1. A Coq formalization of digital filters
- Author
-
Thibault Hilaire, Diane Gallois-Wong, Sylvie Boldo, Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Formally Verified Programs, Certified Tools and Numerical Computations (TOCCATA), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Performance et Qualité des Algorithmes Numériques (PEQUAN), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Florian Rabe, William M. Farmer, Grant O. Passmore, Abdou Youssef, CentraleSupélec-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), CentraleSupélec-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Laboratoire de Recherche en Informatique ( LRI ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ), Certified Programs, Certified Tools, Certified Floating-Point Computations ( TOCCATA ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ), Performance et Qualité des Algorithmes Numériques ( PEQUAN ), Laboratoire d'Informatique de Paris 6 ( LIP6 ), and Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
0209 industrial biotechnology ,Signal processing ,business.industry ,Computer science ,[INFO.INFO-AO]Computer Science [cs]/Computer Arithmetic ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,0102 computer and information sciences ,02 engineering and technology ,Filter (signal processing) ,01 natural sciences ,[ INFO.INFO-AO ] Computer Science [cs]/Computer Arithmetic ,020901 industrial engineering & automation ,010201 computation theory & mathematics ,Control theory ,Application domain ,[ INFO.INFO-LO ] Computer Science [cs]/Logic in Computer Science [cs.LO] ,State (computer science) ,business ,Digital filter ,Equivalence (measure theory) ,Algorithm ,Digital signal processing - Abstract
International audience; Digital filters are small iterative algorithms, used as basic bricks in signal processing (filters) and control theory (controllers). They receive as input a stream of values, and output another stream of values, computed from their internal state and from the previous inputs. These systems can be found in communication, aeronautics, automotive, robotics, etc. As the application domain may be critical, we aim at providing a formal guarantee of the good behavior of these algorithms in time-domain. In particular, we formally proved in Coq some error analysis theorems about digital filters, namely the Worst-Case Peak Gain theorem and the existence of a filter characterizing the difference between the exact filter and the implemented one. Moreover, the digital signal processing literature provides us with many equivalent algorithms, called realizations. We formally defined and proved the equivalence of several realizations (Direct Forms and State-Space).
- Published
- 2018