patterns of recovery in anthropogenically perturbed ecosystems. If there is a relationship between the distance from the impact and the recovery of marine productivity, we would expect recovery rates to be slowest in the crater itself. Here we present a record of foraminifera, calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200 kyr of the Palaeocene. We show that life reappeared in the basin just years after the impact and a high-productivity ecosystem was established within 30 kyr, which indicates that proximity to the impact did not delay recovery and that there was therefore no impact-related environmental control on recovery. Ecological processes probably controlled the recovery of productivity after the Cretaceous/Palaeogene mass
- Published
- 2018
24. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364
- Author
-
Christeson, G., Gulick, S., Morgan, J., Gebhardt, C., Kring, D., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A., Rebolledo-Vieyra, M., Riller, U., Schmitt, D., Wittmann, A., Bralower, T., Chenot, E., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Sato, H., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Xiao, L., Yamaguchi, K., Christeson, G., Gulick, S., Morgan, J., Gebhardt, C., Kring, D., Le Ber, E., Lofi, J., Nixon, C., Poelchau, M., Rae, A., Rebolledo-Vieyra, M., Riller, U., Schmitt, D., Wittmann, A., Bralower, T., Chenot, E., Claeys, P., Cockell, C., Coolen, Marco, Ferrière, L., Green, S., Goto, K., Jones, H., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Rasmussen, C., Sato, H., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Xiao, L., and Yamaguchi, K.
- Abstract
© 2018 Elsevier B.V. Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the top of the peak ring but 200 m in the central basin, s
- Published
- 2018
25. Quantifying the Release of Climate‐Active Gases by Large Meteorite Impacts With a Case Study of Chicxulub
- Author
-
Artemieva , Natalia, Morgan , Joanna, Gulick , S.P.S., Chenot , E., Christeson , G.L., Claeys , P., Cockell , C.S., Coolen , M.J.L., Ferrière , L., Gebhardt , C., Goto , K., Green , S., Jones , H., Kring , D.A., Lofi , J., Lowery , C.M., Ocampo-Torres , R., Perez-Cruz , L., Pickersgill , A.E., Poelchau , M., Rae , A.S.P., Rasmussen , C., Rebolledo-Vieyra , M., Riller , U., Sato , H., Smit , J., Tikoo , S.M., Tomioka , N., Urrutia-Fucugauchi , J., Whalen , M.T., Wittmann , A., Xiao , L., Yamaguchi , K.E., Zylberman , W., Collins , G.S., Bralower , T.J., Biogéosciences [Dijon] ( BGS ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Géosciences Montpellier, Université des Antilles et de la Guyane ( UAG ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de chimie et procédés pour l'énergie, l'environnement et la santé ( ICPEES ), Université de Strasbourg ( UNISTRA ) -Centre National de la Recherche Scientifique ( CNRS ) -Matériaux et nanosciences d'Alsace, Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Centre européen de recherche et d'enseignement de géosciences de l'environnement ( CEREGE ), Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche pour le Développement ( IRD ) -Aix Marseille Université ( AMU ) -Collège de France ( CdF ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national des sciences de l'Univers ( INSU - CNRS ), Funding from the International Ocean Discovery Program (IODP), the International Continental scientific Drilling Project (ICDP), NASA grant 15-EXO15_2-0054 and NERC grant NE/P005217/1., Natural Environment Research Council (NERC), The Leverhulme Trust, Biogéosciences [UMR 6282] [Dijon] (BGS), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Université des Antilles (UA)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Institut National de la Recherche Agronomique (INRA), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Earth science ,Potentially hazardous object ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Sediment ,[ SDU.STU ] Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,Atmospheric sciences ,01 natural sciences ,Shock (mechanics) ,Water depth ,Geophysics ,Meteorite ,Volume (thermodynamics) ,13. Climate action ,Meteorology & Atmospheric Sciences ,General Earth and Planetary Sciences ,Sedimentary rock ,Porosity ,Geology ,0105 earth and related environmental sciences - Abstract
9 pages; International audience; Potentially hazardous asteroids and comets have hit Earth throughout its history, with catastrophic consequences in the case of the Chicxulub impact. Here we reexamine one of the mechanisms that allow an impact to have a global effect—the release of climate-active gases from sedimentary rocks. We use the SOVA hydrocode and model ejected materials for a sufficient time after impact to quantify the volume of gases that reach high enough altitudes (> 25 km) to have global consequences. We vary impact angle, sediment thickness and porosity, water depth, and shock pressure for devolatilization and present the results in a dimensionless form so that the released gases can be estimated for any impact into a sedimentary target. Using new constraints on the Chicxulub impact angle and target composition, we estimate that 325 ± 130 Gt of sulfur and 425 ± 160 Gt CO2 were ejected and produced severe changes to the global climate.
- Published
- 2017
- Full Text
- View/download PDF
26. Chicxulub and the exploration of large peak-ring impact craters through scientific drilling
- Author
-
Kring, D., Claeys, P., Gulick, S., Morgan, J., Collins, G., Bralower, T., Chenot, E., Christeson, G., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Lofi, J., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Xiao, L., Yamaguchi, K., Zylberman, W., Kring, D., Claeys, P., Gulick, S., Morgan, J., Collins, G., Bralower, T., Chenot, E., Christeson, G., Cockell, C., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Lofi, J., Lowery, C., Mellett, C., Ocampo-Torres, R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Xiao, L., Yamaguchi, K., and Zylberman, W.
- Abstract
Copyright 2017, The Geological Society of America. The Chicxulub crater is the only wellpreserved peak-ring crater on Earth and linked, famously, to the K-T or K-Pg mass extinction event. For the first time, geologists have drilled into the peak ring of that crater in the International Ocean Discovery Program and International Continental Scientific Drilling Program (IODP-ICDP) Expedition 364. The Chicxulub impact event, the environmental calamity it produced, and the paleobiological consequences are among the most captivating topics being discussed in the geologic community. Here we focus attention on the geological processes that shaped the ~200-km-wide impact crater responsible for that discussion and the expedition's first year results.
- Published
- 2017
27. The formation of peak rings in large impact craters
- Author
-
Morgan, J. V., Gulick, S. P. S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Collins, G. S., Coolen, M. J. L., Ferriere, L., Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., Osinski, G. R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Schmitt, D. R., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K. E., Zylberman, W., Morgan, J. V., Gulick, S. P. S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Collins, G. S., Coolen, M. J. L., Ferriere, L., Gebhardt, C., Goto, K., Jones, H., Kring, D. A., Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., Osinski, G. R., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Schmitt, D. R., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K. E., and Zylberman, W.
- Abstract
Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.
- Published
- 2016
28. The formation of peak rings in large impact craters
- Author
-
Morgan, J., Gulick, S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Collins, G., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D., Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., Osinski, G., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Schmitt, D., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K., Zylberman, W., Morgan, J., Gulick, S., Bralower, T., Chenot, E., Christeson, G., Claeys, P., Cockell, C., Collins, G., Coolen, Marco, Ferrière, L., Gebhardt, C., Goto, K., Jones, H., Kring, D., Le Ber, E., Lofi, J., Long, X., Lowery, C., Mellett, C., Ocampo-Torres, R., Osinski, G., Perez-Cruz, L., Pickersgill, A., Poelchau, M., Rae, A., Rasmussen, C., Rebolledo-Vieyra, M., Riller, U., Sato, H., Schmitt, D., Smit, J., Tikoo, S., Tomioka, N., Urrutia-Fucugauchi, J., Whalen, M., Wittmann, A., Yamaguchi, K., and Zylberman, W.
- Abstract
Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust.
- Published
- 2016
29. Benthic foraminifera of the oxygen minimum zone, continental shelf of the Gulf of Tehuantepec, Mexico
- Author
-
Perez-Cruz, L. L., primary and Machain-Castillo, M. L., additional
- Published
- 1990
- Full Text
- View/download PDF
30. PRELIMINARY CHEMICAL DATA FOR IODP-ICDP EXPEDITION 364 DRILL CORES OF THE CHICXULUB IMPACT STRUCTURE'S PEAK RING.
- Author
-
Wittmann, A., Claeys, P. F., Chenot, E., Coolen, M. J. L., Ocampo-Torres, R., Perez-Cruz, L. L., Pickersgill, A. E., Sato, H., and Yamaguchi, K. E
- Subjects
SPACE exploration ,SPACE flight ,ASTROMINERALOGY - Published
- 2017
31. Probing the hydrothermal system of the Chicxulub impact crater.
- Author
-
Kring DA, Tikoo SM, Schmieder M, Riller U, Rebolledo-Vieyra M, Simpson SL, Osinski GR, Gattacceca J, Wittmann A, Verhagen CM, Cockell CS, Coolen MJL, Longstaffe FJ, Gulick SPS, Morgan JV, Bralower TJ, Chenot E, Christeson GL, Claeys P, Ferrière L, Gebhardt C, Goto K, Green SL, Jones H, Lofi J, Lowery CM, Ocampo-Torres R, Perez-Cruz L, Pickersgill AE, Poelchau MH, Rae ASP, Rasmussen C, Sato H, Smit J, Tomioka N, Urrutia-Fucugauchi J, Whalen MT, Xiao L, and Yamaguchi KE
- Abstract
The ~180-km-diameter Chicxulub peak-ring crater and ~240-km multiring basin, produced by the impact that terminated the Cretaceous, is the largest remaining intact impact basin on Earth. International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drilled to a depth of 1335 m below the sea floor into the peak ring, providing a unique opportunity to study the thermal and chemical modification of Earth's crust caused by the impact. The recovered core shows the crater hosted a spatially extensive hydrothermal system that chemically and mineralogically modified ~1.4 × 10
5 km3 of Earth's crust, a volume more than nine times that of the Yellowstone Caldera system. Initially, high temperatures of 300° to 400°C and an independent geomagnetic polarity clock indicate the hydrothermal system was long lived, in excess of 106 years., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)- Published
- 2020
- Full Text
- View/download PDF
32. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction.
- Author
-
Lowery CM, Bralower TJ, Owens JD, Rodríguez-Tovar FJ, Jones H, Smit J, Whalen MT, Claeys P, Farley K, Gulick SPS, Morgan JV, Green S, Chenot E, Christeson GL, Cockell CS, Coolen MJL, Ferrière L, Gebhardt C, Goto K, Kring DA, Lofi J, Ocampo-Torres R, Perez-Cruz L, Pickersgill AE, Poelchau MH, Rae ASP, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Tikoo SM, Tomioka N, Urrutia-Fucugauchi J, Vellekoop J, Wittmann A, Xiao L, Yamaguchi KE, and Zylberman W
- Subjects
- Calcium metabolism, Foraminifera isolation & purification, Fossils, Gulf of Mexico, History, Ancient, Magnesium metabolism, Oxygen metabolism, Plankton isolation & purification, Sample Size, Species Specificity, Time Factors, Biodiversity, Extinction, Biological, Life
- Abstract
The Cretaceous/Palaeogene mass extinction eradicated 76% of species on Earth
1,2 . It was caused by the impact of an asteroid3,4 on the Yucatán carbonate platform in the southern Gulf of Mexico 66 million years ago5 , forming the Chicxulub impact crater6,7 . After the mass extinction, the recovery of the global marine ecosystem-measured as primary productivity-was geographically heterogeneous8 ; export production in the Gulf of Mexico and North Atlantic-western Tethys was slower than in most other regions8-11 , taking 300 thousand years (kyr) to return to levels similar to those of the Late Cretaceous period. Delayed recovery of marine productivity closer to the crater implies an impact-related environmental control, such as toxic metal poisoning12 , on recovery times. If no such geographic pattern exists, the best explanation for the observed heterogeneity is a combination of ecological factors-trophic interactions13 , species incumbency and competitive exclusion by opportunists14 -and 'chance'8,15,16 . The question of whether the post-impact recovery of marine productivity was delayed closer to the crater has a bearing on the predictability of future patterns of recovery in anthropogenically perturbed ecosystems. If there is a relationship between the distance from the impact and the recovery of marine productivity, we would expect recovery rates to be slowest in the crater itself. Here we present a record of foraminifera, calcareous nannoplankton, trace fossils and elemental abundance data from within the Chicxulub crater, dated to approximately the first 200 kyr of the Palaeocene. We show that life reappeared in the basin just years after the impact and a high-productivity ecosystem was established within 30 kyr, which indicates that proximity to the impact did not delay recovery and that there was therefore no impact-related environmental control on recovery. Ecological processes probably controlled the recovery of productivity after the Cretaceous/Palaeogene mass extinction and are therefore likely to be important for the response of the ocean ecosystem to other rapid extinction events.- Published
- 2018
- Full Text
- View/download PDF
33. The formation of peak rings in large impact craters.
- Author
-
Morgan JV, Gulick SP, Bralower T, Chenot E, Christeson G, Claeys P, Cockell C, Collins GS, Coolen MJ, Ferrière L, Gebhardt C, Goto K, Jones H, Kring DA, Le Ber E, Lofi J, Long X, Lowery C, Mellett C, Ocampo-Torres R, Osinski GR, Perez-Cruz L, Pickersgill A, Poelchau M, Rae A, Rasmussen C, Rebolledo-Vieyra M, Riller U, Sato H, Schmitt DR, Smit J, Tikoo S, Tomioka N, Urrutia-Fucugauchi J, Whalen M, Wittmann A, Yamaguchi KE, and Zylberman W
- Abstract
Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust., (Copyright © 2016, American Association for the Advancement of Science.)
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.