2,902 results on '"Petitjean, P"'
Search Results
2. On curve-flat Lipschitz functions and their linearizations
- Author
-
Flores, Gonzalo, Jung, Mingu, Lancien, Gilles, Petitjean, Colin, Procházka, Antonín, and Quilis, Andrés
- Subjects
Mathematics - Functional Analysis ,Mathematics - Metric Geometry ,47B01, 47B07, 47B33 (Primary) 46B20, 54E35 (Secondary) - Abstract
We show that several operator ideals coincide when intersected with the class of linearizations of Lipschitz maps. In particular, we show that the linearization $\hat{f}$ of a Lipschitz map $f:M\to N$ is Dunford-Pettis if and only if it is Radon-Nikod\'ym if and only if it does not fix any copy of $L_1$. We also identify and study the corresponding metric property of $f$, which is a natural extension of the curve-flatness introduced in [arXiv:2103.09370]. Further, we show that $\hat{f}$ is compact if and only if it does not fix any copy of $\ell_1$., Comment: 37 pages
- Published
- 2024
3. Are benthic nutrient fluxes from intertidal mudflats driven by surface sediment characteristics?
- Author
-
Louis, Justine, Jeanneau, Laurent, Andrieux-Loyer, Françoise, Gruau, Gérard, Caradec, Florian, Lebris, Nathalie, Chorin, Marion, Jardé, Emilie, Rabiller, Emilie, Petton, Christophe, Bouger, Guillaume, Petitjean, Patrice, and Laverman, Anniet M.
- Subjects
Benthic nutrient fluxes ,Coastal sediment ,Organic matter ,Spatial variability ,Diffusive transport ,Microbial and chemical processes ,Geophysics. Cosmic physics ,QC801-809 ,Chemistry ,QD1-999 ,Geology ,QE1-996.5 - Abstract
A broad sampling program was carried out in the spring of 2019 on the Brittany coast to assess how the surface sediment characteristics drive the benthic effluxes of ammonium ($\mathrm{NH}_{4}^{+}$) and phosphate ($\mathrm{PO}_{4}$) from intertidal mudflats. A total of 200 sediment samples were characterized by their porosity, grain-size, elemental composition and pigment contents, as well as the benthic fluxes of $\mathrm{NH}_{4}^{+}$ and $\mathrm{PO}_{4}$ determined by core incubations. The results showed that (1) a high phaeopigment and iron-bound phosphorus content (Fe-P) and a low porosity were significantly related to the high $\mathrm{PO}_{4}$ flux, and (2) a high porosity and the TN:Org-P ratio in the sediment organic matter (SOM) were related to the high $\mathrm{NH}_{4}^{+}$ flux. This indicated that $\mathrm{PO}_{4}$ fluxes would be more driven by the redox status of the sediment through the desorption of Fe-P under specific anoxic conditions during the algal decomposition. $\mathrm{NH}_{4}^{+}$ fluxes would be more driven by high $\mathrm{NH}_{4}^{+}$ recycling rates from SOM mineralization and high sediment–water exchanges, enhancing the diffusion of $\mathrm{NH}_{4}^{+}$ to the overlying water. The present study allowed to highlight the large variability in the benthic nutrient fluxes at the regional scale, as a result of the connections between microbial (SOM mineralization), chemical (adsorption–desorption) and physical (diffusion) processes.
- Published
- 2021
- Full Text
- View/download PDF
4. Reductive Amination of Carbonyl C–C Bonds Enables Formal Nitrogen Insertion
- Author
-
Amber, Charis, Göttemann, Lucas T, Steele, Ryan T, Petitjean, Timothée M, and Sarpong, Richmond
- Subjects
Inorganic Chemistry ,Organic Chemistry ,Chemical Sciences ,Generic health relevance ,Medicinal and Biomolecular Chemistry ,Medicinal and biomolecular chemistry ,Organic chemistry - Abstract
Given its relevance across numerous fields, reductive amination is one of the oldest and most widely used methods for amine synthesis. As a cornerstone of synthetic chemistry, it has largely remained unchanged since its discovery over a century ago. Herein, we report the mechanistically driven development of a complementary reaction, which reductively aminates the C-C σ-bond of carbonyls, not the carbonyl C-O π-bond, generating value-added linear and cyclic 3° amines in a modular fashion. Critical to our success were mechanistic insights that enabled us to modulate the resting state of a borane catalyst, minimize deleterious disproportionation of a hydroxylamine nitrogen source, and control the migratory selectivity of a key nitrenoid reactive intermediate. Experiments support the reaction occurring through a reductive amination/reductive Stieglitz cascade, via a ketonitrone, which can be interrupted under catalyst control to generate valuable N,N-disubstituted hydroxylamines. The method reported herein enables net transformations that would otherwise require lengthy synthetic sequences using pre-existing technologies. This is highlighted by its application to a two-step protocol for the valorization of hydrocarbon feedstocks, the late-stage C-C amination of complex molecules, diversity-oriented synthesis of isomeric amines from a single precursor, and transposition of nitrogen to different positions within a heterocycle.
- Published
- 2024
5. What trade-off for astronomy between greenhouse gas emissions and the societal benefits? A sociological approach
- Author
-
Hennebelle, P., Barsuglia, M., Billebaud, F., Bouffard, M., Champollion, N., Grybos, M., Meheut, H., Parmentier, M., and Petitjean, P.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The threat posed to humanity by global warming has led scientists to question the nature of their activities and the need to reduce the greenhouse gas emissions from research. Until now, most studies have aimed at quantifying the carbon footprints and relatively less works have addressed the ways GHG emissions can be significantly reduced. A factor two reduction by 2030 implies to think beyond increases in the efficacy of current processes, which will have a limited effect, and beyond wishful thinking about large new sources of energy. Hence, choices among research questions or allocated means within a given field will be needed. They can be made in light of the perceived societal utility of research activities. Here, we addressed the question of how scientists perceive the impact of GHG reduction on their discipline and a possible trade-off between the societal utility of their discipline and an acceptable level of GHG emissions. We conducted 28 semi-directive interviews of French astrophysicists from different laboratories. Our most important findings are that, for most researchers, astronomy is considered to have a positive societal impact mainly regarding education but also because of the fascination it exerts on at least a fraction of the general public. Technological applications are also mentioned but with relatively less emphasis. The reduction of GHG emissions is believed to be necessary and most often reductions within the private-sphere have been achieved. However, the question of community-wide reductions in astrophysics research, and in particular the possible reductions of large facilities reveals much more contrasted opinions., Comment: Proceedings for the SF2A 2024 meeting - M. Bethermin, K. Bailli , N. Lagarde, J. Malzac, R.-M. Ouazzani, J. Richard, O. Venot, A. Siebert (eds); abstract abridged
- Published
- 2024
6. The Cosmic Ultraviolet Baryon Survey (CUBS) IX: The enriched circumgalactic and intergalactic medium around star-forming field dwarf galaxies traced by O VI absorption
- Author
-
Mishra, Nishant, Johnson, Sean D., Rudie, Gwen C., Chen, Hsiao-Wen, Schaye, Joop, Qu, Zhijie, Zahedy, Fakhri S., Boettcher, Erin T., Cantalupo, Sebastiano, Chen, Mandy C., Faucher-Giguère, Claude-André, Greene, Jenny E., Li, Jennifer I-Hsiu, Liu, Zhuoqi Will, Lopez, Sebastian, and Petitjean, Patrick
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The shallow potential wells of star-forming dwarf galaxies make their surrounding circumgalactic and intergalactic medium (CGM/IGM) sensitive laboratories for studying the inflows and outflows thought to regulate galaxy evolution. We present new absorption-line measurements in quasar sightlines probing within projected distances of $<300$ kpc from 91 star-forming field dwarf galaxies with a median stellar mass of $\log{M_\star/\rm{M_\odot}} \approx 8.3$ at $0.077 < z < 0.73$ from the Cosmic Ultraviolet Baryon Survey (CUBS). In this redshift range, the CUBS quasar spectra cover a suite of transitions including H I, low and intermediate metal ions (e.g., C II, Si II, C III, and Si III), and highly ionized O VI. This CUBS-Dwarfs survey enables constraints with samples 9$\times$ larger than past dwarf CGM/IGM studies with similar ionic coverage. We find that low and intermediate ionization metal absorption is rare around dwarf galaxies, consistent with previous surveys of local dwarfs. In contrast, highly ionized O VI is commonly observed in sightlines that pass within the virial radius of a dwarf, and O VI detection rates are non-negligible at projected distances of 1$-$2$\times$ the virial radius. Based on these measurements, we estimate that the O VI-bearing phase of the CGM/IGM accounts for a dominant share of the metal budget of dwarf galaxies. The absorption kinematics suggest that a relatively modest fraction of the O VI-bearing gas is formally unbound. Together, these results imply that low-mass systems at $z\lesssim 1$ effectively retain a substantial fraction of their metals within the nearby CGM and IGM., Comment: Accepted to ApJ. 18 pages, 6 figures, 2 tables
- Published
- 2024
7. MiSuRe is all you need to explain your image segmentation
- Author
-
Hasany, Syed Nouman, Mériaudeau, Fabrice, and Petitjean, Caroline
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
The last decade of computer vision has been dominated by Deep Learning architectures, thanks to their unparalleled success. Their performance, however, often comes at the cost of explainability owing to their highly non-linear nature. Consequently, a parallel field of eXplainable Artificial Intelligence (XAI) has developed with the aim of generating insights regarding the decision making process of deep learning models. An important problem in XAI is that of the generation of saliency maps. These are regions in an input image which contributed most towards the model's final decision. Most work in this regard, however, has been focused on image classification, and image segmentation - despite being a ubiquitous task - has not received the same attention. In the present work, we propose MiSuRe (Minimally Sufficient Region) as an algorithm to generate saliency maps for image segmentation. The goal of the saliency maps generated by MiSuRe is to get rid of irrelevant regions, and only highlight those regions in the input image which are crucial to the image segmentation decision. We perform our analysis on 3 datasets: Triangle (artificially constructed), COCO-2017 (natural images), and the Synapse multi-organ (medical images). Additionally, we identify a potential usecase of these post-hoc saliency maps in order to perform post-hoc reliability of the segmentation model.
- Published
- 2024
8. JUNO Sensitivity to Invisible Decay Modes of Neutrons
- Author
-
JUNO Collaboration, Abusleme, Angel, Adam, Thomas, Adamowicz, Kai, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Blake, Iwan, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Calvez, Steven, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chang, Jinfan, Chang, Yun, Chatrabhuti, Auttakit, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Xin, Chen, Yiming, Chen, Yixue, Chen, Yu, Chen, Zelin, Chen, Zhangming, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chin, Yen-Ting, Chou, Po-Lin, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Cui, Chenyang, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Duan, Yujie, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fedoseev, Dmitry, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Fritsch, Fritsch, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guizzetti, Rosa Maria, Guo, Cong, Guo, Wanlei, Hagner, Caren, Han, Hechong, Han, Ran, Han, Yang, He, Jinhong, He, Miao, He, Wei, He, Xinhai, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jun, Hu, Peng, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Shengheng, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jafar, Arshak, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Guangzheng, Jiang, Wei, Jiang, Xiaoshan, Jiang, Xiaozhao, Jiang, Yixuan, Jing, Xiaoping, Jollet, Cécile, Kang, Li, Karaparabil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kumaran, Sindhujha, Kutovskiy, Nikolay, Labit, Loïc, Lachenmaier, Tobias, Lai, Haojing, Landini, Cecilia, Leblanc, Sébastien, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Hongjian, Li, Huang, Li, Jiajun, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Shuo, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, An-An, Liang, Hao, Liao, Jiajun, Liao, Yilin, Liao, Yuzhong, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hongyang, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Loi, Lorenzo, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Meishu, Lu, Peizhi, Lu, Shuxiang, Lu, Xianguo, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Mai, Jingyu, Malabarba, Marco, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Miramonti, Lino, Mohan, Nikhil, Montuschi, Michele, Reveco, Cristobal Morales, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parker, George, Parmeggiano, Sergio, Patsias, Achilleas, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Percalli, Elisa, Perrin, Willy, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Qu, Manhao, Qu, Zhenning, Ranucci, Gioacchino, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Reina, Gioele, Ren, Bin, Ren, Jie, Ren, Yuhan, Ricci, Barbara, Rientong, Komkrit, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sangka, Anut, Sava, Giuseppe, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Shao, Junyu, Sharov, Vladislav, Shi, Hexi, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Strizh, Michail, Studenikin, Alexander, Su, Aoqi, Su, Jun, Sun, Guangbao, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Takenaka, Akira, Tan, Xiaohan, Tang, Jian, Tang, Jingzhe, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Triossi, Andrea, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Venettacci, Carlo, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Hanwen, Wang, Jian, Wang, Jun, Wang, Li, Wang, Lu, Wang, Meng, Wang, Mingyuan, Wang, Qianchuan, Wang, Ruiguang, Wang, Sibo, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wei, Yuehuan, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wu, Chengxin, Wu, Diru, Wu, Qun, Wu, Yinhui, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xian, Shishen, Xiang, Ziqian, Xiao, Fei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yijun, Xie, Yuguang, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jiayang, Xu, Jilei, Xu, Jing, Xu, Jinghuan, Xu, Meihang, Xu, Xunjie, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Fengfan, Yang, Jie, Yang, Lei, Yang, Pengfei, Yang, Xiaoyu, Yang, Yifan, Yang, Yixiang, Yang, Zekun, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zamogilnyi, Kirill, Zavadskyi, Vitalii, Zeng, Fanrui, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Hangchang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, Zhang, Junwei, Zhang, Lei, Zhang, Peng, Zhang, Ping, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yibing, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zhao, Tianhao, Zheng, Hua, Zheng, Yangheng, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhou, Xing, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, and Zou, Jiaheng
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
We explore the bound neutrons decay into invisible particles (e.g., $n\rightarrow 3 \nu$ or $nn \rightarrow 2 \nu$) in the JUNO liquid scintillator detector. The invisible decay includes two decay modes: $ n \rightarrow { inv} $ and $ nn \rightarrow { inv} $. The invisible decays of $s$-shell neutrons in $^{12}{\rm C}$ will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino $\bar{\nu}_e$, natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are $\tau/B( n \rightarrow { inv} ) > 5.0 \times 10^{31} \, {\rm yr}$ and $\tau/B( nn \rightarrow { inv} ) > 1.4 \times 10^{32} \, {\rm yr}$., Comment: 28 pages, 7 figures, 4 tables
- Published
- 2024
9. The set of elementary tensors is weakly closed in projective tensor products
- Author
-
Petitjean, Colin
- Subjects
Mathematics - Functional Analysis - Abstract
In this short note, we prove that the set of elementary tensors is weakly closed in the projective tensor product of two Banach spaces. As a result, we are able to answer a question from the literature proving that if $(x_n) \subset X$ and $(y_n) \subset Y$ are two weakly null sequences such that $(x_n \otimes y_n)$ converges weakly in $X \widehat{\otimes}_\pi Y$, then $(x_n \otimes y_n)$ is also weakly null.
- Published
- 2024
- Full Text
- View/download PDF
10. Digital pathology with artificial intelligence analysis provides insight to the efficacy of anti-fibrotic compounds in human 3D MASH model
- Author
-
Kostadinova, Radina, Ströbel, Simon, Chen, Li, Fiaschetti‑Egli, Katia, Gadient, Jana, Pawlowska, Agnieszka, Petitjean, Louis, Bieri, Manuela, Thoma, Eva, and Petitjean, Mathieu
- Published
- 2024
- Full Text
- View/download PDF
11. Discovery of optically emitting circumgalactic nebulae around the majority of UV-luminous quasars at intermediate redshift
- Author
-
Johnson, Sean D., Liu, Zhuoqi Will, Li, Jennifer I., Schaye, Joop, Greene, Jenny E., Cantalupo, Sebastiano, Rudie, Gwen C., Qu, Zhijie, Chen, Hsiao-Wen, Rafelski, Marc, Muzahid, Sowgat, Chen, Mandy C., Contini, Thierry, Kollatschny, Wolfram, Mishra, Nishant, Rauch, Michael, Petitjean, Patrick, and Zahedy, Fakhri S.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report the discovery of large ionized, [O II] emitting circumgalactic nebulae around the majority of thirty UV luminous quasars at $z=0.4-1.4$ observed with deep, wide-field integral field spectroscopy (IFS) with the Multi-Unit Spectroscopy Explorer (MUSE) by the Cosmic Ultraviolet Baryon Survey (CUBS) and MUSE Quasar Blind Emitters Survey (MUSEQuBES). Among the 30 quasars, seven (23%) exhibit [O II] emitting nebulae with major axis sizes greater than 100 kpc, twenty greater than 50 kpc (67%), and 27 (90%) greater than 20 kpc. Such large, optically emitting nebulae indicate that cool, dense, and metal-enriched circumgalactic gas is common in the halos of luminous quasars at intermediate redshift. Several of the largest nebulae exhibit morphologies that suggest interaction-related origins. We detect no correlation between the sizes and cosmological dimming corrected surface brightnesses of the nebulae and quasar redshift, luminosity, black hole mass, or radio-loudness, but find a tentative correlation between the nebulae and rest-frame [O II] equivalent width in the quasar spectra. This potential trend suggests a relationship between ISM content and gas reservoirs on CGM scales. The [O II]-emitting nebulae around the $z\approx1$ quasars are smaller and less common than Ly$\alpha$ nebulae around $z\approx3$ quasars. These smaller sizes can be explained if the outer regions of the Ly$\alpha$ halos arise from scattering in more neutral gas, by evolution in the cool CGM content of quasar host halos, by lower-than-expected metallicities on $\gtrsim50$ kpc scales around $z\approx1$ quasars, or by changes in quasar episodic lifetimes between $z=3$ and $1$., Comment: 18 pages, 5 figures, 2 tables. Accepted for publication in the Astrophysical Journal
- Published
- 2024
12. Quantum Random Access Codes Implementation for Resource Allocation and Coexistence with Classical Telecommunication
- Author
-
Ribezzo, Domenico, Salazar, Roberto, Czartowski, Jakub, Segur, Flora, Lemmi, Gianmarco, Petitjean, Antoine, Farrugia, Noel, Xuereb, André, Bacco, Davide, and Zavatta, Alessandro
- Subjects
Quantum Physics - Abstract
In a world where Quantum Networks are rapidly becoming a reality, the development of the Quantum Internet is gaining increasing interest. Nevertheless, modern quantum networks are still in the early stages of development and have limited capacity to distribute resources among different users -- a constraint that needs to be taken into account. In this work we aim to investigate these constraints, using a novel setup for implementing Quantum Random Access Codes (QRACs), communication protocols known for their quantum advantage over their classical counterparts and semi-device-independent self-testing applications. Our QRAC states, made for the first time using weak coherent pulses instead of entangled single photons, allow us to experimentally test our encoding and decoding strategy from the resource allocation perspective. Moreover, by emulating a coexistent classical communication, we test the resilience of our implementation in presence of noise. The achieved results represent a significant milestone both for theoretical studies of quantum resource allocation and for the implementation of quantum infrastructures capable of coexisting with regular telecommunication networks.
- Published
- 2024
- Full Text
- View/download PDF
13. The Cosmic Ultraviolet Baryon Survey (CUBS) VIII: Group Environment of the Most Luminous Quasars at $z\approx1$
- Author
-
Li, Jennifer I., Johnson, Sean D., Boettcher, Erin, Cantalupo, Sebastiano, Chen, Hsiao-Wen, Chen, Mandy C., DePalma, David R., Zhuoqi, Liu, Mishra, Nishant, Petitjean, Patrick, Qu, Zhijie, Rudie, Gwen C., Schaye, Joop, and Zahedy, Fakhri S.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We investigate the group-scale environment of 15 luminous quasars (luminosity $L_{\rm 3000}>10^{46}$ erg s$^{-1}$) from the Cosmic Ultraviolet Baryon Survey (CUBS) at redshift $z\approx1$. Using the Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph on the Very Large Telescope (VLT), we conduct a deep galaxy redshift survey in the CUBS quasar fields to identify group members and measure the physical properties of individual galaxies and galaxy groups. We find that the CUBS quasars reside in diverse environments. The majority (11 out of 15) of the CUBS quasars reside in overdense environments with typical halo masses exceeding $10^{13}{\rm M}_{\odot}$, while the remaining quasars reside in moderate-size galaxy groups. No correlation is observed between overdensity and redshift, black hole (BH) mass, or luminosity. Radio-loud quasars (5 out of 15 CUBS quasars) are more likely to be in overdense environments than their radio-quiet counterparts in the sample, consistent with the mean trends from previous statistical observations and clustering analyses. Nonetheless, we also observe radio-loud quasars in moderate groups and radio-quiet quasars in overdense environments, indicating a large scatter in the connection between radio properties and environment. We find that the most UV luminous quasars might be outliers in the stellar mass-to-halo mass relations or may represent departures from the standard single-epoch BH relations., Comment: 18 pages, 8 figures, accepted for publication in ApJ
- Published
- 2024
14. The Cosmic Ultraviolet Baryon Survey (CUBS) VII: on the warm-hot circumgalactic medium probed by O VI and Ne VIII at 0.4 $\lesssim$ z $\lesssim$ 0.7
- Author
-
Qu, Zhijie, Chen, Hsiao-Wen, Johnson, Sean D., Rudie, Gwen C., Zahedy, Fakhri S., DePalma, David, Schaye, Joop, Boettcher, Erin T., Cantalupo, Sebastiano, Chen, Mandy C., Faucher-Giguère, Claude-André, Li, Jennifer I-Hsiu, Mulchaey, John S., Petitjean, Patrick, and Rafelski, Marc
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
This paper presents a newly established sample of 103 unique galaxies or galaxy groups at $0.4\lesssim z\lesssim 0.7$ from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both O VI and Ne VIII absorption. The galaxies and associated neighbors are identified at $< 1$ physical Mpc from the sightlines toward 15 CUBS QSOs at $z_{\rm QSO}\gtrsim 0.8$. A total of 30 galaxies or galaxy groups exhibit associated O VI $\lambda\lambda$ 1031, 1037 doublet absorption within a line-of-sight velocity interval of $\pm250$ km/s, while the rest show no trace of O VI to a detection limit of $\log N_{\rm OVI}/{\rm cm^{-2}}\approx13.7$. Meanwhile, only five galaxies or galaxy groups exhibit the Ne VIII $\lambda\lambda$ 770,780 doublet absorption, down to a limiting column density of $\log N_{\rm NeVIII}/{\rm cm^{-2}}\approx14.0$. These O VI- and Ne VIII-bearing halos reside in different galaxy environments with stellar masses ranging from $\log M_{\rm star}/M_\odot \approx 8$ to $\approx11.5$. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with $\log M_{\rm star}/M_\odot\approx9-11$ show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of O VI absorption is broad with $\sigma_v > 40$ km/s for galaxies of $\log M_{\rm star}/M_\odot>9$ within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by O VI and Ne VIII is suggested to be the dominant phase in sub-$L^*$ galaxies with $\log M_{\rm star}/M_\odot\approx9-10$ based on their high ionization fractions in the CGM., Comment: Submitted to ApJ after addressing the referee's comments; 28 pages, 16 figures
- Published
- 2024
15. [Citation needed] Data usage and citation practices in medical imaging conferences
- Author
-
Sourget, Théo, Akkoç, Ahmet, Winther, Stinna, Galsgaard, Christine Lyngbye, Jiménez-Sánchez, Amelia, Juodelyte, Dovile, Petitjean, Caroline, and Cheplygina, Veronika
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Digital Libraries - Abstract
Medical imaging papers often focus on methodology, but the quality of the algorithms and the validity of the conclusions are highly dependent on the datasets used. As creating datasets requires a lot of effort, researchers often use publicly available datasets, there is however no adopted standard for citing the datasets used in scientific papers, leading to difficulty in tracking dataset usage. In this work, we present two open-source tools we created that could help with the detection of dataset usage, a pipeline \url{https://github.com/TheoSourget/Public_Medical_Datasets_References} using OpenAlex and full-text analysis, and a PDF annotation software \url{https://github.com/TheoSourget/pdf_annotator} used in our study to manually label the presence of datasets. We applied both tools on a study of the usage of 20 publicly available medical datasets in papers from MICCAI and MIDL. We compute the proportion and the evolution between 2013 and 2023 of 3 types of presence in a paper: cited, mentioned in the full text, cited and mentioned. Our findings demonstrate the concentration of the usage of a limited set of datasets. We also highlight different citing practices, making the automation of tracking difficult., Comment: Accepted at MIDL conference Updated with the revised version after MIDL rebuttal
- Published
- 2024
16. Neuro-image: aggressive vertebral hemangioma
- Author
-
Pannecoucke, M., Valgaeren, B., Petitjean, E., Hertveldt, K., and Terwecoren, A.
- Published
- 2024
- Full Text
- View/download PDF
17. Time variability of ultra-fast BAL outflows using SALT: C IV absorption depth based analysis
- Author
-
Aromal, P., Srianand, R., and Petitjean, P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We probe the small-scale absorption line variability using absorption depth based analysis of a sample of 64 ultra-fast outflow (UFO) C IV broad absorption line (BAL) quasars monitored using the Southern African Large Telescope. We confirm the strong monotonic increase in the strength of variability with increasing outflow velocity. We identify regions inside the BAL trough for each source where the normalized flux difference between two epochs is $>$0.1 for a velocity width $\ge$500 kms$^{-1}$ (called ``variable regions"). We find the total number of variable regions increases with the time interval probed and the number of BALs showing variable regions almost doubles from short ($<$2 yrs) to long ($>$2 yrs) time scales. We study the distributions of variable region properties such as its velocity width, depth, and location. These regions typically occupy a few-tenths of the entire width of the BAL. Their widths are found to increase with increasing time scales having typical widths of ~2000 kms$^{-1}$ for dt $>$ 2 yr. However, their absolute velocity with respect to z$_{em}$ and their relative position within the BAL profile remain random irrespective of the time scale probed. The equivalent width variations of the BALs are strongly dependent on the size and depth of the variable regions but are little dependent on their total number. Finally, we find that ~17% of the UFO BALs show uncorrelated variability within the BAL trough., Comment: 14 pages, 13 figures, Accepted for publication in MNRAS
- Published
- 2023
18. Host galaxies of Ultra-Strong MgII absorbers at $z \sim 0.7$
- Author
-
Guha, Labanya Kumar, Srianand, Raghunathan, and Petitjean, Patrick
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report spectroscopic identification of the host galaxies of 18 ultra-strong MgII systems (USMgII) at $0.6 \leq z \leq 0.8$. We created the largest sample by merging these with 20 host galaxies from our previous survey within $0.4 \leq z \leq 0.6$. Using this sample, we confirm that the measured impact parameters ($\rm 6.3\leq D[kpc] \leq 120$ with a median of 19 kpc) are much larger than expected, and the USMgII host galaxies do not follow the canonical $\rm W_{2796}-D$ anti-correlation. We show that the presence and significance of this anti-correlation may depend on the sample selection. The $\rm W_{2796}-D$ anti-correlation seen for the general MgII absorbers show a mild evolution at low $\rm W_{2796}$ end over the redshift range $0.4 \leq z \leq 1.5$ with an increase of the impact parameters. Compared to the host galaxies of normal MgII absorbers, USMgII host galaxies are brighter and more massive for a given impact parameter. While the USMgII systems preferentially pick star-forming galaxies, they exhibit slightly lower ongoing star-forming rates compared to main sequence galaxies with the same stellar mass, suggesting a transition from star-forming to quiescent states. For a limiting magnitude of $m_r < 23.6$, at least $29\%$ of the USMgII host galaxies are isolated, and the width of the MgII absorption in these cases may originate from gas flows (infall/outflow) in isolated halos of massive star-forming but not starbursting galaxies. We associate more than one galaxy with the absorber in $\ge 21\%$ cases where interactions may cause wide velocity spread., Comment: 19(+7 in appendix) pages and 12(+3 in appendix) figures. Accepted for publication in MNRAS
- Published
- 2023
19. MALS discovery of a rare HI 21-cm absorber at $z\sim1.35$: origin of the absorbing gas in powerful AGN
- Author
-
Deka, P. P., Gupta, N., Chen, H. W., Johnson, S. D., Noterdaeme, P., Combes, F., Boettcher, E., Balashev, S. A., Emig, K. L., Józsa, G. I. G., Klöckner, H. -R., Krogager, J-. K., Momjian, E., Petitjean, P., Rudie, G. C., Wagenveld, J., and Zahedy, F. S.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report a new, rare detection of HI 21-cm absorption associated with a quasar (only six known at $1
5$ GHz). The simplest explanation would be that no large HI column (N(HI)$>10^{17}$ cm$^{-2}$) is present towards the radio `core' and the optical AGN. Based on the joint optical and radio analysis of a heterogeneous sample of 16 quasars ($z_{median}$ = 0.7) and 15 radio galaxies ($z_{median}$ = 0.3) with HI 21-cm absorption detection and matched in 1.4 GHz luminosity (L$_{\rm 1.4\,GHz}$), a consistent picture emerges where quasars are primarily tracing the gas in the inner circumnuclear disk and cocoon created by the jet-ISM interaction. These exhibit L$_{1.4\,\rm GHz}$ - $\Delta V_{\rm null}$ correlation, and frequent mismatch between the radio and optical spectral lines. The radio galaxies show no such correlation and likely trace the gas from the cocoon and the galaxy-wide ISM outside the photoionization cone. The analysis presented here demonstrates the potential of radio spectroscopic observations to reveal the origin of the absorbing gas associated with AGN that may be missed in optical observations., Comment: 10 pages, 8 figures, accepted for publication in A&A - Published
- 2023
20. A note on the spectrum of Lipschitz operators and composition operators on Lipschitz spaces
- Author
-
Abbar, Arafat, Coine, Clément, and Petitjean, Colin
- Subjects
Mathematics - Functional Analysis - Abstract
Fix a metric space $M$ and let $\mathrm{Lip}_0(M)$ be the Banach space of complex-valued Lipschitz functions defined on $M$. A weighted composition operator on $\mathrm{Lip}_0(M)$ is an operator of the kind $wC_f : g \mapsto w \cdot g \circ f$, where $w : M \to \mathbb C$ and $f: M \to M$ are any map. When such an operator is bounded, it is actually the adjoint operator of a so-called weighted Lipschitz operator $w\widehat{f}$ acting on the Lipschitz-free space $\mathcal F(M)$. In this note, we study the spectrum of such operators, with a special emphasize when they are compact. Notably, we obtain a precise description in the non-weighted $w \equiv 1$ case: the spectrum is finite and made of roots of unity.
- Published
- 2023
21. Thrombospondin 2, matrix Gla protein and digital analysis identified distinct fibroblast populations in fibrostenosing Crohn’s disease
- Author
-
Jerala, Miha, Remic, Tinkara, Hauptman, Nina, Homan, Pia, Zajšek, Neža, Petitjean, Mathieu, Chen, Li, and Zidar, Nina
- Published
- 2024
- Full Text
- View/download PDF
22. Public health and economic benefits of seasonal influenza vaccination in risk groups in France, Italy, Spain and the UK: state of play and perspectives
- Author
-
de Fougerolles, Thierry Rigoine, Baïssas, Théophile, Perquier, Guillaume, Vitoux, Olivier, Crépey, Pascal, Bartelt-Hofer, José, Bricout, Hélène, and Petitjean, Audrey
- Published
- 2024
- Full Text
- View/download PDF
23. ShapeDBA: Generating Effective Time Series Prototypes using ShapeDTW Barycenter Averaging
- Author
-
Ismail-Fawaz, Ali, Fawaz, Hassan Ismail, Petitjean, François, Devanne, Maxime, Weber, Jonathan, Berretti, Stefano, Webb, Geoffrey I., and Forestier, Germain
- Subjects
Computer Science - Machine Learning - Abstract
Time series data can be found in almost every domain, ranging from the medical field to manufacturing and wireless communication. Generating realistic and useful exemplars and prototypes is a fundamental data analysis task. In this paper, we investigate a novel approach to generating realistic and useful exemplars and prototypes for time series data. Our approach uses a new form of time series average, the ShapeDTW Barycentric Average. We therefore turn our attention to accurately generating time series prototypes with a novel approach. The existing time series prototyping approaches rely on the Dynamic Time Warping (DTW) similarity measure such as DTW Barycentering Average (DBA) and SoftDBA. These last approaches suffer from a common problem of generating out-of-distribution artifacts in their prototypes. This is mostly caused by the DTW variant used and its incapability of detecting neighborhood similarities, instead it detects absolute similarities. Our proposed method, ShapeDBA, uses the ShapeDTW variant of DTW, that overcomes this issue. We chose time series clustering, a popular form of time series analysis to evaluate the outcome of ShapeDBA compared to the other prototyping approaches. Coupled with the k-means clustering algorithm, and evaluated on a total of 123 datasets from the UCR archive, our proposed averaging approach is able to achieve new state-of-the-art results in terms of Adjusted Rand Index., Comment: Published in AALTD workshop at ECML/PKDD 2023
- Published
- 2023
24. Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
- Author
-
Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Morton-Blake, Iwan, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chan, Chi, Chang, Jinfan, Chang, Yun, Chatrabhuti, Auttakit, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhangming, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chin, Yen-Ting, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jafar, Arshak, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kutovskiy, Nikolay, Labit, Loïc, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Jiajun, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lu, Xianguo, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Magoni, Marco, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Miramonti, Lino, Mohan, Nikhil, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Qu, Manhao, Qu, Zhenning, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rientong, Komkrit, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sangka, Anut, Sava, Giuseppe, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Aoqi, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Takenaka, Akira, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Tortorici, Francesco, Treskov, Konstantin, Triossi, Andrea, Triozzi, Riccardo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Venettacci, Carlo, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Li, Wang, Lu, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wei, Yuehuan, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Fei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Xunjie, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Fanrui, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, ZHANG, Lei, Zhang, Mohan, Zhang, Peng, Zhang, Ping, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, and Züfle, Jan
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a unique opportunity for multi-messenger observations of CCSN events. In this study, we describe the monitoring concept and present the sensitivity of the system to pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton liquid scintillator detector currently under construction in South China. The real-time monitoring system is designed to ensure both prompt alert speed and comprehensive coverage of progenitor stars. It incorporates prompt monitors on the electronic board as well as online monitors at the data acquisition stage. Assuming a false alert rate of 1 per year, this monitoring system exhibits sensitivity to pre-SN neutrinos up to a distance of approximately 1.6 (0.9) kiloparsecs and SN neutrinos up to about 370 (360) kiloparsecs for a progenitor mass of 30 solar masses, considering both normal and inverted mass ordering scenarios. The pointing ability of the CCSN is evaluated by analyzing the accumulated event anisotropy of inverse beta decay interactions from pre-SN or SN neutrinos. This, along with the early alert, can play a crucial role in facilitating follow-up multi-messenger observations of the next galactic or nearby extragalactic CCSN., Comment: 24 pages, 9 figures, accepted for the publication at JCAP
- Published
- 2023
25. The cosmic build-up of dust and metals. Accurate abundances from GRB-selected star-forming galaxies at $1.7 < z < 6.3$
- Author
-
Heintz, K. E., De Cia, A., Thöne, C. C., Krogager, J. -K., Yates, R. M., Vejlgaard, S., Konstantopoulou, C., Fynbo, J. P. U., Watson, D., Narayanan, D., Wilson, S. N., Arabsalmani, M., Campana, S., D'Elia, V., De Pasquale, M., Hartmann, D. H., Izzo, L., Jakobsson, P., Kouveliotou, C., Levan, A., Li, Q., Malesani, D. B., Melandri, A., Milvang-Jensen, B., Møller, P., Palazzi, E., Palmerio, J., Petitjean, P., Pugliese, G., Rossi, A., Saccardi, A., Salvaterra, R., Savaglio, S., Schady, P., Stratta, G., Tanvir, N. R., Postigo, A. de Ugarte, Vergani, S. D., Wiersema, K., Wijers, R. A. M. J., and Zafar, T.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The chemical enrichment of dust and metals in the interstellar medium (ISM) of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG), and dust-to-metal (DTM) ratios of 36 star-forming galaxies at $1.7 < z < 6.3$ probed by gamma-ray bursts (GRBs). We compile all GRB-selected galaxies with intermediate (R=7000) to high (R>40,000) resolution spectroscopic data for which at least one refractory (e.g. Fe) and one volatile (e.g. S or Zn) element have been detected at S/N>3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derive the redshift evolution of the dust-corrected, absorption-line based gas-phase metallicity [M/H]$_{\rm tot}$ in these galaxies, for which we determine a linear relation with redshift ${\rm [M/H]_{tot}}(z) = (-0.21\pm 0.04)z -(0.47\pm 0.14)$. We then examine the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction $A_V$ and the derived depletion level. We use a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust-phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the ISM probed by the GRBs, they provide strong implications for studies of dust masses to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime., Comment: Accepted in A&A
- Published
- 2023
- Full Text
- View/download PDF
26. The MeerKAT Absorption Line Survey (MALS) data release I: Stokes I image catalogs at 1-1.4 GHz
- Author
-
Deka, P. P., Gupta, N., Jagannathan, P., Sekhar, S., Momjian, E., Bhatnagar, S., Wagenveld, J., Klöckner, H. -R., Jose, J., Balashev, S. A., Combes, F., Hilton, M., Borgaonkar, D., Chatterjee, A., Emig, K. L., Gaunekar, A. N., Józsa, G. I. G., Klutse, D. Y., Knowles, K., Krogager, J-. K., Mohapatra, A., Moodley, K., Muller, Sébastien, Noterdaeme, P., Petitjean, P., Salas, P., and Sikhosana, S.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The MeerKAT Absorption Line Survey (MALS) has observed 391 telescope pointings at L-band (900 - 1670 MHz) at $\delta\lesssim$ $+20\deg$. We present radio continuum images and a catalog of 495,325 (240,321) radio sources detected at a signal-to-noise ratio (SNR) $>$5 over an area of 2289 deg$^2$ (1132 deg$^2$) at 1006 MHz (1381 MHz). Every MALS pointing contains a central bright radio source ($S_{1\,\mathrm{GHz}} \gtrsim 0.2$ Jy). The median spatial resolution is $12^{\prime\prime}$ ($8^{\prime\prime}$). The median rms noise away from the pointing center is 25 $\mu$Jy beam$^{-1}$ (22 $\mu$Jy beam$^{-1}$) and is within $\sim$ 15% of the achievable theoretical sensitivity. The flux density scale ratio and astrometric accuracy deduced from multiply observed sources in MALS are less than 1% (8% scatter) and $1^{\prime\prime}$, respectively. Through comparisons with NVSS and FIRST at 1.4 GHz, we establish the catalog's accuracy in the flux density scale and astrometry to be better than 6% (15% scatter) and $0.8^{\prime\prime}$, respectively. The median flux density offset is higher (9%) for an alternate beam model based on holographic measurements. The MALS radio source counts at 1.4 GHz are in agreement with literature. We estimate spectral indices ($\alpha$) of a subset of 125,621 sources (SNR$>$8), confirm the flattening of spectral indices with decreasing flux density and identify 140 ultra steep-spectrum ($\alpha<-1.3$) sources as prospective high-$z$ radio galaxies ($z>2$). We have identified 1308 variable and 122 transient radio sources comprising primarily of AGN that demonstrate long-term (26 years) variability in their observed flux densities. The MALS catalogs and images are publicly available at https://mals.iucaa.in., Comment: 64 pages, 25 figures, accepted for publication in the ApJS (full version of the paper with complete tables is available at DR1 release notes)
- Published
- 2023
27. Search for Muon Catalyzed 3Hed Fusion
- Author
-
Fotev, V. D., Ganzha, V. A., Ivshin, K. A., Kravchenko, P. V., Kravtsov, P. A., Maev, E. M., Nadtochiy, A. V., Solovev, A. N., Solovyev, I. N., Spiridenkov, E. M., Vasilyev, A. A., Vorobyov, A. A., Voropaev, N. I., Vznuzdaev, M. E., Kammel, P., Muldoon, E. T., Ryan, R. A., Salvat, D. J., Prindle, D., Hildebrandt, M., Lauss, B., Petitjean, C., Gorringe, T., Carey, R. M., and Gray, F. E.
- Published
- 2024
- Full Text
- View/download PDF
28. JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo
- Author
-
JUNO Collaboration, Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, Alexandros, Tsagkarakis, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Bergnoli, Antonio, Bick, Daniel, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Butorov, Ilya, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callegari, Riccardo, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Chan, Chi, Chang, Jinfan, Chang, Yun, Chen, Guoming, Chen, Pingping, Chen, Po-An, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Corti, Daniele, Corso, Flavio Dal, Dalager, Olivia, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dusini, Stefano, Dvorak, Martin, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Donghua, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ford, Richard, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kalousis, Leonidas, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Daozheng, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zepeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Lippi, Ivano, Liu, Fang, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Yan, Liu, Yunzhe, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martin-Chassard, Gisele, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meinusch, Artur, Meng, Yue, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Mezzetto, Mauro, Miller, Jonathan, Miramonti, Lino, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebber, Henning, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sanfilippo, Simone, Sangka, Anut, Sawangwit, Utane, Sawatzki, Julia, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Shao, Zhuang, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Štefánik, Dušan, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Treskov, Konstantin, Triossi, Andrea, Troni, Giancarlo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, Volpe, Cristina, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Lu, Wang, Meifen, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuman, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Wang, Zongyi, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Wenqi, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Huan, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Guoqing, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jin, Zhang, Jingbo, Zhang, Jinnan, Zhang, Mohan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, and Zwickel, Sebastian
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
We discuss JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo via detecting inverse beta decay reactions of electron anti-neutrinos resulting from the annihilation. We study possible backgrounds to the signature, including the reactor neutrinos, diffuse supernova neutrino background, charged- and neutral-current interactions of atmospheric neutrinos, backgrounds from muon-induced fast neutrons and cosmogenic isotopes. A fiducial volume cut, as well as the pulse shape discrimination and the muon veto are applied to suppress the above backgrounds. It is shown that JUNO sensitivity to the thermally averaged dark matter annihilation rate in 10 years of exposure would be significantly better than the present-day best limit set by Super-Kamiokande and would be comparable to that expected by Hyper-Kamiokande., Comment: 25 pages, 9 figures, matches the publised version
- Published
- 2023
- Full Text
- View/download PDF
29. Time variability of ultra-fast BAL outflows using SALT: C IV equivalent width analysis
- Author
-
Aromal, P., Srianand, R., and Petitjean, P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We study the time variability (over $\le$7.3 yrs) of ultra-fast outflows (UFOs) detected in a sample of 64 C IV broad absorption line (BAL) quasars (with 80 distinct BAL components) monitored using the Southern African Large Telescope. By comparing the properties of the quasar in our sample with those of a control sample of non-BAL quasars we show that the distributions of black hole mass are different and the bolometric luminosities and optical photometric variations of UFO BAL quasars are slightly smaller compared to that of non-BAL quasars. The detection fraction of C IV equivalent width (W) variability ($\sim$95%), the fractional variability amplitude ($\frac{\Delta W}{W}$) and the fraction of ``highly variable" BAL (i.e., |$\frac{\Delta W}{W}$| $>$0.67) components ($\sim$ 33%) are higher in our sample compared to the general BAL population. The scatter in $\frac{\Delta W}{W}$ and the fraction of ``highly variable" BALs increase with the time-scale probed. The $\frac{\Delta W}{W}$ distribution is asymmetric at large time scales. We attribute this to the BAL strengthening time scales being shorter than the weakening time scales. The BAL variability amplitude correlates strongly with the BAL properties compared to the quasar properties. BALs with low W, high-velocity, shallow profiles, and low-velocity width tend to show more variability. When multiple BAL components are present a correlated variability is seen between low- and high-velocity components with the latter showing larger amplitude variations. We find an anti-correlation between the fractional variations in the continuum flux and W. While this suggests photoionization-induced variability, the scatter in continuum flux is much smaller than that of W., Comment: 22 pages, accepted for publication in MNRAS
- Published
- 2023
- Full Text
- View/download PDF
30. The Sloan Digital Sky Survey Reverberation Mapping Project: Key Results
- Author
-
Shen, Yue, Grier, Catherine J., Horne, Keith, Stone, Zachary, Li, Jennifer I., Yang, Qian, Homayouni, Yasaman, Trump, Jonathan R., Anderson, Scott F., Brandt, W. N., Hall, Patrick B., Ho, Luis C., Jiang, Linhua, Petitjean, Patrick, Schneider, Donald P., Tao, Charling, Donnan, Fergus. R., AlSayyad, Yusra, Bershady, Matthew A., Blanton, Michael R., Bizyaev, Dmitry, Bundy, Kevin, Chen, Yuguang, Davis, Megan C., Dawson, Kyle, Fan, Xiaohui, Greene, Jenny E., Groller, Hannes, Guo, Yucheng, Ibarra-Medel, Hector, Jiang, Yuanzhe, Keenan, Ryan P., Kollmeier, Juna A., Lejoly, Cassandra, Li, Zefeng, de la Macorra, Axel, Moe, Maxwell, Nie, Jundan, Rossi, Graziano, Smith, Paul S., Tee, Wei Leong, Weijmans, Anne-Marie, Xu, Jiachuan, Yue, Minghao, Zhou, Xu, Zhou, Zhimin, and Zou, Hu
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the final data from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, a precursor to the SDSS-V Black Hole Mapper Reverberation Mapping program. This data set includes 11-year photometric and 7-year spectroscopic light curves for 849 broad-line quasars over a redshift range of 0.1
=0.62+-0.07 for the line dispersion measured from the RMS spectrum. The intrinsic scatter of individual virial factors is 0.31+-0.07 dex, indicating a factor of two systematic uncertainty in RM black hole masses. Our lag measurements reveal significant R-L relations for Hbeta and MgII at high redshift, consistent with the latest measurements based on heterogeneous samples. While we are unable to robustly constrain the slope of the R-L relation for CIV given the limited dynamical range in luminosity, we found substantially larger scatter in CIV lags at fixed L1350. Using the SDSS-RM lag sample, we derive improved single-epoch (SE) mass recipes for Hbeta, MgII and CIV, which are consistent with their respective RM masses as well as between the SE recipes from two different lines, over the luminosity range probed by our sample. The new Hbeta and MgII recipes are approximately unbiased estimators at given RM masses, but there are systematic biases in the CIV recipe. The intrinsic scatter of SE masses around RM masses is ~0.45 dex for Hbeta and MgII, increasing to ~0.58 dex for CIV., Comment: Replaced with accepted version (ApJS in press). All measurements remain unchanged from the previous version. 38 pages. Data products available at https://ariel.astro.illinois.edu/sdssrm/final result/ and ftp://quasar.astro.illinois.edu/public/sdssrm/final_result/ - Published
- 2023
31. A pre-adjoint approach on weighted composition operators between spaces of Lipschitz functions
- Author
-
Abbar, Arafat, Coine, Clément, and Petitjean, Colin
- Subjects
Mathematics - Functional Analysis - Abstract
We consider weighted composition operators, that is operators of the type $g \mapsto w \cdot g \circ f$, acting on spaces of Lipschitz functions. Bounded weighted composition operators, as well as some compact weighted composition operators, have been characterized quite recently. In this paper, we provide a different approach involving their pre-adjoint operators, namely the weighted Lipschitz operators acting on Lipschitz free spaces. This angle allows us to improve some results from the literature. Notably, we obtain a distinct characterization of boundedness with a precise estimate of the norm. We also characterise injectivity, surjectivity, compactness and weak compactness in full generality.
- Published
- 2023
32. The JUNO experiment Top Tracker
- Author
-
JUNO Collaboration, Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, Alexandros, Tsagkarakis, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chan, Chi, Chang, Jinfan, Chang, Yun, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Corso, Flavio Dal, Dalager, Olivia, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Drapier, Olivier, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Felici, Giulietto, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Gerasimov, Vladimir, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Gursky, Semen, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Kaixuan, Huang, Wenhao, Huang, Qinhua, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kalousis, Leonidas, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zepeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Yankai, Liu, Yunzhe, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Magoni, Marco, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Miller, Jonathan, Miramonti, Lino, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Romanov, Victor, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sanfilippo, Simone, Sangka, Anut, Sawangwit, Utane, Sawatzki, Julia, Schever, Michaela, Schuler, Jacky, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Štefánik, Dušan, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Takenaka, Akira, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Tortorici, Francesco, Treskov, Konstantin, Triossi, Andrea, Triozzi, Riccardo, Troni, Giancarlo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Lu, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jin, Zhang, Jingbo, Zhang, Jinnan, Zhang, Mohan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, and Zwickel, Sebastian
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO's water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation., Comment: 20 pages
- Published
- 2023
- Full Text
- View/download PDF
33. JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos
- Author
-
Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, Alexandros, Tsagkarakis, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chan, Chi, Chang, Jinfan, Chang, Yun, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kutovskiy, Nikolay, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Jiajun, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zepeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Magoni, Marco, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Miramonti, Lino, Mohan, Nikhil, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sanfilippo, Simone, Sangka, Anut, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Takenaka, Akira, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Tortorici, Francesco, Treskov, Konstantin, Triossi, Andrea, Triozzi, Riccardo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Lu, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, Zhang, Mohan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, Züfle, Jan, and Zwickel, Sebastian
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO's large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves.
- Published
- 2023
34. Quantum Key Distribution over 100 km underwater optical fiber assisted by a Fast-Gated Single-Photon Detector
- Author
-
Ribezzo, Domenico, Zahidy, Mujtaba, Lemmi, Gianmarco, Petitjean, Antoine, De Lazzari, Claudia, Vagniluca, Ilaria, Conca, Enrico, Tosi, Alberto, Occhipinti, Tommaso, Oxenløwe, Leif K., Xuereb, Andrè, Bacco, Davide, and Zavatta, Alessandro
- Subjects
Quantum Physics - Abstract
Nowadays Quantum Key Distribution represents the most mature quantum technology, and multiple countries as well as private institutions are building their quantum network. However, QKD devices are still far from representing a product within everyone's reach. Indeed, limitations in terms of compatibility with existing telecom infrastructure and limited performances in terms of secret key rate, using non-cryogenic detection systems, are still critical. In this work, we implemented a quantum key distribution link between Sicily (Italy) and Malta utilizing two different Single-Photon Avalanche Diode (SPAD) detectors. The performances of a standard commercial SPAD have been compared with the results achieved with a new prototype of fast-gated System in a Package (SiP) SPAD; the SiP detector has shown to be able to accomplish a fourteen times higher key rate compared with the commercial device over the channel showing 20 dB of losses.
- Published
- 2023
- Full Text
- View/download PDF
35. The MeerKAT Absorption Line Survey: Homogeneous continuum catalogues towards a measurement of the cosmic radio dipole
- Author
-
Wagenveld, J. D., Klöckner, H. -R., Gupta, N., Deka, P. P., Jagannathan, P., Sekhar, S., Balashev, S. A., Boettcher, E., Combes, F., Emig, K. L., Hilton, M., Józsa, G. I. G., Kamphuis, P., Klutse, D. Y., Knowles, K., Krogager, J. -K., Mohapatra, A., Momjian, E., Moodley, K., Muller, S., Petitjean, P., Salas, P., Sikhosana, S., and Srianand, R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The number counts of homogeneous samples of radio sources are a tried and true method of probing the large scale structure of the Universe, as most radio sources outside the galactic plane are at cosmological distances. As such they are expected to trace the cosmic radio dipole, an anisotropy analogous to the dipole seen in the cosmic microwave background (CMB). Results have shown that although the cosmic radio dipole matches the direction of the CMB dipole, it has a significantly larger amplitude. This result challenges our assumption of the Universe being isotropic, which can have large repercussions for the current cosmological paradigm. Though significant measurements have been made, sensitivity to the radio dipole is generally hampered by systematic effects that can cause large biases in the measurement. Here we assess these systematics with data from the MeerKAT Absorption Line Survey (MALS). We present the analysis of ten MALS pointings, focusing on systematic effects that could lead to an inhomogeneous catalogue. We describe the calibration and creation of full band continuum images and catalogues, producing a combined catalogue containing 16,313 sources and covering 37.5 square degrees of sky down to a sensitivity of 10 $\mu$Jy/beam. We measure the completeness, purity, and flux recovery statistics for these catalogues using simulated data. We investigate different source populations in the catalogues by looking at flux densities and spectral indices, and how they might influence source counts. Using the noise characteristics of the pointings, we find global measures that can be used to correct for the incompleteness of the catalogue, producing corrected number counts down to 100 - 200 $\mu$Jy. We show that we can homogenise the catalogues and properly account for systematic effects. We determine that we can measure the dipole to $3\sigma$ significance with 100 MALS pointings., Comment: 30 pages, 25 figures. Accepted for publication in Astronomy & Astrophysics
- Published
- 2023
- Full Text
- View/download PDF
36. Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics
- Author
-
Triozzi, Riccardo, Serafini, Andrea, Bellato, Marco, Bergnoli, Antonio, Bolognesi, Matteo, Brugnera, Riccardo, Cerrone, Vanessa, Chen, Chao, Clerbaux, Barbara, Coppi, Alberto, Corti, Daniele, Corso, Flavio dal, Dong, Jianmeng, Dou, Wei, Fan, Lei, Garfagnini, Alberto, Gavrikov, Arsenii, Gong, Guanghua, Grassi, Marco, Guizzetti, Rosa Maria, Hang, Shuang, He, Cong, Hu, Jun, Isocrate, Roberto, Jelmini, Beatrice, Ji, Xiaolu, Jiang, Xiaoshan, Li, Fei, Liang, Zehong, Lippi, Ivano, Liu, Hongbang, Liu, Hongbin, Liu, Shenghui, Liu, Xuewei, Luo, Daibin, Luo, Ronghua, Marini, Filippo, Mazzaro, Daniele, Modenese, Luciano, Molla, Marta Colomer, Ning, Zhe, Peng, Yu, Petitjean, Pierre-Alexandre, Pitacco, Alberto, Qi, Mengyao, Ramina, Loris, Rampazzo, Mirco, Rebeschini, Massimo, Redchuk, Mariia, Sun, Yunhua, Triossi, Andrea, Veronese, Fabio, von Sturm, Katharina, Wang, Peiliang, Wang, Peng, Wang, Yangfu, Wang, Yusheng, Wang, Yuyi, Wang, Zheng, Wei, Ping, Weng, Jun, Xian, Shishen, Xie, Xiaochuan, Xu, Benda, Xu, Chuang, Xu, Donglian, Xu, Hai, Yan, Xiongbo, Yan, Ziyue, Yang, Fengfan, Yang, Yan, Yang, Yifan, Ye, Mei, Zeng, Tingxuan, Zhang, Shuihan, Zhang, Wei, Zhang, Aiqiang, Zhang, Bin, Zhao, Siyao, Zi, Changge, Aiello, Sebastiano, Andronico, Giuseppe, Antonelli, Vito, Barresi, Andrea, Basilico, Davide, Beretta, Marco, Brigatti, Augusto, Bruno, Riccardo, Budano, Antonio, Caccianiga, Barbara, Cammi, Antonio, Campese, Stefano, Chiesa, Davide, Clementi, Catia, Cordelli, Marco, Dusini, Stefano, Fabbri, Andrea, Felici, Giulietto, Ferraro, Federico, Giammarchi, Marco Giulio, Landini, Cecilia, Lombardi, Paolo, Lombardo, Claudio, Maino, Andrea, Mantovani, Fabio, Mari, Stefano Maria, Martini, Agnese, Meroni, Emanuela, Miramonti, Lino, Montuschi, Michele, Nastasi, Massimiliano, Orestano, Domizia, Ortica, Fausto, Paoloni, Alessandro, Parmeggiano, Sergio, Petrucci, Fabrizio, Previtali, Ezio, Ranucci, Gioacchino, Re, Alessandra Carlotta, Ricci, Barbara, Romani, Aldo, Saggese, Paolo, Sanfilippo, Simone, Sirignano, Chiara, Sisti, Monica, Stanco, Luca, Strati, Virginia, Tortorici, Francesco, Tuvé, Cristina, Venettacci, Carlo, Verde, Giuseppe, and Votano, Lucia
- Subjects
Physics - Instrumentation and Detectors - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. Thanks to the tight requirements on its optical and radio-purity properties, it will be able to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range from tens of keV to hundreds of MeV. A key requirement for the success of the experiment is an unprecedented 3% energy resolution, guaranteed by its large active mass (20 kton) and the use of more than 20,000 20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution sampling electronics located very close to the PMTs. As the Front-End and Read-Out electronics is expected to continuously run underwater for 30 years, a reliable readout acquisition system capable of handling the timestamped data stream coming from the Large-PMTs and permitting to simultaneously monitor and operate remotely the inaccessible electronics had to be developed. In this contribution, the firmware and hardware implementation of the IPbus based readout protocol will be presented, together with the performances measured on final modules during the mass production of the electronics.
- Published
- 2023
- Full Text
- View/download PDF
37. Chemical diversity of gas in distant galaxies: The metal and dust enrichment and variations within absorbing galaxies
- Author
-
Ramburuth-Hurt, T., De Cia, A., Krogager, J. -K., Ledoux, C., Petitjean, P., Péroux, C., Dessauges-Zavadsky, M., Fynbo, J., Wendt, M., Bouché, N. F., Konstantopoulou, C., and Jermann, I.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The chemical composition of gas in galaxies can be measured in detail from absorption spectroscopy. By studying gas in galaxies in this way, it is possible to investigate the small and faint galaxies, which are the most numerous in the universe. In particular, the chemical distribution of gas in absorbing systems gives us insight into cycles of gas in and around galaxies. Here we study chemical enrichment within 64 Damped Lyman-alpha Absorption (DLA) systems between $1.7 < z < 4.2$. We use high-resolution spectra from VLT/UVES to infer dust depletion from relative abundances of several metals. We perform a component-by-component analysis within DLAs, and characterise variations in their chemical enrichment. Unlike hydrogen, the metal columns can be characterised for individual components. We use them to derive the dust depletion ([Zn/Fe]fit), as an indicator for chemical enrichment. We find that some DLAs are chemically diverse within themselves, with [Zn/Fe]fit ranging up to 0.62 dex within a single system. This suggests that absorbing gas within these galaxies is chemically diverse. Although we do not find a clear trend of decreasing dust depletion with redshift, we do see that the most chemically enriched systems are at lower redshifts. We also observe evidence for dust-poor components at all redshifts, which may be due to the accretion of pristine gas onto galaxies. We combine the chemical and kinematic properties of the individual gas components and observe potential signatures of infalling gas, with low depletion at velocities below $\sim$100km/s, and outflows, with high depletion and velocities of $\sim$600km/s. We find over-abundances of alpha-elements (an enhancement of $\sim$0.3dex) and under-abundances of Mn in several components, which is likely a signature of core-collapse SNe nucleosythesis in the ISM. We observe these effects mostly at lower levels of chemical enrichment., Comment: 56 pages, 99 figures, Accepted for publication in A&A, Abstract abridged for arXiv
- Published
- 2023
- Full Text
- View/download PDF
38. Mass testing of the JUNO experiment 20-inch PMTs readout electronics
- Author
-
Coppi, Alberto, Jelmini, Beatrice, Bellato, Marco, Bergnoli, Antonio, Bolognesi, Matteo, Brugnera, Riccardo, Cerrone, Vanessa, Chen, Chao, Clerbaux, Barbara, Corti, Daniele, Corso, Flavio dal, Dong, Jianmeng, Dou, Wei, Fan, Lei, Garfagnini, Alberto, Gavrikov, Arsenii, Gong, Guanghua, Grassi, Marco, Guizzetti, Rosa Maria, Hang, Shuang, He, Cong, Hu, Jun, Isocrate, Roberto, Ji, Xiaolu, Jiang, Xiaoshan, Li, Fei, Liang, Zehong, Lippi, Ivano, Liu, Hongbang, Liu, Hongbin, Liu, Shenghui, Liu, Xuewei, Luo, Daibin, Luo, Ronghua, Marini, Filippo, Mazzaro, Daniele, Modenese, Luciano, Molla, Marta Colomer, Ning, Zhe, Peng, Yu, Petitjean, Pierre-Alexandre, Pitacco, Alberto, Qi, Mengyao, Ramina, Loris, Rampazzo, Mirco, Rebeschini, Massimo, Redchuk, Mariia, Serafini, Andrea, Sun, Yunhua, Triossi, Andrea, Triozzi, Riccardo, Veronese, Fabio, von Sturm, Katharina, Wang, Peiliang, Wang, Peng, Wang, Yangfu, Wang, Yusheng, Wang, Yuyi, Wang, Zheng, Wei, Ping, Weng, Jun, Xian, Shishen, Xie, Xiaochuan, Xu, Benda, Xu, Chuang, Xu, Donglian, Xu, Hai, Yan, Xiongbo, Yan, Ziyue, Yang, Fengfan, Yang, Yan, Yang, Yifan, Ye, Mei, Zeng, Tingxuan, Zhang, Shuihan, Zhang, Wei, Zhang, Aiqiang, Zhang, Bin, Zhao, Siyao, Zi, Changge, Aiello, Sebastiano, Andronico, Giuseppe, Antonelli, Vito, Barresi, Andrea, Basilico, Davide, Beretta, Marco, Brigatti, Augusto, Bruno, Riccardo, Budano, Antonio, Caccianiga, Barbara, Cammi, Antonio, Campese, Stefano, Chiesa, Davide, Clementi, Catia, Cordelli, Marco, Dusini, Stefano, Fabbri, Andrea, Felici, Giulietto, Ferraro, Federico, Giammarchi, Marco Giulio, Landini, Cecilia, Lombardi, Paolo, Lombardo, Claudio, Maino, Andrea, Mantovani, Fabio, Mari, Stefano Maria, Martini, Agnese, Meroni, Emanuela, Miramonti, Lino, Montuschi, Michele, Nastasi, Massimiliano, Orestano, Domizia, Ortica, Fausto, Paoloni, Alessandro, Parmeggiano, Sergio, Petrucci, Fabrizio, Previtali, Ezio, Ranucci, Gioacchino, Re, Alessandra Carlotta, Ricci, Barbara, Romani, Aldo, Saggese, Paolo, Sanfilippo, Simone, Sirignano, Chiara, Sisti, Monica, Stanco, Luca, Strati, Virginia, Tortorici, Francesco, Tuvé, Cristina, Venettacci, Carlo, Verde, Giuseppe, and Votano, Lucia
- Subjects
Physics - Instrumentation and Detectors - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose, large size, liquid scintillator experiment under construction in China. JUNO will perform leading measurements detecting neutrinos from different sources (reactor, terrestrial and astrophysical neutrinos) covering a wide energy range (from 200 keV to several GeV). This paper focuses on the design and development of a test protocol for the 20-inch PMT underwater readout electronics, performed in parallel to the mass production line. In a time period of about ten months, a total number of 6950 electronic boards were tested with an acceptance yield of 99.1%.
- Published
- 2023
- Full Text
- View/download PDF
39. Discovery of Hydrogen Radio Recombination Lines at z=0.89 towards PKS 1830-211
- Author
-
Emig, Kimberly L., Gupta, Neeraj, Salas, Pedro, Muller, Sebastien, Balashev, Sergei A., Combes, Francoise, Momjian, Emmanuel, Song, Yiqing, Jagannathan, Preshanth, Deka, Partha P., Jozsa, Gyula I. G., Klockner, Hans-Rainer, Mohapatra, Abhisek, Noterdaeme, Pasquier, Petitjean, Patrick, Srianand, Raghunathan, and Wagenveld, Jonah D.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report the detection of stimulated hydrogen radio recombination line (RRL) emission from ionized gas in a $z=0.89$ galaxy using 580--1670 MHz observations from the MeerKAT Absorption Line Survey (MALS). The RRL emission originates in a galaxy that intercepts and strongly lenses the radio blazar PKS 1830-211 ($z=2.5$). This is the second detection of RRLs outside of the local universe and the first clearly associated with hydrogen. We detect effective H144$\alpha$ (and H163$\alpha$) transitions at observed frequencies of 1156 (798) MHz by stacking 17 (27) RRLs with 21$\sigma$ (14$\sigma$) significance. The RRL emission contains two main velocity components and is coincident in velocity with HI 21 cm and OH 18 cm absorption. We use the RRL spectral line energy distribution and a Bayesian analysis to constrain the density ($n_e$) and the volume-averaged pathlength ($\ell$) of the ionized gas. We determine $\log( n_e ) = 2.0_{-0.7}^{+1.0}$ cm$^{-3}$ and $\log( \ell ) = -0.7_{-1.1}^{+1.1}$ pc towards the north east (NE) lensed image, likely tracing the diffuse thermal phase of the ionized ISM in a thin disk. Towards the south west (SW) lensed image, we determine $\log( n_e ) = 3.2_{-1.0}^{+0.4}$ cm$^{-3}$ and $\log( \ell ) = -2.7_{-0.2}^{+1.8}$ pc, tracing gas that is more reminiscent of H II regions. We estimate a star formation (surface density) rate of $\Sigma_{\mathrm{SFR}} \sim 0.6$ M$_{\odot}$ yr$^{-1}$ kpc$^{-2}$ or SFR $\sim 50$ M$_{\odot}$ yr$^{-1}$, consistent with a star-forming main sequence galaxy of $M_{\star} \sim 10^{11}$ M$_{\odot}$. The discovery presented here opens up the possibility of studying ionized gas at high redshifts using RRL observations from current and future (e.g., SKA and ngVLA) radio facilities., Comment: 17 pages, 10 figures, 2 tables, accepted in ApJ
- Published
- 2023
- Full Text
- View/download PDF
40. Biomedical image analysis competitions: The state of current participation practice
- Author
-
Eisenmann, Matthias, Reinke, Annika, Weru, Vivienn, Tizabi, Minu Dietlinde, Isensee, Fabian, Adler, Tim J., Godau, Patrick, Cheplygina, Veronika, Kozubek, Michal, Ali, Sharib, Gupta, Anubha, Kybic, Jan, Noble, Alison, de Solórzano, Carlos Ortiz, Pachade, Samiksha, Petitjean, Caroline, Sage, Daniel, Wei, Donglai, Wilden, Elizabeth, Alapatt, Deepak, Andrearczyk, Vincent, Baid, Ujjwal, Bakas, Spyridon, Balu, Niranjan, Bano, Sophia, Bawa, Vivek Singh, Bernal, Jorge, Bodenstedt, Sebastian, Casella, Alessandro, Choi, Jinwook, Commowick, Olivier, Daum, Marie, Depeursinge, Adrien, Dorent, Reuben, Egger, Jan, Eichhorn, Hannah, Engelhardt, Sandy, Ganz, Melanie, Girard, Gabriel, Hansen, Lasse, Heinrich, Mattias, Heller, Nicholas, Hering, Alessa, Huaulmé, Arnaud, Kim, Hyunjeong, Landman, Bennett, Li, Hongwei Bran, Li, Jianning, Ma, Jun, Martel, Anne, Martín-Isla, Carlos, Menze, Bjoern, Nwoye, Chinedu Innocent, Oreiller, Valentin, Padoy, Nicolas, Pati, Sarthak, Payette, Kelly, Sudre, Carole, van Wijnen, Kimberlin, Vardazaryan, Armine, Vercauteren, Tom, Wagner, Martin, Wang, Chuanbo, Yap, Moi Hoon, Yu, Zeyun, Yuan, Chun, Zenk, Maximilian, Zia, Aneeq, Zimmerer, David, Bao, Rina, Choi, Chanyeol, Cohen, Andrew, Dzyubachyk, Oleh, Galdran, Adrian, Gan, Tianyuan, Guo, Tianqi, Gupta, Pradyumna, Haithami, Mahmood, Ho, Edward, Jang, Ikbeom, Li, Zhili, Luo, Zhengbo, Lux, Filip, Makrogiannis, Sokratis, Müller, Dominik, Oh, Young-tack, Pang, Subeen, Pape, Constantin, Polat, Gorkem, Reed, Charlotte Rosalie, Ryu, Kanghyun, Scherr, Tim, Thambawita, Vajira, Wang, Haoyu, Wang, Xinliang, Xu, Kele, Yeh, Hung, Yeo, Doyeob, Yuan, Yixuan, Zeng, Yan, Zhao, Xin, Abbing, Julian, Adam, Jannes, Adluru, Nagesh, Agethen, Niklas, Ahmed, Salman, Khalil, Yasmina Al, Alenyà, Mireia, Alhoniemi, Esa, An, Chengyang, Anwar, Talha, Arega, Tewodros Weldebirhan, Avisdris, Netanell, Aydogan, Dogu Baran, Bai, Yingbin, Calisto, Maria Baldeon, Basaran, Berke Doga, Beetz, Marcel, Bian, Cheng, Bian, Hao, Blansit, Kevin, Bloch, Louise, Bohnsack, Robert, Bosticardo, Sara, Breen, Jack, Brudfors, Mikael, Brüngel, Raphael, Cabezas, Mariano, Cacciola, Alberto, Chen, Zhiwei, Chen, Yucong, Chen, Daniel Tianming, Cho, Minjeong, Choi, Min-Kook, Xie, Chuantao Xie Chuantao, Cobzas, Dana, Cohen-Adad, Julien, Acero, Jorge Corral, Das, Sujit Kumar, de Oliveira, Marcela, Deng, Hanqiu, Dong, Guiming, Doorenbos, Lars, Efird, Cory, Escalera, Sergio, Fan, Di, Serj, Mehdi Fatan, Fenneteau, Alexandre, Fidon, Lucas, Filipiak, Patryk, Finzel, René, Freitas, Nuno R., Friedrich, Christoph M., Fulton, Mitchell, Gaida, Finn, Galati, Francesco, Galazis, Christoforos, Gan, Chang Hee, Gao, Zheyao, Gao, Shengbo, Gazda, Matej, Gerats, Beerend, Getty, Neil, Gibicar, Adam, Gifford, Ryan, Gohil, Sajan, Grammatikopoulou, Maria, Grzech, Daniel, Güley, Orhun, Günnemann, Timo, Guo, Chunxu, Guy, Sylvain, Ha, Heonjin, Han, Luyi, Han, Il Song, Hatamizadeh, Ali, He, Tian, Heo, Jimin, Hitziger, Sebastian, Hong, SeulGi, Hong, SeungBum, Huang, Rian, Huang, Ziyan, Huellebrand, Markus, Huschauer, Stephan, Hussain, Mustaffa, Inubushi, Tomoo, Polat, Ece Isik, Jafaritadi, Mojtaba, Jeong, SeongHun, Jian, Bailiang, Jiang, Yuanhong, Jiang, Zhifan, Jin, Yueming, Joshi, Smriti, Kadkhodamohammadi, Abdolrahim, Kamraoui, Reda Abdellah, Kang, Inha, Kang, Junghwa, Karimi, Davood, Khademi, April, Khan, Muhammad Irfan, Khan, Suleiman A., Khantwal, Rishab, Kim, Kwang-Ju, Kline, Timothy, Kondo, Satoshi, Kontio, Elina, Krenzer, Adrian, Kroviakov, Artem, Kuijf, Hugo, Kumar, Satyadwyoom, La Rosa, Francesco, Lad, Abhi, Lee, Doohee, Lee, Minho, Lena, Chiara, Li, Hao, Li, Ling, Li, Xingyu, Liao, Fuyuan, Liao, KuanLun, Oliveira, Arlindo Limede, Lin, Chaonan, Lin, Shan, Linardos, Akis, Linguraru, Marius George, Liu, Han, Liu, Tao, Liu, Di, Liu, Yanling, Lourenço-Silva, João, Lu, Jingpei, Lu, Jiangshan, Luengo, Imanol, Lund, Christina B., Luu, Huan Minh, Lv, Yi, Macar, Uzay, Maechler, Leon, L., Sina Mansour, Marshall, Kenji, Mazher, Moona, McKinley, Richard, Medela, Alfonso, Meissen, Felix, Meng, Mingyuan, Miller, Dylan, Mirjahanmardi, Seyed Hossein, Mishra, Arnab, Mitha, Samir, Mohy-ud-Din, Hassan, Mok, Tony Chi Wing, Murugesan, Gowtham Krishnan, Karthik, Enamundram Naga, Nalawade, Sahil, Nalepa, Jakub, Naser, Mohamed, Nateghi, Ramin, Naveed, Hammad, Nguyen, Quang-Minh, Quoc, Cuong Nguyen, Nichyporuk, Brennan, Oliveira, Bruno, Owen, David, Pal, Jimut Bahan, Pan, Junwen, Pan, Wentao, Pang, Winnie, Park, Bogyu, Pawar, Vivek, Pawar, Kamlesh, Peven, Michael, Philipp, Lena, Pieciak, Tomasz, Plotka, Szymon, Plutat, Marcel, Pourakpour, Fattaneh, Preložnik, Domen, Punithakumar, Kumaradevan, Qayyum, Abdul, Queirós, Sandro, Rahmim, Arman, Razavi, Salar, Ren, Jintao, Rezaei, Mina, Rico, Jonathan Adam, Rieu, ZunHyan, Rink, Markus, Roth, Johannes, Ruiz-Gonzalez, Yusely, Saeed, Numan, Saha, Anindo, Salem, Mostafa, Sanchez-Matilla, Ricardo, Schilling, Kurt, Shao, Wei, Shen, Zhiqiang, Shi, Ruize, Shi, Pengcheng, Sobotka, Daniel, Soulier, Théodore, Fadida, Bella Specktor, Stoyanov, Danail, Mun, Timothy Sum Hon, Sun, Xiaowu, Tao, Rong, Thaler, Franz, Théberge, Antoine, Thielke, Felix, Torres, Helena, Wahid, Kareem A., Wang, Jiacheng, Wang, YiFei, Wang, Wei, Wang, Xiong, Wen, Jianhui, Wen, Ning, Wodzinski, Marek, Wu, Ye, Xia, Fangfang, Xiang, Tianqi, Xiaofei, Chen, Xu, Lizhan, Xue, Tingting, Yang, Yuxuan, Yang, Lin, Yao, Kai, Yao, Huifeng, Yazdani, Amirsaeed, Yip, Michael, Yoo, Hwanseung, Yousefirizi, Fereshteh, Yu, Shunkai, Yu, Lei, Zamora, Jonathan, Zeineldin, Ramy Ashraf, Zeng, Dewen, Zhang, Jianpeng, Zhang, Bokai, Zhang, Jiapeng, Zhang, Fan, Zhang, Huahong, Zhao, Zhongchen, Zhao, Zixuan, Zhao, Jiachen, Zhao, Can, Zheng, Qingshuo, Zhi, Yuheng, Zhou, Ziqi, Zou, Baosheng, Maier-Hein, Klaus, Jäger, Paul F., Kopp-Schneider, Annette, and Maier-Hein, Lena
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
- Published
- 2022
41. JUNO Sensitivity on Proton Decay $p\to \bar\nu K^+$ Searches
- Author
-
JUNO Collaboration, Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Bergnoli, Antonio, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Buscemi, Mario, Busto, Jose, Butorov, Ilya, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callegari, Riccardo, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Chang, Jinfan, Chang, Yun, Chen, Pingping, Chen, Po-An, Chen, Shaomin, Chen, Xurong, Chen, Yi-Wen, Chen, Yixue, Chen, Yu, Chen, Zhang, Cheng, Jie, Cheng, Yaping, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Di Lorenzo, Selma Conforti, Corti, Daniele, Corso, Flavio Dal, Dalager, Olivia, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dusini, Stefano, Dvorak, Martin, Enqvist, Timo, Enzmann, Heike, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Donghua, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Feng, Li-Cheng, Feng, Qichun, Ford, Richard, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giaz, Agnese, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Grewing, Christian, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guardone, Nunzio, Gul, Maria, Guo, Cong, Guo, Jingyuan, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Hackspacher, Paul, Hagner, Caren, Han, Ran, Han, Yang, Hassan, Muhammad Sohaib, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Chunhao, Huang, Guihong, Huang, Hanxiong, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jen, Kuo-Lun, Jeria, Ignacio, Ji, Xiaolu, Ji, Xingzhao, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jin, Ruyi, Jing, Xiaoping, Jollet, Cécile, Joutsenvaara, Jari, Jungthawan, Sirichok, Kalousis, Leonidas, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kruth, Andre, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Haitao, Li, Huiling, Li, Jiaqi, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Shanfeng, Li, Tao, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Liang, Hao, Liao, Jiajun, Liebau, Daniel, Limphirat, Ayut, Limpijumnong, Sukit, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Lippi, Ivano, Liu, Fang, Liu, Haidong, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shuangyu, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Yan, Liu, Yunzhe, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Shuxiang, Lu, Xiaoxu, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Fengjiao, Luo, Guang, Luo, Pengwei, Luo, Shu, Luo, Wuming, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Manzali, Francesco, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Marium, Sadia, Martellini, Cristina, Martin-Chassard, Gisele, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Mezzetto, Mauro, Miller, Jonathan, Miramonti, Lino, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelliccia, Nicomede, Peng, Anguo, Peng, Haiping, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Pratumwan, Wathan, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Rajput, Muhammad Usman, Ranucci, Gioacchino, Raper, Neill, Re, Alessandra, Rebber, Henning, Rebii, Abdel, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Robens, Markus, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Roth, Christian, Ruan, Xiangdong, Ruan, Xichao, Rujirawat, Saroj, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sanfilippo, Simone, Sangka, Anut, Sanguansak, Nuanwan, Sawangwit, Utane, Sawatzki, Julia, Sawy, Fatma, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Shao, Zhuang, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Štefánik, Dušan, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Suwonjandee, Narumon, Szelezniak, Michal, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Treskov, Konstantin, Triossi, Andrea, Troni, Giancarlo, Trzaska, Wladyslaw, Tuve, Cristina, Ushakov, Nikita, Boom, Johannes van den, van Waasen, Stefan, Vanroyen, Guillaume, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, Volpe, Cristina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Kunyu, Wang, Lu, Wang, Meifen, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuman, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Wang, Zongyi, Waqas, Muhammad, Watcharangkool, Apimook, Wei, Lianghong, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Wiebusch, Christopher, Wong, Steven Chan-Fai, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Taylor, Yan, Wenqi, Yan, Xiongbo, Yan, Yupeng, Yang, Anbo, Yang, Changgen, Yang, Chengfeng, Yang, Huan, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Yasin, Zafar, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yegin, Ugur, Yermia, Frédéric, Yi, Peihuai, Yin, Na, Yin, Xiangwei, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zambanini, Andre, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Feiyang, Zhang, Guoqing, Zhang, Haiqiong, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jin, Zhang, Jingbo, Zhang, Jinnan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Xueyao, Zhang, Yan, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Fengyi, Zhao, Jie, Zhao, Rong, Zhao, Shujun, Zhao, Tianchi, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jiang, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, and Zou, Jiaheng
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in $p\to \bar\nu K^+$ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via $p\to \bar\nu K^+$ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is $9.6 \times 10^{33}$ years, competitive with the current best limits on the proton lifetime in this channel., Comment: 14 pages, 12 figures, an author added
- Published
- 2022
- Full Text
- View/download PDF
42. Validation and integration tests of the JUNO 20-inch PMTs readout electronics
- Author
-
Cerrone, Vanessa, von Sturm, Katharina, Bellato, Marco, Bergnoli, Antonio, Bolognesi, Matteo, Brugnera, Riccardo, Chen, Chao, Clerbaux, Barbara, Coppi, Alberto, Corso, Flavio dal, Corti, Daniele, Dong, Jianmeng, Dou, Wei, Fan, Lei, Garfagnini, Alberto, Gong, Guanghua, Grassi, Marco, Hang, Shuang, Guizzetti, Rosa Maria, He, Cong, Hu, Jun, Isocrate, Roberto, Jelmini, Beatrice, Ji, Xiaolu, Jiang, Xiaoshan, Li, Fei, Liang, Zehong, Lippi, Ivano, Liu, Hongbang, Liu, Hongbin, Liu, Shenghui, Liu, Xuewei, Luo, Daibin, Luo, Ronghua, Marini, Filippo, Mazzaro, Daniele, Modenese, Luciano, Ning, Zhe, Peng, Yu, Petitjean, Pierre-Alexandre, Pitacco, Alberto, Qi, Mengyao, Ramina, Loris, Rampazzo, Mirco, Rebeschini, Massimo, Redchuk, Mariia, Serafini, Andrea, Sun, Yunhua, Triossi, Andrea, Triozzi, Riccardo, Veronese, Fabio, Wang, Peiliang, Wang, Peng, Wang, Yangfu, Wang, Yusheng, Wang, Yuyi, Wang, Zheng, Wei, Ping, Weng, Jun, Xian, Shishen, Xie, Xiaochuan, Xu, Benda, Xu, Chuang, Xu, Donglian, Xu, Hai, Yan, Xiongbo, Yan, Ziyue, Yang, Fengfan, Yang, Yan, Yang, Yifan, Ye, Mei, Zeng, Tingxuan, Zhang, Shuihan, Zhang, Wei, Zhang, Aiqiang, Zhang, Bin, Zhao, Siyao, Zi, Changge, Aiello, Sebastiano, Andronico, Giuseppe, Antonelli, Vito, Barresi, Andrea, Basilico, Davide, Beretta, Marco, Brigatti, Augusto, Bruno, Riccardo, Budano, Antonio, Caccianiga, Barbara, Cammi, Antonio, Campese, Stefano, Chiesa, Davide, Clementi, Catia, Cordelli, Marco, Dusini, Stefano, Fabbri, Andrea, Felici, Giulietto, Ferraro, Federico, Giammarchi, Marco G., Landini, Cecilia, Lombardi, Paolo, Lombardo, Claudio, Maino, Andrea, Mantovani, Fabio, Mari, Stefano Maria, Martini, Agnese, Meroni, Emanuela, Miramonti, Lino, Montuschi, Michele, Nastasi, Massimiliano, Orestano, Domizia, Ortica, Fausto, Paoloni, Alessandro, Parmeggiano, Sergio, Petrucci, Fabrizio, Previtali, Ezio, Ranucci, Gioacchino, Re, Alessandra Carlotta, Ricci, Barbara, Romani, Aldo, Saggese, Paolo, Sanfilippo, Simone, Sirignano, Chiara, Sisti, Monica, Stanco, Luca, Strati, Virginia, Tortorici, Francesco, Tuvé, Cristina, Venettacci, Carlo, Verde, Giuseppe, and Votano, Lucia
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino detector currently under construction in China. JUNO will be able to study the neutrino mass ordering and to perform leading measurements detecting terrestrial and astrophysical neutrinos in a wide energy range, spanning from 200 keV to several GeV. Given the ambitious physics goals of JUNO, the electronic system has to meet specific tight requirements, and a thorough characterization is required. The present paper describes the tests performed on the readout modules to measure their performances., Comment: 20 pages, 13 figures
- Published
- 2022
- Full Text
- View/download PDF
43. Dissecting the interstellar medium of a z=6.3 galaxy: X-shooter spectroscopy and HST imaging of the afterglow and environment of the Swift GRB 210905A
- Author
-
Saccardi, A., Vergani, S. D., De Cia, A., D'Elia, V., Heintz, K. E., Izzo, L., Palmerio, J. T., Petitjean, P., Rossi, A., Postigo, A. de Ugarte, Christensen, L., Konstantopoulou, C., Levan, A. J., Malesani, D. B., Møller, P., Ramburuth-Hurt, T., Salvaterra, R., Tanvir, N. R., Thöne, C. C., Vejlgaard, S., Fynbo, J. P. U., Kann, D. A., Schady, P., Watson, D. J., Wiersema, K., Campana, S., Covino, S., De Pasquale, M., Fausey, H., Hartmann, D. H., van der Horst, A. J., Jakobsson, P., Palazzi, E., Pugliese, G., Savaglio, S., Starling, R. L. C., Stratta, G., and Zafar, T.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The study of the properties of galaxies in the first billion years after the Big Bang is one of the major topic of current astrophysics. Optical/near-infrared spectroscopy of the afterglows of long Gamma-ray bursts (GRBs) provide a powerful diagnostic tool to probe the interstellar medium (ISM) of their host galaxies and foreground absorbers, even up to the highest redshifts. We analyze the VLT/X-shooter afterglow spectrum of GRB 210905A, triggered by the Swift Neil Gehrels Observatory, and detect neutral-hydrogen, low-ionization, high-ionization, and fine-structure absorption lines from a complex system at z=6.3118, that we associate with the GRB host galaxy. We study the ISM properties of the host system, revealing the metallicity, kinematics and chemical abundance pattern. The total metallicity of the z~6.3 system is [M/H]=-1.72+/-0.13, after correcting for dust-depletion and taking into account alpha-element enhancement. In addition, we determine the overall amount of dust and dust-to-metal mass ratio (DTM) ([Zn/Fe]_fit=0.33+/-0.09, DTM=0.18+/-0.03). We find indications of nucleosynthesis due to massive stars and evidence of peculiar over-abundance of aluminium. From the analysis of fine-structure lines, we determine distances of several kpc for the low-ionization gas clouds closest to the GRB. Those farther distances are possibly due to the high number of ionizing photons. Using the HST/F140W image of the GRB field, we show the GRB host galaxy as well as multiple objects within 2" from the GRB. We discuss the galaxy structure and kinematics that could explain our observations, also taking into account a tentative detection of Lyman-alpha emission. Deep spectroscopic observations with VLT/MUSE and JWST will offer the unique possibility of combining our results with the ionized-gas properties, with the goal of better understanding how galaxies in the reionization era form and evolve., Comment: Accepted Publication (In Press on A&A) - 22 pages, 10 figures, 6 tables - Appendix: 6 figures, 3 tables
- Published
- 2022
- Full Text
- View/download PDF
44. PKS1413+135: OH and HI at z = 0.247 with MeerKAT
- Author
-
Combes, F., Gupta, N., Muller, S., Balashev, S., Deka, P., Emig, K., Kloeckner, H. -R., Klutse, D., Knowles, K., Mohapatra, A., Momjian, E., Noterdaeme, P., Petitjean, P., Salas, P., Srianand, R., and Wagenveld, J.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The BL Lac PKS 1413+135 was observed by the Large Survey Project "MeerKAT Absorption Line Survey" (MALS) in the L-band, at 1139 MHz and 1293-1379 MHz, targeting the HI and OH lines in absorption at z = 0.24671. The radio continuum is thought to come from a background object at redshift lower than 0.5, as suggested by the absence of gravitational images. The HI absorption line is detected at high signal-to-noise, with a narrow central component, and a red wing, confirming previous results. The OH 1720 MHz line is clearly detected in (maser) emission, peaking at a velocity shifted by -10 to -15 km/s with respect to the HI peak. The 1612 MHz line is lost due to radio interferences. The OH 1667 MHz main line is tentatively detected in absorption, but not the 1665 MHz one. Over 30 years, a high variability is observed in optical depths, due to the rapid changes of the line of sight, caused by the superluminal motions of the radio knots. The HI line has varied by 20 per cent in depth, while the OH-1720 MHz depth has varied by a factor 4. The position of the central velocity and the widths also varied. The absorbing galaxy is an early-type spiral (maybe S0) seen edge-on, with a prominent dust lane, covering the whole disk. Given the measured mass concentration, and the radio continuum size at centimeter wavelengths (100 mas corresponding to 400 pc at z = 0.25), the width of absorption lines from the nuclear regions are expected up to 250 km/S. The narrowness of the observed lines (< 15 km/s) suggest that the absorption comes from an outer gas ring, as frequently observed in S0 galaxies. The millimetric lines are even narrower (< 1 km/s), which corresponds to the continuum size restricted to the core. The core source is covered by individual 1 pc molecular clouds, of column density a few 10^22 cm-2, which is compatible with the gas screen detected in X-rays., Comment: 7 pages, 6 figures, accepted in A&A
- Published
- 2022
- Full Text
- View/download PDF
45. An Integrated Photon-Pair Source with Monolithic Piezoelectric Frequency Tunability
- Author
-
Brydges, Tiff, Raja, Arslan S., Gelmini, Angelo, Lihachev, Grigorii, Petitjean, Antoine, Siddharth, Anat, Tian, Hao, Wang, Rui N., Bhave, Sunil A., Zbinden, Hugo, Kippenberg, Tobias J., and Thew, Rob
- Subjects
Quantum Physics ,Physics - Optics - Abstract
This work demonstrates the capabilities of an entangled photon-pair source at telecom wavelengths, based on a photonic integrated Si$_3$N$_4$ microresonator with monolithically integrated piezoelectric frequency tuning. Previously, frequency tuning of photon-pairs generated by microresonators has only been demonstrated using thermal control, however these have limited actuation bandwidth, and are not compatible with cryogenic environments. Here, the frequency-tunable photon-pair generation capabilities of a Si$_3$N$_4$ microresonator with a monolithically integrated aluminium nitride layer are shown. Fast-frequency locking of the microresonator to an external laser is demonstrated, with a resulting locking bandwidth orders of magnitude larger than reported previously using thermal locking. These abilities will have direct application in future schemes which interface such sources with quantum memories based on e.g. trapped-ion or rare-earth ion schemes.
- Published
- 2022
- Full Text
- View/download PDF
46. Model Independent Approach of the JUNO $^8$B Solar Neutrino Program
- Author
-
JUNO Collaboration, Zhao, Jie, Yue, Baobiao, Lu, Haoqi, Li, Yufeng, Ling, Jiajie, Yu, Zeyuan, Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, Alexandros, Tsagkarakis, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Bergnoli, Antonio, Birkenfeld, Thilo, Blin, Sylvie, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Butorov, Ilya, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callegari, Riccardo, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Chan, Chi, Chang, Jinfan, Chang, Yun, Chen, Guoming, Chen, Pingping, Chen, Po-An, Chen, Shaomin, Chen, Xurong, Chen, Yixue, Chen, Yu, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Corti, Daniele, Corso, Flavio Dal, Dalager, Olivia, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Diaz, Marco, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dusini, Stefano, Dvorak, Martin, Enqvist, Timo, Enzmann, Heike, Fabbri, Andrea, Fan, Donghua, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ford, Richard, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Jingyuan, Guo, Wanlei, Guo, Xinheng, Guo, Yuhang, Hackspacher, Paul, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kalousis, Leonidas, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kutovskiy, Nikolay, Kuusiniemi, Pasi, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Daozheng, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Zepeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Lippi, Ivano, Liu, Fang, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Yan, Liu, Yunzhe, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Jingbin, Lu, Junguang, Lu, Shuxiang, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Manzali, Francesco, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martellini, Cristina, Martin-Chassard, Gisele, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Mezzetto, Mauro, Miller, Jonathan, Miramonti, Lino, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelliccia, Nicomede, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Ranucci, Gioacchino, Raper, Neill, Re, Alessandra, Rebber, Henning, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sanfilippo, Simone, Sangka, Anut, Sawangwit, Utane, Sawatzki, Julia, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settanta, Giulio, Settimo, Mariangela, Shao, Zhuang, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Slupecki, Maciej, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Štefánik, Dušan, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Treskov, Konstantin, Triossi, Andrea, Troni, Giancarlo, Trzaska, Wladyslaw, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, Volpe, Cristina, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Lu, Wang, Meifen, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuman, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Wang, Zongyi, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Wiebusch, Christopher, Wong, Steven Chan-Fai, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Taylor, Yan, Wenqi, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Huan, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, Yin, Na, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Guoqing, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jin, Zhang, Jingbo, Zhang, Jinnan, Zhang, Mohan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Xueyao, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Fengyi, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, and Zou, Jiaheng
- Subjects
High Energy Physics - Experiment ,Astrophysics - Solar and Stellar Astrophysics ,High Energy Physics - Phenomenology ,Nuclear Experiment - Abstract
The physics potential of detecting $^8$B solar neutrinos will be exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model independent manner by using three distinct channels of the charged-current (CC), neutral-current (NC) and elastic scattering (ES) interactions. Due to the largest-ever mass of $^{13}$C nuclei in the liquid-scintillator detectors and the {expected} low background level, $^8$B solar neutrinos would be observable in the CC and NC interactions on $^{13}$C for the first time. By virtue of optimized event selections and muon veto strategies, backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC and ES channels to guarantee the $^8$B solar neutrino observation. From the sensitivity studies performed in this work, we show that JUNO, with ten years of data, can reach the {1$\sigma$} precision levels of 5%, 8% and 20% for the $^8$B neutrino flux, $\sin^2\theta_{12}$, and $\Delta m^2_{21}$, respectively. It would be unique and helpful to probe the details of both solar physics and neutrino physics. In addition, when combined with SNO, the world-best precision of 3% is expected for the $^8$B neutrino flux measurement., Comment: 19 pages, 7 figures, accepted version to appear in The Astrophysical Journal. Yufeng Li and Jiajie Ling are corresponding authors
- Published
- 2022
- Full Text
- View/download PDF
47. Emergence of a new HI 21-cm absorption component at z~1.1726 towards the gamma-ray blazar PKS~2355-106
- Author
-
Srianand, Raghunathan, Gupta, Neeraj, Petitjean, Patrick, Momjian, Emmanuel, Balashev, Sergei A., Combes, Francoise, Chen, Hsiao-Wen, Krogager, Jens-Kristian, Noterdaeme, Pasquier, Rahmani, Hadi, Baker, Andrew J., Emig, Kimberly L., Jozsa, Gyula I. G., Kloeckner, Hans-Rainer, and Moodley, Kavilan
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We report the emergence of a new HI 21-cm absorption at z_abs = 1.172635 in the damped Lyman-alpha absorber (DLA) towards the gamma-ray blazar PKS 2355-106 (z_em~1.639) using science verification observations (June 2020) from the MeerKAT Absorption Line Survey (MALS). Since 2006, this DLA is known to show a narrow HI 21-cm absorption at z_abs = 1.173019 coinciding with a distinct metal absorption line component. We do not detect significant HI 21-cm optical depth variations from this known HI component. A high resolution optical spectrum (August 2010) shows a distinct Mg I absorption at the redshift of the new HI 21-cm absorber. However, this component is not evident in the profiles of singly ionized species. We measure the metallicity ([Zn/H] = -(0.77\pm0.11) and [Si/H]= -(0.96\pm0.11)) and depletion ([Fe/Zn] = -(0.63\pm0.16)) for the full system. Using the apparent column density profiles of Si II, Fe II and Mg I we show that the depletion and the N(Mg I)/N(Si II) column density ratio systematically vary across the velocity range. The region with high depletion tends to have slightly larger N(Mg I)/N(Si II) ratio. The two HI 21-cm absorbers belong to this velocity range. The emergence of z_abs = 1.172635 can be understood if there is a large optical depth gradient over a length scale of ~0.35 pc. However, the gas producing the z_abs = 1.173019 component must be nearly uniform over the same scale. Systematic uncertainties introduced by the absorption line variability has to be accounted for in experiments measuring the variations of fundamental constants and cosmic acceleration even when the radio emission is apparently compact as in PKS 2355-106., Comment: 8 pages, 7 figures and accepted for publication in MNRAS
- Published
- 2022
- Full Text
- View/download PDF
48. Mapping HI 21-cm in the Klemola 31 group at z = 0.029: emission and absorption towards PKS2020-370
- Author
-
Maina, E. K., Mohapatra, Abhisek, Jozsa, G. I. G., Gupta, N., Combes, F., Deka, P., Wagenveld, J. D., Srianand, R., Balashev, S. A., Chen, Hsiao-Wen, Krogager, J. -K., Momjian, E., Noterdaeme, P., and Petitjean, P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present MeerKAT Absorption Line Survey (MALS) observations of the HI gas in the Klemola31 galaxy group ($z=0.029$), located along the line of sight to the radio-loud quasar PKS2020-370 ($z=1.048$). Four galaxies of the group are detected in HI emission, and HI absorption is also detected in front of PKS2020-370 in Klemola31A. The emission and absorption are somewhat compensating on the line of sight of the quasar, and the derived column density of the absorption appears under-estimated, with respect to the neighbouring emission. A symmetric tilted-ring model of Klemola31A, assuming the absorbing gas in regular rotation in the plane, yields a rather high spin temperature of 530K. An alternative interpretation is that the absorbing gas is extra-planar, which will also account for its non-circular motion. The NaI/CaII ratio also suggests that the absorbing gas is unrelated to cold HI disk. Two of the galaxies in the Klemola group are interacting with a small companion, and reveal typical tidal tails, and velocity perturbations. Only one of the galaxies, ESO400-13, reveals a strong HI deficiency, and a characteristic ram-pressure stripping, with a total asymmetry in the distribution of its gas. Since a small galaxy group as Klemola31 is not expected to host a dense intra-group gas, this galaxy must be crossing the group at a very high velocity, mostly in the sky plane., Comment: 13 pages, 8 figures, 3 tables, accepted in MNRAS (minor corrections)
- Published
- 2022
- Full Text
- View/download PDF
49. Plug-&-play generation of non-Gaussian states of light at a telecom wavelength
- Author
-
Melalkia, Mohamed Faouzi, Gabbrielli, Tecla, Petitjean, Antoine, Brunel, Léandre, Zavatta, Alessandro, Tanzilli, Sébastien, Etesse, Jean, and D'Auria, Virginia
- Subjects
Quantum Physics - Abstract
This work marks an important progress towards practical quantum optical technologies in the continuous variable regime, as it shows the feasibility of experiments where non-Gaussian state generation entirely relies on plug-&-play components from guided-wave optics technologies. This strategy is demonstrated experimentally with the heralded preparation of low amplitude Schr\"odinger cat states based on single-photon subtraction from a squeezed vacuum. All stages of the experiment are based on off-the-shelf fiber components. This leads to a stable, compact, and easily re-configurable realization, fully compatible with existing fibre networks and, more in general, with future out-of-the-laboratory applications.
- Published
- 2022
- Full Text
- View/download PDF
50. Coordinated time variability of multi-phase ultra-fast outflows in J132216.25+052446.3
- Author
-
Aromal, P., Srianand, R., and Petitjean, P.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present a time variability analysis of broad absorption lines (BAL; spread over the velocity range of 5800-29000 km/s) seen in the spectrum of J132216.25+052446.3 (z(em)= 2.04806) at ten different epochs spanning over 19 years. The strongest absorption component (BAL-A; spread over 5800-9900 km/s) is made up of several narrow components having velocity separations close to C IV doublet splitting. The C IV, N V, and Si IV absorption from BAL-A show correlated optical depth variability without significant changes in the velocity structure. A very broad and shallow absorption (BAL-C; spread over the velocity range 15000-29000 km/s) emerged during our monitoring period coinciding with a dimming episode of J1322+0524. All the identified absorption lines show correlated variability with the equivalent widths increasing with decreasing flux. This together with the C IV emission-line variability is consistent with ionization being the main driver of the correlated variability. The observed UV-continuum variations are weaker than what is required by the photo-ionization models. This together with a scatter in the C iv equivalent width at a given continuum flux can be understood if variations of the C IV ionizing photons are much larger than that of the UV continuum, the variations in the ionizing photon and UV fluxes are not correlated and/or the covering factor of the flow varies continuously. We suggest BAL-A is produced by a stable clumpy outflow located beyond the broad emission line region and BAL-C is a newly formed wind component located near the accretion disk and both respond to changes in the ionizing continuum., Comment: 15 pages, 16 figures, Accepted for publication in MNRAS
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.